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The Memory Hierarchy

Most computers rely on a hierarchy of storage devices. The fastest and
smallest are usually architectural registers explicitly identified by instruc-
tions. These hold data which is transferred to and from memory; however
because it takes many processor cycles to access memory, it is normal to in-
clude one or more special high speed memories known as caches to hold data
temporarily. The caches are not normally visible to the programmer and data
transfers to and from them are managed automatically by the hardware.

Caches are almost always organised in blocks (also known as lines), with each
block consisting of a small number of words (typically 4). Data is transferred
between caches and memory in blocks. The reason for this is that

• there is little additional cost in transferring the extra words after the
first, given that time is needed to gain access to the memory system
and to transfer the (read or write) command and address.

• there is a high probability that the extra words will be needed anyway,
given that many programs access in succession a series of locations at
similar addresses. Obvious examples are access to instructions, access
to items in a procedure stack frame (where parameters and variables
are held) and access to items in a record. This is sometimes referred
to as spatial locality.

In addition to the storage locations in each line in the cache, there is a valid
bit to indicate that the line contains a valid block, and also a dirty bit to
indicate that the block has been written to by the processor since it was
loaded from memory. The dirty bit is used to avoid un-neccessarily writing
the block back to memory.

Most computers have a level 1 cache (L1 cache) which is integrated into the
processor. In many computers, the level one cache is in fact two caches,
one for the instructions (the i-cache) and one for the data (the d-cache).



This allows instructions and data to be fetched simultaneously. General
purpose computers normally have a level 2 (L2) cache on the same chip as
the processor and L1 cache(s). The L2 cache holds both instructions and
data; this is known as a unified cache. Sometimes there is a large level 3
cache which is provided as separate memory chips.

Blocks are transferred automatically between the caches and between the
caches and memory. Normally the blocks are transferred only between adja-
cent levels of the hierarchy (Register-L1-L2-L3-memory). The final compo-
nent of the memory hierarchy is the disc (or some other large capacity storage
device). In some systems the memory behaves like yet another cache with
the data residing on the disc and being transferred automatically between
disc and memory on demand. This is known as a virtual memory system. In
a virtual memory system the blocks transferred between memory and disc
are much larger than cache blocks and are often called pages.

A great deal of research has been done over the years on cache architectures
and there are many different schemes. This reflects the fact that there is no
best architecture; they all have strengths and weaknesses. It is important to
understand that caches are essential in order to allow modern processors to
run efficiently and work well on programs which re-use the same instructions
and data over a short period of time (this is known as temporal locality).
However, there are algorithms which do not have this property and these
do not run well on modern processors; there is a lot of processor idling
and/or under-used processor resources. An obvious example is processing
large dynamically-allocated data structures such as lists and trees.

Three common types of cache are direct mapped caches, associative caches
and set-associative caches.

Direct Mapped Caches

In a direct mapped cache each line in memory is mapped to a unique line in
the cache. As there are many more lines in the memory than there are in the
cache, this means that many memory lines compete for the same cache line.
If the memory has 2m lines and the cache has 2c lines, then 2m−c lines are
mapped to the same cache line. In order to identify which memory line is
currently held in a cache line, each cache line has a stored tag of size (m− c)
bits. This tag is compared with the most significant bits of the address
when the cache line is accessed using the least significant c bits. If there is
a match, and if the valid bit is set, there is a cache hit and the access goes
ahead. Otherwise there is a miss; if the valid bit indicates that there is a
cached line and the dirty bit indicates that it has been updated it must be



written back to memory and replaced with the required line.

Notice that in the case of write miss the block must be fetched from memory
before it is written with new data bacause the block contains data in addition
to the word being written.

Direct mapped caches are simple but have an important drawback. There
is a significant chance that there will be too much competition for a given
cache line and that it will be continually replaced from memory, rendering the
cache ineffective. There are several ways this can happen and the effects can
be very unpredictable, possibly depending on the actual addresses occupied
by data structures and programs. Examples include:

• Advancing through a data area (eg an array) in large steps. It may
turn out that a program runs efficiently for all two-dimensional arrays
of size [p, q] except where p = k × 2m.

• Repeatedly accessing corresponding elements in two data structures.
If it turns out that the start addresses of two arrays are separated by
a multiple of the cache size (ie by k × 2m), every access will result
in a collision. As the space for the arrays may have been allocated
at arbitrary addresses at run-time, it follows that there may be wide
variations in execution time.

• Accessing two sections of program within a loop. The effects may be
very difficult to understand, with performance suddenly dropping as
a result of the distance between procedure entrypoints being near a
multiple of the cache size. This could result from a minor program
modification.

• Accessing stack and program within a loop. This would be similar to
the previous case with essential data being displaced by the instructions
which operate on it and conversely.

An alternative to a direct mapped cache which avoids these problems is an
associative cache.

Associative Caches

An associative cache allows any line in memory to be stored in any line in
the cache. If the memory has 2m lines each cache line has a tag of size m
bits. The tags are compared with the address when the cache is accessed. If
there is a match, there is a hit and the access goes ahead. Otherwise there is



a miss and the required line must be brought into the cache. If the cache is
full, one of the cached lines must be written back to memory (if it had been
updated) and replaced with the required line.

The problem with associative caches is that it is difficult to select a line
to replace when the cache is full. The best algorithm is to select the least
recently used line as this is the one least likely to be needed again. However
if there are a large number of lines in the cache it is complex (and potentially
slow) to keep track of which is the least recently used line. For this reason,
associative caches commonly use random replacement and a random number
generator is used to select the line to be replaced.

Set-associative Caches

The set-associative cache achieves most of the benefits of an associative cache
without the cost of large tags and complex replacement methods. It is similar
to a direct mapped cache but provides a small set (typically 4) of cache lines
for each line in memory. This means that the examples above which cause
collisions in a direct mapped cache will not cause collisions in a set-associative
cache; provided that there is an unfilled line in the set it will be used.

If the memory has 2m lines and the cache has 2c lines and associativity 2a,
then 2a+m−c lines are mapped to the same cache 2a cache lines. In order to
identify which memory line is currently held in a cache line, each cache line
has a tag of size (m − c) bits. The tags in each set are compared with the
most significant bits of the address when the set is accessed using the least
significant (c− a) bits. If there is a match, there is a hit and the access goes
ahead. Otherwise there is a miss and the required line must be brought into
one of the lines in the set. If all of the lines are in use, one of the cached
lines in the set must be written back to memory (if it had been updated)
and replaced with the required line. In this case, as the number of lines in
each set is small, it is practical to employ a least-recently used scheme to
determine which line to replace.

Write-through vs Write Back caches

In the caches described above, data is only transferred from the cache to the
memory when there is no space in the cache to store a required line. This
means that a line can remain in the cache for a long time before it is trans-
ferred to memory. Such caches are known as write-back caches, in contrast
to write-through caches which write data to memory as well as storing it in
the cache. The advantages of write-through caches are that data becomes
immediately visible to other devices sharing access to the memory; these may



include other processors or input-output devices. The disadvantage is that
many more memory transfers are needed.

Protection, Memory Mapping and Virtual Memory

Most processors have facilities to support

• Protection, to prevent an incorrect program from affecting other pro-
grams including the operating system

• Memory mapping, to simplify the task of allocating memory to a col-
lection of programs

• Virtual Memory, to allow execution of programs (and collections of
programs) larger than the physical memory

In general purpose processors intended to support standard operating sys-
tems, it is common for all of these functions to be provided by a single Virtual
Memory system

Protection

Protection mechanisms have three objectives

• Containment. It should be possible to prevent errors in programs from
affecting other programs or input-output devices. This is important in
most computers, including embedded control processors.

• Monitoring. It is usually important to detect (and report) that errors
have occurred.

• Recovery. It is sometimes necessary to recover from errors, for exam-
ple by removing a program from memory and re-setting input-output
activity it has initiated.

The simplest form of protection involves dividing the address space in two
and using one half for the trusted program(s) and the other half for the
untrusted programs(s). The general principle is then:

• When the program counter (PC) is in the trusted region, any address
can be written and jumped to.



• When the PC is in the untrusted region, only addresses in the untrusted
region can be written and jumped to.

Of course, there must be some way of transferring control from the untrusted
region to the trusted region, either voluntarily (this is often known as a system
call) or when an error occurs in an untrusted program (this is often known
as an exception). This special mechanism for transferring control involves
jumping to a specific address (or one of a number of specific addresses) in
the trusted region. These special addresses are often known as entrypoints.
It is possible to ensure that the (trusted) programs at these entrypoints will
perform correctly and recover from any errors in the untrusted program.

Exceptions normally include

• protection error, such as trying to address outside of the allocated mem-
ory, or trying to write to special control registers

• illegal instruction

• arithmetic errors, such as divide by zero and overflow.

The special transfer of control is often known as a trap although it is some-
times referred to as a software interrupt because its effect is similar to that
of an interrupt.

The trusted region is normally used to execute the core functions of an oper-
ating system including creating, removing and scheduling tasks (sometimes
known as processes) and providing communication between them. It also
includes the interrupt service routines providing the interface to hardware
devices. These, like the traps also involve transfers of control to specific
entrypoints in the trusted region. In the simplest schemes, each trap or
interrupt service routine is executed with traps and interrupts disabled on
entry and re-enabled on completion (by a special return from trap/interrupt
instruction); this makes it simple to ensure that the data structures provid-
ing communication between software and hardware are kept in a consistent
state. The collection of task scheduling software, trap and interrupt service
routines is often known as an operating system kernel.

Relocation

It is convenient to provide a special register to hold the address which sep-
arates the trusted region from the untrusted region. This register must of



course only be writable when executing trusted programs. A further refine-
ment is to cause the contents of this register to be added to all memory
addresses when executing untrusted programs. The effect of this is that the
address space of an untrusted (user) program starts from zero, no matter
where it is actually placed in memory. The user program is relocated by the
special register (the base register). By adding yet another special register
(the limit register) it is possible to contain a user program within a region of
memory, preventing it from accessing memory outside the allocated region
(below the base or above the limit). This makes it possible to have several
user programs in memory at the same time with them all protected from
each other in addition to the kernel being protected from all of them.

Using a simple relocation and protection scheme makes it possible to imple-
ment simple task schedulers which

• successively load programs from a backing store such as a disc (or from
a network) into regions of memory.

• maintain a scheduling list of tasks ready for execution

• execute each task having set the base and limit registers appropriately

• provide tasks with access to input and output devices (and ensure that
they do not interfere with each others’ input-output operations)

A more complex scheduler might add the ability to temporarily remove tasks
from memory thereby enabling a larger collection of tasks to be executed at
the same time. The relocation mechanism means that it does not matter
that a task is reloaded at a different location in memory.

Segments and Pages

The scheme described above is a very simple example of a multi-tasking
system using segments. A segment is a region of memory described by a base
and limit (or a base and length). A segment descriptor may also contain
other information to control the use of the segment (for example to specify
whether it is readable, writable or executable).

Some architectures support execution of programs using a collection of seg-
ment descriptors held in special registers; these would normally provide ac-
cess to a program segment, stack segment and other data segments. Ob-
viously, the provision of several segment descriptor registers increases the



amount of information which must be saved and restored when switching
tasks.

An alternative to using variable sized segments is to use fixed size pages.
Pages normally contain 2n bytes, where typically n ranges from 10 to 20.
Some architectures support only one page size; others support a small range
of different sizes. Pages have some advantages over segments:

• they only need a single word descriptor

• storage allocation is easy because they are all the same size (or even
if more than one size is available it is possible to easily break large
segments into a whole number of smaller ones)

• they can be arranged to have a simple relationship with the size of
blocks held on disc

Paging schemes have been adopted in all recent architectures in preference
to segmentation schemes.

Virtual Memory

Using a segmentation or paging system makes it possible to give a program-
mer the illusion that a computer has a much larger memory than it actually
has. This is done by providing the user with a virtual address space and
using the physical memory like a cache. Segments or pages are then trans-
ferred between physical memory and disc as needed, in much the same way
as blocks are transferred between caches and memory in a cache system.

It has become common to combine all of the functions of protection, mem-
ory management and virtual memory in a single mechanism in which the
addresses manipulated by the processor fall within a virtual address space
much larger than the physical address space. In addition, each task can be
provided with its own virtual address space.

Virtual and Physical addresses

In a virtual memory system, the virtual addresses manipulated by the proces-
sor must be translated into the physical addresses used to access memory. If
the memory system is divided into pages of size 2p, the virtual address space
is of size 2v and the physical memory is of size 2m, then there will be 2v−p

pages in the virtual address space and 2m−p pages in the physical memory.
The virtual addresses can be translated to physical memory addresses using



a page table with 2v−p entries each of size (m− p) bits. The most significant
(v − p) bits of the virtual address are used to select an entry in the page
table producing the most significant m−p bits of the physical address (these
bits give the number of the physical page); the least sigificant p bits of the
physical address are the same as the least significant p bits of the virtual
address (these bits give the offset within the selected page).

In addition to the (m− p) bits in each page table entry, there will be infor-
mation to indicate whether or not the virtual page is currently held in the
physical memory. If not, instead of holding the number of the physical page,
the entry might hold information to allow the virtual page to be located on
a disc or other mass storage device if this can not easily be deduced from the
virtual address.

If the virtual address space is large and the pages are small (ie v is much
larger than p), the page table which is of size 2v−p will be very large. In this
case it is possible to use a hash table which which contains information about
the physical pages currently in use; for each physical page in use the entry
will contain the corresponding virtual and physical page addresses. This is
known as an inverted page table.

Accessing data in a virtual memory system

When the processor attempts to read or write using a virtual address, the
page table is used to determine if the virtual page containing the virtual
address is currently held in physical memory. If so, the entry in the page
table is used to translate the virtual address to a physical address and the
memory access goes ahead. Otherwise, the information in the page table
must be used to transfer the virtual page into physical memory. This will
take a relatively long time even if it is carried out automatically by hardware;
it is limited by the speed of access to the disc (and the disc data transfer
rate).

In most current systems, a trap is generated when an attempt is made to
access a virtual page which is not in physical memory; the trap is normally
referred to as a page fault. The operating system will then execute a trap
handler to cause the virtual page to be transferred from disc. As this will
take a long time, the operating system may de-schedule the task and activate
another one.

Page Replacement

Obviously, as in the case of a cache, it is possible that there is no space left



in physical memory when a page fault occurs and a page must be transferred
from disc. In this case a page must be transferred from memory to disc
to make space. In this respect the virtual memory system behaves like an
associative cache; virtual pages can be placed anywhere in physical memory.
However, in the case of virtual memory the cost of a page fault is so large
that it is worth trying to make the best possible selection of the page to be
replaced. Instead of a random replacement scheme, it is normal to implement
a least-recently-used scheme; this is also fairly easy as it is carried out using
software in the operating system.

Least recently used

The least-recently-used page is determined using a list of the pages in physical
memory. When a page is accessed, it is moved to the head of the list, so that
un-accessed pages gradually move to the tail. The list is normally doubly-
linked (linked in both directions) so that it is possible to efficiently remove
a list entry from the middle of the list and insert it at the head of the
list. In practice it is not possible to carry out this operation every time an
access takes place, so instead each entry in the page table has a flag which
is set when the page is accessed. These flags are periodically checked by the
operating system (possibly using a timer interrupt); the pages which have
been accessed are moved to the list head and the flags are cleared.

Translation Lookaside buffer

An important disadvantage of a page table held in memory is that every
memory access takes two accesses in sucession. The first access is to the
page table to translate the address; the second is to access the data in the
physical page. As memory accesses account for around 30% of instructions
executed, this is a significant performance penalty.

In order to speed up translation, it has become common to use a special kind
of cache known as a translation lookaside buffer (TLB). The idea is based on
the observation that if the addresses in programs have locality, so do their
translations. In practice, a small number of entries (typically 32) is sufficient.

The TLB is a small associative cache loaded by the operating system. Like
a cache each entry has a valid bit and each valid entry contains a translation
consisting of a tag of size (v − p) bits and a corresponding physical address
of size (m− p) bits.

On every memory access, a TLB lookup is made to derive the most significant
(m− p) bits of the physical address. Notice that provided that the page size



is bigger than the size of the L1 cache, the TLB lookup can proceed alongside
the access to the cache as the TLB result will only be needed for checking
the L1 cache tag(s).

Of course, it is possible that the TLB lookup fails to find a translation, in
which case a TLB miss occurs, causing a trap and entry to an operating
system handler. This may cause a new entry to be loaded into the TLB.
Like the page table, the TLB entries may also contain flags to record when
they have been used to support a least recently used replacement algorithm.
However another method is to simply disable the translations using the valid
bits from time to time; any access will then generate a trap which will move
the corresponding page to the list head and re-enable the translation.

Protection

A small extension to the virtual memory system described above allows pro-
tection of tasks from each other, and protection of the operating system from
the tasks. By adding permission information to the page table entries or to
the TLB entries, it is possible to restrict the accesses which can be made
by the currently executing task. Typically, each entry would have three bits,
one enabling the corresponding page to be read, one enabling it to be written
and one enabling it to be executed.

The operating system can therefore determine which areas of memory may
be used (and for what purpose) by a task in that it will only load permitted
translations into the TLB when the task is started (or restarted).


