
Software Defined Silicon

David May

Bristol University and XMOS

David May 1 IET, Cambridge December 6, 2007

Introduction

We can build chips with hundreds of processors

We can build computers with millions of processors

We can support concurrent programming in hardware

We can define and build digital systems in software

David May 2 IET, Cambridge December 6, 2007

Architecture

Regular, tiled implementation on chips, modules and boards

Scale from 1 to 1000 processors per chip

System interconnect with scalable throughput and low latency

Streamed (virtual circuit) or packetised communications

David May 3 IET, Cambridge December 6, 2007

Architecture

High throughput, responsive input and output

Instruction set designed to support compiler optimisations

Power efficiency - compact programs and data, mobility

Energy efficiency - event driven systems

David May 4 IET, Cambridge December 6, 2007

Interconnect

Supports multiple bidirectional links for each tile - a 500MHz
processor can support several 100Mbyte/second streams

Exploit manufacturing processes with many layers of
interconnect

Full bisection bandwidth can be achieved on silicon using
crosspoint switches or multi-stage switches even for hundreds of
links.

In some cases (eg modules and boards), low-dimensional grids
are more practical.

David May 5 IET, Cambridge December 6, 2007

Routing - modules and systems

Simple hardware operating on first few bits of message

Incoming bits compared with node address, bit-by-bit

If all pairs match, the node is the destination

If not, the bit number of the first non-matching pair is used to
select an outgoing route via a lookup table

This is sufficient to perform efficient deadlock-free routing in all
n-dimensional arrays - and many other structures.

David May 6 IET, Cambridge December 6, 2007

Two-dimensional array example

node entry node entry node entry node entry
0 rrdd 4 rldd 8 lrdd 12 lldd
1 rrdu 5 rldu 9 lrdu 13 lldu
2 rrud 6 rlud 10 lrud 14 llud
3 rruu 7 rluu 11 lruu 15 lluu

Each entry selects a right (r), left (l), up (u) or down (d) link.

Performance can be enhanced using a set of links on each path.

A set of links can be configured to provide multiple independent
networks.

David May 7 IET, Cambridge December 6, 2007

Interconnect protocol

Communication protocol provides control and data tokens.
• used to construct applications-optimised protocols.

A route is opened by a message header and closed by an
end-of-message token.

The interconnect can be used under software control to
• establish virtual circuits to stream data or guarantee

message latency
• perform dynamic packet routing by establishing and

disconnecting circuits packet-by-packet.

David May 8 IET, Cambridge December 6, 2007

Threads

Each processor includes hardware support for a number of
threads, including:
• a set of registers for each thread
• a scheduler which dynamically selects which thread to

execute
• a set of channels for communication with other threads
• a set of ports used for input and output
• a set of timers to control real-time execution
• a set of clock generators to enable synchronisation of the

input-output with external time domains

David May 9 IET, Cambridge December 6, 2007

Threads - use

Allow communications or input-output to progress together with
processing.

Implement ‘hardware’ functions such as DMA controllers and
specialised interfaces

Provide latency hiding by allowing some threads to continue
whilst others are waiting for communication with remote tiles.

The set of threads in each tile can also be used to implement a
kernel for a much larger set of software scheduled tasks.

David May 10 IET, Cambridge December 6, 2007

Processor Instruction Set

Provide dedicated registers: stack, data, constant pool and link.

Provide 12 operand registers for everything else.

Key point: 11 bits can encode three operands
(12×12×12 < 2048).

Compact program encoding using 16-bit and 32-bit instructions

Position independent code making code-mobility easy

David May 11 IET, Cambridge December 6, 2007

Instructions

16-bit: 20 3-address: conventional arithmetic and logic
40 2-address: input-output and thread management
20 with 6-bit or 10-bit immediates: data access, branches
lots of 1-address and 0-address instructions

32-bit: less common instructions
instructions with up to 6 operands (for cryptography, DSP etc)
10-bit prefixes to extend range for jumps and stack offsets
lots of spare opcodes

David May 12 IET, Cambridge December 6, 2007

Processor - Resources

Each processor manages physical resources: threads,
synchronisers, channels, timers, locks and clock generators.

Threads claim and free resources using special instructions.

Resources interact directly with the thread scheduler and
instructions such as inputs and outputs can potentially result in a
process pausing until a resource is ready and then continuing.

Information about the state of a resource is available to the
scheduler within a single processor cycle.

David May 13 IET, Cambridge December 6, 2007

Process Scheduler

The thread scheduler maintains a set of runnable threads, run,
from which it takes instructions in turn.

A thread is not in the run set when:
• its registers are being initialised prior to it being able to run.
• it is waiting to synchronise with another process before

continuing or terminating.
• it has attempted an input but there is no data available.
• it has attempted an output but there is no room for the data.
• it is waiting for one of a number of events.

David May 14 IET, Cambridge December 6, 2007

Thread Scheduler

Guarantees each of n threads at least 1/n processor cycles.

A chip with 128 processors each able to execute 8 threads can
be used as if it were a chip with 1024 processors each operating
at one eighth of the processor clock rate.

Shares a simple unified memory system between threads in a
tile.

Each processor behaves as symmetric multiprocessor with 8
processors sharing a memory with no access collisions and with
no caches needed.

David May 15 IET, Cambridge December 6, 2007

Instruction Execution

Each thread has a short instruction buffer sufficient to hold at
least four instructions.

Instructions are issued from the instruction buffers of the
runnable threads in a round-robin manner.

Threads which are not in the run set are ignored.

Instruction fetch is performed within the execution pipeline, in
the same way as data access.

David May 16 IET, Cambridge December 6, 2007

Execution pipeline

Simple four stage pipeline:

1 decode reg-write
2 reg-read
3 address ALU1 resource-test
4 read/write/fetch ALU2 resource-access schedule

At most one instruction per thread in the pipeline.

David May 17 IET, Cambridge December 6, 2007

Use of Read/Write/Fetch stage

Any instruction which requires memory access performs it

Branch instructions fetch their branch target instructions - no
branch penalty.

Any other instruction performs an instruction fetch for the thread
(unless the buffer is full).

If a thread’s buffer is empty when an instruction should be
issued, a no-op is issued to fetch the next instruction.

David May 18 IET, Cambridge December 6, 2007

Concurrency

Fast initiation and termination of threads

Fast barrier synchronisation - one instruction per thread

Compiler optimisation using barriers to remove join-fork pairs

Compiler optimisation of sequential programs using multiple
threads (such as splitting an array operation into two half size
ones)

David May 19 IET, Cambridge December 6, 2007

Fork-join optimisation
while true

{ par { in(inchan,a) || out(outchan,b) };

par { in(inchan,b) || out(outchan,a) }

}

par

{ while true

{ in(inchan,a); SYNC c; in(inchan,b); SYNC c }

|| while true

{ out(outchan,b); SYNC c; out(outchan,a); SYNC c }

}

David May 20 IET, Cambridge December 6, 2007

Concurrent Software Components

while true

{ par { in(nextx) || in(nexty) || nextr := f(x, y) || out(r) };

x, y, r := nextx, nexty, nextr

}

while true

{ par { in(nextx) || in(nexty) || nextr := f(x, y) || out(r) };

par { move(nextx, x) || move(nexty, y) || move(nextr, r) }

}

Components can be composed to implement deterministic
concurrent systems.

David May 21 IET, Cambridge December 6, 2007

Concurrency and Synchronisation

Hardware synchronisers allow synchronisation to be performed
at 1 instruction/thread

Instructions are provided to
• get a synchroniser
• get and attach new threads to a synchroniser
• free a synchroniser and all of its attached threads
• transfer data directly between the registers of two threads

These instructions interact with the scheduler via the
synchronisers

David May 22 IET, Cambridge December 6, 2007

Communication
Communication is performed using channels, which provide
full-duplex data transfer between channel ends

The channel ends may be
• in the same processor
• in different processors on the same chip
• in processors on different chips

The channel-end identifiers can be used anywhere in a system

The channels provide a uniform method of communication
throughout a system with multiple tiles or multiple chips.

David May 23 IET, Cambridge December 6, 2007

Communication
Channel communication is implemented in hardware and does
not involve memory accesses

This supports fine grained computations in which the number of
communications is similar to the number of operations.

Within a tile, it is possible to use the channels to pass addresses.

Channels carry messages built from tokens
• data tokens are just bytes
• control tokens are used to encode communication protocols

David May 24 IET, Cambridge December 6, 2007

Messages
A channel end is initialised with the destination channel end
identifier.

When the first output is executed, the destination identifier is
used as a message header to open a route through the
interconnect.

Subsequent tokens follow this route, until an end of message
control token is output.

Packet-based communication or virtual circuit communication
can be programmed.

David May 25 IET, Cambridge December 6, 2007

Channel Ends
A channel end can be used as a destination by any number of
processes

They are served on a round-robin basis.

In this case the sender will normally send the identifier of its
channel end which can be used to send a reply, or to establish
bi-directional communication.

As the identifiers of channel ends can be used anywhere, they
can themselves be communicated.

David May 26 IET, Cambridge December 6, 2007

Synchronised Communications

As most messages consist of many individual data items, there
is no need for all of the individual items to be acknowledged.

It is impossible to scale interconnect throughput unless
communication is pipelined

This requires that the use of end-to-end synchronisations is
minimised.

Synchronised communication is implemented by the receiver
sending an acknowledgement to the sender, usually as a
message consisting of a header and an end-of-message token.

David May 27 IET, Cambridge December 6, 2007

Compound Communications
A convenient way to express sequences of communications on
the same channel is with a compound communication.

proc inarray(chan c, []int a) is

?{ for i = 0 for 10 do c ? a[i] ?}

proc outarray(chan c, []int a) is

!{ for i = 0 for 10 do c ! a[i] !}

The synchronisations at the end of each of these compound
communications ensure that each compound output is matched
by exactly one compound input.

David May 28 IET, Cambridge December 6, 2007

Ports, Input and Output

Ports provide interfaces to physical pins.

Inputs and outputs using ports provide
• direct access to the pins
• accesses synchronised with a clock
• accesses timed under program control

An input can be delayed until a specified condition is met
• the time at which the condition is met can be timestamped

David May 29 IET, Cambridge December 6, 2007

Timers and Clocks

Each tile has a free-running clock and a set of timers which can
be used to read the current time or to wait until a specified time.

Input and output operations can be synchronised with an
internally generated clock or an externally supplied clock.

When an output port is driven from a clock, the data on the
pin(s) changes state synchronously with the clock.

If several ports are driven from the same clock, they will appear
to operate as a single port.

David May 30 IET, Cambridge December 6, 2007

Time domains

The threads executed by a processor can handle external
devices at several different rates determined by clocks supplied
externally or generated internally.

The threads decouple the internal timing of input and output
program execution from the operation of the input and output
interfaces.

The processor can operate using its own clock, or could
potentially be asynchronous.

David May 31 IET, Cambridge December 6, 2007

Ports, Input and Output example
proc linkin(port in 0, in 1, ack, int token) is

var state 0, state 1, state ack;

{ state 0 := 0; state 1 := 0; state ack = 0; token := 0;

for bitcount = 0 for 10 do

{ select

{ case in 0 ?= ¬state 0: state 0 => token := token>>1

case in 1 ?= ¬state 1: state 1 => token:=(token>>1)|512

};

ack ! state ack; state ack := ¬state ack

}

}

David May 32 IET, Cambridge December 6, 2007

Timed ports example

proc uartin(port uin, byte b) is

{ var starttime;
in ?= 0 at starttime;

sampletime := starttime + bittime/2;

for i = 0 for 8

t := t + bittime; (uin at t) ? >> b ;

(uin at (t + bittime)) ? nil

}

David May 33 IET, Cambridge December 6, 2007

Events
A thread can wait for an event from one of a set of channels,
ports or timers

An entry point is set for each resource by a setvector instruction;
event generation for each resource can then be enabled and
disabled using enable instructions

A wait instruction is used to wait until an event transfers control
directly to its associated entry point.

All of the events enabled by a thread can be disabled by a single
clear events instruction.

David May 34 IET, Cambridge December 6, 2007

Events - optimisations
Optimise repeated event-handling in inner loops where a thread
is operating as a programmable state machine - the events are
often handled by (very) short instruction sequences

Move setting of vectors and other invariants outside the loop

Provide conditional versions of event enable instructions to
optimise enabling and disabling

Provide conditional versions of wait to replace the loop-closing
branch

David May 35 IET, Cambridge December 6, 2007

Events vs. Interrupts

A thread can be dedicated to handling an individual event or to
responding to multiple events.

The data needed to handle each event have been initialised prior
to waiting, and will be instantly available when the event occurs.

This is in sharp contrast to an interrupt-based system in which
context must be saved and the interrupt handler context restored
prior to entering it - and the converse when exiting.

David May 36 IET, Cambridge December 6, 2007

Summary
Concurrent programming can be efficiently supported in
hardware using tiled multicore chips.

They enable systems to be defined and built using software.

Each thread can be used
• to run conventional sequential programs
• as a component of a concurrent computer
• as a hardware emulation engine or input-output controller

Event-driven hardware and software enable energy efficient
systems.

David May 37 IET, Cambridge December 6, 2007

XMOS XS1 tile

Processor 500 MHz; 8 threads
SRAM 64k bytes
Synchronisers 7
Timers 10
Channel ends 32
Ports 1,4,8,16,32-bit
Links 4 at 100Mbyte/second

Prototype has 4 tiles communicating via a fully-connected switch

David May 38 IET, Cambridge December 6, 2007

