
Version 1.0

Communication, Interrupts and Protection
David May: May 14, 2017

Communication and Input-Output

Computers need to communicate with each other, and with input and output de-
vices. This involves:

• Encoding the data to be communicated

• Establishing a communication protocol

For communication between computers the most important point about the proto-
col is that it must provide for handshaking. The receiver must periodically confirm
that it has taken the data and is able to accept more. This applies both at the level
of transferring a few bits of data at a time and at the level of sending large blocks
of data such as Ethernet packets. This enables the communication to be reliable
even when the speed of operation of the two communicating computers varies.

A simple scheme is to use a set of wires for the data, a request wire (req) and an
acknowledge wire (ack). The sequence is:

1. sender places data on data wires

2. sender sets req = 1

3. receiver observes req = 1 and takes data

4. receiver sets ack = 1

5. sender observes ack = 1 and sets req = 0

6. receiver observes req = 0 and sets ack = 0

7. sender observes ack = 0

The above is a return-to-zero protocol. It is possible to omit two of the steps using
a non-return-to-zero protocol:

David May: May 14, 2017 1



Version 1.0

1. sender places data on data wires

2. sender changes req

3. receiver observes change of req and takes data

4. receiver changes ack

5. sender observes change of ack

Note that when communicating with an i-o device, the req and ack are not always
needed.

It is important that the request signal does not overtake the data signals as a result
of wire or logic delays. It is possible to eliminate this problem using a delay
insensitive scheme.

For example, using two request signals (req0 and req1) and an acknowledge signal
(ack) a 0 bit can be sent by changing req0 and a 1 bit by changing req1; in either
case the receiver replies by changing ack.

This is a very simple example of an n-of-m code (it is 1-of-2); these involve
the receiver waiting for n signals to change state before replying by changing
ack, after which the sender changes n signals again. Other examples are 1-of-4
which can encode 4 symbols (2 bits) per transition or 3-of-6 which can encode 20
symbols per 3 transitions.

It is often important to minimise the number of signal wires and there are also a
number of communication schemes that transfer data serially (one bit at a time)
using a clock signal that accompanies the serial data signal. This clock signal is
used to store a block of data (a packet) at the receiver; only when the whole block
has been received is it handed over to the receiving processor. It is also possible to
avoid the use of the separate clock signal by using an encoding that enables both
clock and data to be recovered from the same serial stream.

Metstability

Usually, there is no simple relationship between the clocks of the two communi-
cating devices; both the frequencies and the phases will differ. Incoming data is
sampled by using it as the data source of a flip-flop; the local clock of the receiving
processor is used as the clock for the flip-flop.

This arrangement gives rise to the possibility that the data will change state at the
same time as the clock, giving rise to metastability. The flip-flop enters a state in
which it is balanced but unstable (like a pencil standing on its point). After a time,

David May: May 14, 2017 2



Version 1.0

it will settle into a set state or a reset state. In designing input-output systems, it is
important that sufficient time is allowed to ensure that the flip-flops have settled.
Otherwise, the processor itself can enter a state in which it is simultaneously trying
to execute the next instruction and handle an input-output request.

Interrupts

It is often important to respond rapidly to external input and output requests. A
common way to support this is to enable execution of a program to be interrupted.
An interrupt causes the processor to temporarily suspend execution of a program,
transfer control to a short sequence of instructions (an interrupt routine) to perform
the input or output operation, finally returning to execute the interrupted program.

It is common for there to be several input and output devices, each with an as-
sociated interrupt routine. The collection of these, along with other software for
allocating resources such as memory form the operating system Kernel.

In order to be able to return to the interrupted program after executing an interrupt
routine, the pc must be stored when control is transferred to the interrupt routine. It
is also important that interrupts are disabled when the interrupt routine is entered.
This can be done using two additional registers:

register use

spc the saved program counter

ink the executing in kernel flag

When an interrupt request is received from a device, control is transferred to the
corresponding interrupt routine; the address of this can read from a memory loca-
tion associated with the device. This address is known as an interrupt vector.

Each device normally has some associated registers; these often appear to the
programmer as a small set of consecutive memory locations. This is referred to as
memory mapped input-output. Typically there will be a data register and a control
register. The control register will contain a ready flag to indicate that the device
is ready to transfer data. For input, ready will be set when the data register is full;
for output, ready will be set when the data register is empty. The control register
will also contain an enable flag which is set and cleared by the program. When
enable is set and ready is set, an interrupt request is made to the processor and the
processor will transfer control to the interrupt routine as soon as the ink flag is
clear.

The vectors associated with interrupt requests are normally stored in low memory

David May: May 14, 2017 3



Version 1.0

locations, along with those associated with kernel calls.

In addition to entering the kernel as a result of an interrupt request, it is normal to
provide a kernel call or system call instruction. A kernel return instruction is also
needed to return control from the kernel to the application program.

intreq spc← pc; kernel entry - input-output request from device n
pc← mem[kint+ n]
ink ← true

KCALL spc← pc; kernel entry from kernel call
pc← mem[kcall + areg]
ink ← true

KRET pc← spc kernel exit
ink ← false

An interrupt can, in principle, occur between any two instructions. However, there
are places where this would cause difficulties:

• during entry to the kernel as a result of a system call or an error, but before
the spc (for example) has been saved

• during a kernel instruction sequence which is modifying a data structure
(such as a buffer) used to communicate with the interrupting input-output
device.

One way to avoid these problems is not to permit interrupts when executing the
kernel. An interrupt request from an input-output device is accepted by the pro-
cessor only when ink is false. This means that, for responsive input-output, the
kernel procedures must be kept short; some of the longer procedures can be treated
as application programs.

Direct Memory Access (DMA)

In order to speed up input and output of large amounts of data, it is common to pro-
vide hardware in the input-output device that can directly access memory. Instead
of each item of data being transferred between the processor and the input-output
device, the processor supplies information about a region of memory (typically
this a a base address and a length). The device then carries out the transfer. The
ready and enable flags can be used in the same way as for non-DMA devices to
signal that the device is ready and to control interrupts.

David May: May 14, 2017 4



Version 1.0

Protection

Most computers include hardware to contain errors in application programs, pre-
venting them giving rise to further errors in other programs or in the kernel itself,
for example by overwriting critical data or instructions.

The instruction set architecture has to:

• protect the kernel from an error in an application program

• protect an application program from an error in another application program

• enable the kernel to remove failed application programs

• protect the external environment from errors in applications programs (by
performing input and output via the kernel)

• enable the kernel to allocate resources such as memory and input-output to
applications programs

A starting point is to provide some registers to define the region of memory used
by a currently executing application program, along with a (boolean) register to
record whether the processor is executing kernel software or application software:

register use

ab the base address of the application memory
as the size of the application memory

ink the executing in kernel flag

Some instructions are needed to set these registers. They must only be executed
by the kernel; otherwise an application program could change its own memory
region.

SETAB if ink then ab← s else error set application base

SETAS if ink then as← s else error set application size

This makes it possible to re-define some of the instructions so as to prevent an
application program from corrupting (or branching into) the kernel; for example:

David May: May 14, 2017 5



Version 1.0

STAM if ink
then mem[oreg]← areg
else
if oreg < as
then mem[ab+ oreg]← areg
else error

LDAM if ink
then areg ← mem[oreg]
else
if oreg < as
then areg ← mem[ab+ oreg]
else error

STAI if ink
then mem[breg + oreg]← areg
else
if (breg + oreg) < as
then mem[ab+ breg + oreg]← areg
else error

LDAI if ink
then areg ← mem[areg + oreg]
else
if (areg + oreg) < as
then areg ← mem[ab+ areg + oreg]
else error

BRU if ink
then pc← pc+ oreg
else
if (pc+ oreg) < as
then pc← pc+ oreg
else error

All of the instructions that access memory and all of the branch instructions must
be modified in this way.

Notice that this has resulted in application programs being relocatable; they can
be moved around in memory by the kernel because all of the addresses they use
are offsets relative to the ab register. It is also possible to have several programs
in memory at the same time, and to move them to and from a disc.

David May: May 14, 2017 6



Version 1.0

Switching to the Kernel

There are three potential reasons for switching to the kernel:

• An error has been detected in an application program

• An application program has made a request to the kernel (a kernel call)

• An input-output device has made a request to the processor

All of these perform a similar operation on kernel entry, selecting different vectors
within the kernel corresponding to the different reasons for entry. Entry to the
kernel as a result of an error is similar to entry as a result of an interrupt request:

error spc← pc; kernel entry - error number n
pc← mem[kerr + n]
ink ← true

The same kernel return instruction (KRET) can be used to return to an application
program (which may be different from the one on kernel entry) regardless of the
reason for switching to the kernel.

Finally, it should be possible to write the kernel itself in a high level language
using a stack in the normal way. This requires a separate location in memory to
use as the kernel stack pointer.

Scheduling

In addition to the device drivers, a kernel usually allocates memory and input-
output devices to application programs. It also shares the processor’s time be-
tween several programs, so that the processor appears to be executing several
programs at the same time. This is known as scheduling.

A simple scheduler operates using a queue of programs. This queue contains
programs that are able to proceed; there will normally also be other programs that
are not able to proceed. For example, a program will be unable to proceed if:

• it is waiting for input data from a device which is not ready

• it is waiting to output data to a device which is not ready

• it is waiting until a specified time

• it is waiting for a page in virtual memory to be moved to physical memory
as a result of a page fault (see notes on the memory hierarchy)

David May: May 14, 2017 7



Version 1.0

In these cases, the currently running program will have entered the kernel either as
a result of a kernel call or as a result of an error (page fault). When an executing
program becomes unable to proceed, it is de-scheduled. Its state (the register
contents) is saved, then the next program is taken from the queue and its state is
restored.

A waiting program will become able to proceed again as a result of an interrupt
request from a device causing entry to the kernel. The scheduler will identify the
program waiting for the device and re-schedule it by adding it to the end of the
queue.

Note that it is possible that the queue is empty when a program is de-scheduled
in which case the processor must wait for an interrupt. The instruction set should
include an instruction to do this; if not, an idling loop can be used.

An example of the operation of a simple scheduler is:

• Interrupt from timer: update current time; if the current program has ex-
ceeded its allocated time-slice, de-schedule it and re-schedule it; also re-
schedule any programs waiting until the (new) current time; otherwise re-
turn.

• Interrupt from input device: transfer data to buffer; if buffer full disable
interrupts; if there is a de-scheduled program waiting, re-schedule it.

• Kernel call for input: if buffer not empty, return data; if buffer empty,
de-schedule and enable interrupts

• Interrupt from output device: transfer data to device; if buffer empty
disable interrupts; if there is a de-scheduled program waiting, re-schedule
it.

• Kernel call for output: transfer data to buffer, enable interrupts; if buffer
full, de-schedule

• Error - page-fault: initiate page transfer, de-schedule; this will subse-
quently result in an interrupt as a result of the page transfer completing
at which point the program will be re-scheduled.

• Other kernel call: there are usually many of these to provide access to
files, initiating and ending programs etc.

• Other error: write the program to disc and de-schedule.

David May: May 14, 2017 8


