
Version 1.0

Heaps and Garbage Collection
David May: April 8, 2014

Introduction

Many programming languages include the ability to create data structures formed
from tuples. Each tuple contains a set of values, and each value may itself be a
tuple. As execution proceeds, more and more tuples are formed and eventually
no space remains. However, usually when the space runs out, many of the tuples
are no longer needed; the space they occupy can be reclaimed and execution can
continue.

The space used for the tuples is known as the heap and the process of performing
the space reclamation is known as garbage collection.

Memory layout

A typical memory layout for a language using globals, locals and heap is:

high memory heap
globals
stack (descending)
program

low memory large constants

Tuples

A tuple consists of a number of word locations. One of these is a special control
word, containing:

• the length of the tuple

• a flag that is used by the garbage collector to mark tuples that are to be
retained

• an address that is allocated by the garbage collector; this will become the
new address of the tuple at the end of the garbage collection process

A heap pointer is used to point to the next available location in the heap; this is
used to allocate space when a tuple is created.

David May: April 8, 2014 1



Version 1.0

Identifying locations containing heap addresses

If the programming language is typed, it may be possible to identify which local
and global variables (and which variables within data structures) hold addresses.
These addresses can then be checked to determine if they lie within the heap.

If not, it is possible to encode addresses and numbers so that they can be easily
distinguished. In a byte-addressed memory, the least significant bit of a word
address will always be zero. The tuples in the heap can all be aligned to start at
word addresses, so the address of any tuple will have a least significant bit of 0.
By setting the least significant bit of all numbers to 1, they can be distinguished
from addresses of tuples.

This means that one fewer bit is available for representing numbers and a number
x will be represented by a value X , where X = (x << 1)+1. This requires some
minor changes to the compilation of some operators. For example:

expression compilation
a + b A + (B − 1)
a− b A− (B − 1)
a ∧ b A ∧B
a ∨ b A ∨B
¬a ¬(A− 1)
a << b ((A− 1) << (B >> 1)) + 1

This ensures that the result of the operators always has a least significant bit of 1.

Garbage Collection

When a program tries to create a new tuple and the heap pointer has reached the
top of memory, the garbage collector is entered. It operates as follows:

1. It examines all of the words in memory starting from the stack pointer and
ending at the top of the global region. For every word that holds an address
of a tuple in the heap, it sets the mark flag in the tuple and in each of the
tuples in the graph of tuples connected to it.

2. It resets the heap pointer to the lowest address in the heap and then examines
all of the tuples in the heap starting at the lowest address. For each marked
tuple, it allocates a new location in the heap using the heap pointer and
increases the heap pointer by the size of the tuple. It also writes the address
of the new location into the control word of the tuple.

3. It examines all of the words in memory starting from the stack pointer and

David May: April 8, 2014 2



Version 1.0

ending at the top of the heap. For every word that holds an address of a
tuple in the heap, it replaces the value of the word with the address held in
the tuple control word.

4. It resets the heap pointer to the lowest address in the heap and then examines
all of the tuples in the heap starting at the lowest address. For each marked
tuple, it copies the tuple to a new location in the heap using the heap pointer
and increases the heap pointer by the size of the tuple. As it copies the tuple,
it clears the mark flag.

5. Finally, it creates the new tuple using the heap pointer and returns control
to the program.

Marking

Three methods can be used during the marking step (1) above:

1. Recursion: The graph can be traversed recursively, following heap addresses
in each tuple (unless they address an already-marked tuple). This has the
disadvantage that space must be reserved for the stack used to implement
the recusrsion.

2. Repetitive marking: The heap can be repeatedly scanned, identifying heap
addresses within marked tuples and marking the tuples they address; this
continues until a scan fails to mark any more tuples. This has the disadvan-
tage that it is potentially slow.

3. Pointer reversal: This traverses the graph in the same way as recursion, but
avoids the need for a stack. It maintains a pointer c to the current tuple and
a pointer p to the previous tuple. When using a location n in the current
tuple to advance to a new tuple, it performs c, p, n ← n, c, p. This has the
effect of storing the address of the previous tuple in the current tuple before
advancing the current and previous pointers. It is now possible to return to
the previous tuple using this stored address, and to replace it with its original
value by performing c, p, n ← p, n, c. This can normally be implemented
by a few instructions using processor registers to hold c and p.

David May: April 8, 2014 3


