
Version 3 Simple, Understandable, Reliable, Efficient

The SURE Architecture - big memory
David May: 4 November, 2019

Caches

The original description of the SURE Architecture (December 2016) assumed a
simple memory system with no caches. This is appropriate for a real-time micro-
controller, but raises a question: can we use similar ideas for large, cached, mem-
ory systems?

It seems that we can use a conventional set-associative cache, addressed using
a pointer, not a physical memory address. The blocks in the cache hold blocks
within objects; this is implemented either by aligning all objects in memory on
block boundaries, or by re-aligning blocks when they are transferred between
memory and cache. Assuming a cache block of four 32-bit words, when a pointer
is used to access memory, bits 0:3 of pointer identify a byte address within a cache
block; the exclusive-or of bits 4:15 and bits 16:31 identify the set associated with
the access. This means that large objects will be distributed across many sets, and
that a large number of small objects will also be distributed across many sets.

The directory and the cache can be accessed at the same time (in parallel). If there
is a cache hit, the access will be completed within a single cycle; otherwise the
directory information will be used to transfer a cache block from memory.

The cache blocks have a flag to indicate if the associated object has been marked.
During the marking phase, if there is a cache hit on a load and the flag is clear,
the flag will be set and the cache will cause the garbage collector to mark the
associated object in the directory. During sweep, the garbage collector invalidates
cache blocks associated with unmarked objects, and clears the mark flags. The
garbage collector marking phase starts by causing the processor registers to be
written back to the associated object(s) in memory; this means that the garbage
collector and directory are actually part of the memory, not the processor.

An immediate consequence of this is that accesses that hit the cache will have the
same performance as in a conventional memory system - they do not need to use
the directory to calculate the address or to check that the address is valid. And if
there is a cache miss, the directory information will be available to proceed with
the memory access by the time that the cache miss is detected.

David May: 4 November, 2019 1



Version 3 Simple, Understandable, Reliable, Efficient

Shared memory

The garbage collector, directory and memory form an ‘Object memory’. This can
be shared between several processors, each with its own cache system. This will
involve shared access to the directory, with potential access delays (a few cycles
at most) in the rare event of cache misses from several processors coinciding.

Large memory systems

A large memory system can be constructed from several smaller garbage collected
memory systems. It is necessary to synchronise the operation of the garbage col-
lectors at the beginning of the marking phase and at the beginning of the sweeping
phase. Note that the garbage collectors do not need to synchronise with the appli-
cation, so this will not introduce any pauses during execution of the application.

During the marking phase, there will be pointers stored in each memory that point
to objects in other memories. When one of these is encountered, a mark message
is sent to the memory containing the object that is pointed to, causing it to be
marked.

Each memory has a completion signal and the overall marking phase is completed
when all of the completion signals are active. Whenever a memory sends a mark
message, it removes its completion signal until it receives a corresponding mark
reply signal from the memory containing the marked object. Also, if a memory
that is asserting its completion signal receives a mark message, it removes its com-
pletion signal and continues marking, prior to sending the mark reply message.

Objects can be freely distributed across the memories. It is probably a good idea
to allocate a new object within the memory that has the most space; for a few
memories this can be done so as to support simultaneous allocation requests from
several processors.

David May: 4 November, 2019 2


