
Version 1 Simple, Understandable, Reliable, Efficient

The SURE Architecture
David May: December 11, 2016

Background

Computer programming is changing. Object-oriented languages, functional lan-
guages and others have accelerated software development. But these languages
rely on automatic memory management which imposes high overheads when im-
plemented on conventional computer architectures. It seems timely to investigate
whether a change in architecture is now needed - similar to the shift from CISC to
RISC in the 1980s in response to the shift from assembly programming to high-
level languages.

Along with the change in programming languages, there has been a change in
computer systems and their applications. Increasingly, computers are commu-
nicating with each other and with users, or they are interacting with a physical
environment. This gives rise to a need for trust, achieved via an appropriate com-
bination of simplicity, verification, testing and error containment. Again, it seems
timely to investigate whether a change in architecture is needed.

An experimental architecture

The architecture described here employs a novel technique for allocating memory;
a hardware garbage collector is embedded in the processor sharing memory cycles
with the processor. The garbage collector runs continually and is normally fast
enough to retrieve unused memory space as fast as new space is allocated.

It also checks that memory accesses are valid; dangling pointers and buffer over-
flows are detected by hardware. An address consists of two parts. One specifies
a memory region; the other specifies a location within the region. For a mem-
ory access operation, the processor checks that one operand is an address and the
other is a value to be used as an offset. It also checks that the offset specified in a
memory access instruction lies within the region specified by the address operand.

The principles can be used in conjunction with any processor architecture; it
would be simple to create an Intel, ARM, MIPS, SPARC or RISC-V processor
including the memory management system described here. There would be a
small cost in the hardware needed for the garbage collector; for a 32-bit archi-
tecture it needs about 400kbytes of high-speed memory for the garbage collector
data-structures and about 3% more main memory.

David May: December 11, 2016 1



Version 1 Simple, Understandable, Reliable, Efficient

It is also practical to implement a memory subsystem incorporating these princi-
ples, with one or more processors sharing access to it.

The principles are also compatible with most modern programming languages.
They would provide more efficient implementations along with checks for mem-
ory errors. Buffer overflows and dangling pointers are detected by hardware.

The architecture has the potential to save energy. Along with a reducing the oper-
ations needed for memory allocation, the garbage collector creates a single region
of unused memory which can be powered down.

Memory allocation

Memory is allocated in tuples. A GETM instruction allocates a new tuple contain-
ing n words numbered from 0 to n − 1, and produces a pointer to word 0 of the
tuple. A pointer differs from a data value. Every word in memory contains infor-
mation to specify whether it holds a pointer value or a data value. The processor
registers also contain information to specify whether they hold a pointer value or
a data value; registers such as a program counter pc or a stack pointer sp always
hold pointer values.

Each instruction checks to ensure that the register contents are appropriate for the
operation it performs. For example, an instruction to load a word from memory
must have a pointer operand. The memory access instructions that use a pointer to
a tuple along with an offset check that the specified location falls within the tuple.

When a tuple is no longer needed, the memory space it occupies is recovered
automatically by a garbage collector implemented by hardware in the processor.
The garbage collector runs continually; each cycle of the garbage collector marks
all of the tuples in use, then copies them all towards the bottom of the memory,
recovering space occupied by the tuples no longer in use. Newly created tuples
occupy space above the existing tuples.

To support the memory allocation and garbage collection, a tuple directory is
used. Each tuple has a corresponding entry in the directory which contains the
address of the tuple in memory and the number of words in the tuple. It also has
space to hold the address of another tuple which is used to form a list of unused
directory entries (and is also used by the garbage collector). When a memory
access is performed using a pointer, the most significant bits of the pointer are
used as a handle to address a directory entry. This provides the memory address
of word 0 of the tuple; the least significant bits of the pointer determine the offset
of the word to be accessed. A check is made to ensure that the offset is less than
the size of the tuple.

David May: December 11, 2016 2



Version 1 Simple, Understandable, Reliable, Efficient

Each tuple in memory has a control word which contains the handle of the direc-
tory entry corresponding to the tuple. It can also be used to hold a small value to
indicate, for example, the type of the tuple. This is known as a tag.

The garbage collector is implemented as a state machine. Each state transition per-
forms at most one memory access. The state transitions are normally performed
when the memory is not required for instruction fetch or instruction execution. If
the memory or the directory is full, instruction execution stops until the garbage
collector completes its current cycle.

Addresses and the Directory

Each word w in memory or in a register has a flag wptr and a word wword. The
word is a pointer value or a data value, indicated by wptr which is true if w is a
pointer, false otherwise. If wword is a pointer, then

whandle identifies a directory entry of a tuple
woffset identifies an address within a tuple

The handle is stored in the upper half of the word, the offset in the lower half.

Each directory entry d of a tuple has four components:

daddr the address of the tuple in memory
dsize the size of the tuple (in words)
dmark the marking flag for garbage collection
ddeep a flag to indicate whether the tuple contains pointers

For a 32-bit wordlength, there will be up to 65536 tuples each of size up to 65536
bytes and the directory will have 65536 entries each with 48 bits (only 14 are
needed for the length).

Garbage collector variables

mem represents the memory
current points to list of directory entries currently being scanned
next points to a list of directory entries to be scanned next
free points to a list of free directory entries
tuple is the tuple being processed
size is the number of words in the tuple being processed
index is the offset of a word within the tuple being processed
livesize is the total size of the data that has been marked
heappoint is the highest location in the heap
src is the memory address from which a tuple are copied during sweeping
dest is the memory address to which a tuple is copied during sweeping

David May: December 11, 2016 3



Version 1 Simple, Understandable, Reliable, Efficient

Memory access variables

buffer holds a word being read from or written to memory
rwindex is the offset of a word being read from or written to memory
pointer is a pointer used to access a tuple
offset is a word offset used to access a word within a tuple

The Garbage Collector - Marking

The marking process uses two lists. The current list contains tuples that have
been marked but which need to be scanned to determine if they contain pointers
to other tuples that must be marked. Tuples are taken from the current list and
their contents are examined; when a pointer is found, the corresponding tuple is
marked and added to the next list. When the current list is empty, normally
the next list wlll contain new tuples to be scanned; the next list replaces the
current list and scanning continues. If the next list is empty when the current
list becomes empty, the marking is complete and the garbage collector will move
to the sweeping process. The last item on each list holds the value nil instead of a
pointer to another item.

During the marking process, it is possible that new tuples will be created; these are
added to the next list. This also occurs whenever a tuple is assigned to a location
in another tuple.

It is common for there to be tuples which contain data but no pointers. Each
directory entry has an additional deep marker. This is cleared when a tuple is
created and is only set when a pointer is assigned to a location in the tuple. It is
used to prevent unnecessary scanning during the marking process.

As the marking proceeds, a record livesize is kept of the total amount of space
that will be used by tuples that have been marked and that will be retained; this is
used to optimise the sweeping process.

markinit: { dir[pchandle]mark ← true
& dir[sphandle]mark, dir[sphandle]deep ← true, true
& dir[sphandle]list, next ← nil, sphandle
& livesize ← livesize+ dir[pchandle]size + dir[sphandle]size + 2
& state ← marknext
}

David May: December 11, 2016 4



Version 1 Simple, Understandable, Reliable, Efficient

markscan: if index ≤ size
then

if mem[src+ index]ptr ∧ (mem[src+ index]handle 6= nil)
then
{ tuple, index ← mem[src+ index]handle, index+ 1
& state ← markadd
}
else index ← index+ 1

else
if current = nil
then state ← marknext
else
{ src, size, index← dir[current]addr, dir[current]size, 1
& current ← dir[current]list
}

markadd :{ if ¬dir[tuple]mark

then
{ dir[tuple]mark, livesize ← true, livesize+ dir[tuple]size + 1
& if dir[tuple]deep

then dir[tuple]list, next ← next, tuple
else skip

}
else skip

& state← markscan
}

marknext : if next = nil
then
{ dest, src, tuple ← 0, 0,mem[0]handle
& state ← sweepscan
}
else
{ src, size, index← dir[next]addr, dir[next]size, 1
& current, next, state ← dir[next]list, nil,markscan
}

David May: December 11, 2016 5



Version 1 Simple, Understandable, Reliable, Efficient

The Garbage Collector - Sweeping

The sweeping process accesses all of the locations in memory up to the heappoint.
It uses two address registers, src and dest to copy each tuple from its current
location to its final location. It uses the control word of each tuple to access the
tuple’s handle. This enables it to determine the size of the tuple and whether the
tuple is marked. If the tuple is marked it is copied one word at a time from src
to dest. This copying step is omitted if src and dest are equal; this occurs if all
tuples up to the current value of src have been retained.

The marking process can only operate correctly if newly created tuples are ini-
tialised so that their components are data (not pointer) values. This means that
when marked tuples are moved, the locations they move from must be re-initialised.
However, there is no need to do this if a tuple (or a tuple component) is moved
from a location that will be occupied by other tuples moved during the sweeping
process. This is controlled by comparing the source addresses against livesize.
Similary, the locations occupied by unmarked tuples must be re-initialised unless
they will be occupied by tuples moved during the sweeping process.

The sweeping process terminates when the src address matches the heappoint.
Additional tuples may be created during the sweeping process; these will be
marked as they are created so that they will be copied. When the sweeping process
terminates, the heappoint is set to the dest address.

sweepscan: val size, nsrc = dir[tuple]size, src+ dir[tuple]size + 1 in
if dir[tuple]mark

then
if src = dest
then

if nsrc = heappoint
then livesize, state ← 0, sweepend
else src, dest, dir[tuple]mark, tuple ← nsrc, nsrc, false,mem[nsrc]handle

else dir[tuple]mark, index, state ← false, 0, sweepread
else
{ dir[tuple]list, free ← free, tuple
& if (src+ size) < livesize

then src, tuple ← nsrc,mem[nsrc]handle
else
if src < livesize
then index, state ← livesize− src, sweepzero
else index, state ← 0, sweepzero

}

David May: December 11, 2016 6



Version 1 Simple, Understandable, Reliable, Efficient

sweepread: if index <= size
then
{ copyword ← mem[src+ index]word

& copyptr ← mem[src+ index]ptr
& if (src+ index) < livesize

then state ← sweepwrite

else state ← sweepclear
}
else
{ dir[tuple]addr, dest ← dest, dest+ size+ 1
& if (src+ size+ 1) = heappoint

then heappoint, livesize, state ← dest+ size+ 1, 0, sweepend
else
{ src, tuple ← src+ size+ 1,mem[src+ size+ 1]handle
& state ← sweepscan
}

}

sweepclear: { mem[src+ index]word,mem[src+ index]ptr ← 0, false
& state ← sweepwrite

}

sweepwrite: { mem[dest+ index]word ← copyword

& mem[dest+ index]ptr ← copyptr
& index, state ← index+ 1, sweepread
}

sweepzero: if index <= size
then
{ mem[src+ index]word ← 0
& mem[src+ index]ptr ← false
& index ← index+ 1
}
else
if (src+ size+ 1) = heappoint
then heappoint, livesize, state ← dest, 0, sweepend
else
{ src, tuple ← src+ size+ 1,mem[src+ size+ 1]handle
& state ← sweepscan
}

David May: December 11, 2016 7



Version 1 Simple, Understandable, Reliable, Efficient

Memory allocation and access

Memory for a tuple is allocated using one of the GETM instructions. These allo-
cate a handle from the list of free handles and also allocate memory for the tuple
at the heappoint. The number of words in the tuple, space is specified by the
operand of the GETM instruction. The control word of the newly created tuple is
set and the tuple is marked.

getmem: { dir[free]addr, dir[free]size ← heappoint, space
& dir[free]mark, dir[free]deep ← true, false
& heappoint, livesize ← heappoint+ space+ 1, livesize+ space+ 1
& mem[heappoint]handle,mem[heappoint]ptr ← free, false
& areghandle, aregptr, free ← free, true, dir[free]
}

The garbage collector operates at the same time that the processor is performing
memory accesses. It is therefore possible that a tuple is being moved during the
sweeping process when the processor attempts to read or write locations within it.
This is detected by the hardware and the read or write access is made to the actual
location of the data.

read: val rwindex = pointeroffset + offset+ 1 in
if (pointerhandle = tuple) ∧ (rwindex = index)∧
((state = sweepclear) ∨ (state = sweepwrite))

then bufferword, bufferptr ← copyword, copyptr
else
if (pointerhandle = tuple) ∧ (rwindex < index)∧
((state = sweepread) ∨ (state = sweepclear) ∨ (state = sweepwrite))

then
val address = dest+ rwindex in
bufferword, bufferptr ← mem[address]word,mem[address]ptr

else
val address = dir[pointerhandle]addr + rwindex in
bufferword, bufferptr ← mem[address]word,mem[address]ptr

David May: December 11, 2016 8



Version 1 Simple, Understandable, Reliable, Efficient

When writing a pointer to memory during the marking process, the tuple ad-
dressed by the pointer must be marked and added to the next list. Otherwise
it would be possible for a tuple to remain unmarked because the pointer to it is
moved by the executing program from a tuple that has not yet been marked into
one that has already been marked. Also, if a pointer is written to a location in
a tuple, the tuple must be marked by setting its deep indicator to ensure that its
contents are scanned during the marking process.

write: val rwindex = pointeroffset + offset+ 1 in
if (pointerhandle = tuple) ∧ (rwindex = index)∧
((state = sweepclear) ∨ (state = sweepwrite))

then copyword, copyptr ← bufferword, bufferptr
else
if (pointerhandle = tuple) ∧ (rwindex < index)∧
((state = sweepread) ∨ (state = sweepclear) ∨ (state = sweepwrite))

then
val address = dest+ rwindex in
mem[address]word,mem[address]ptr ← bufferword, bufferptr

else
val address = dir[pointerhandle]addr + rwindex in
mem[address]word,mem[address]ptr ← bufferword, bufferptr

if bufferptr
{ if (¬dir[bufferhandle]mark)∧

((state = markscan) ∨ (state = markadd) ∨ (state = marknext))
then
{ dir[bufferhandle]mark, ← true
& livesize ← livesize+ dir[bufferhandle]size + 1
& dir[bufferhandle]list, next ← next, bufferhandle
}
else skip

& dir[pointerhandle]deep ← true
}

David May: December 11, 2016 9



Version 1 Simple, Understandable, Reliable, Efficient

An experimental processor

The processor described here is a very simple design incorporating a memory
allocation system as described above. It has been used in conjunction with a
simple programming language and self-hosting compiler. The initial results of
this suggest that in many practical situations, the garbage collector will be able to
retrieve unused memory space as fast as new space is allocated.

The main features of the instruction set are:

• Short instructions are provided to allow efficient access to the stack and
other data regions allocated by compilers; these also provide efficient branch-
ing and subroutine calling. The short instructions have been chosen so as to
provide efficient program representation when used by modern compilers.

• Instructions are provided to allocate memory regions of size specified by an
instruction operand.

• An address consists of two parts. One specifies a memory region; the other
specifies a location within the region. The regions are byte addressed and
the instructions are all single byte. However, most of the memory access
instructions are designed to access words.

• The processor checks that the instruction operands are appropriate to the
operation; for example, one operand of a memory access instruction must
be an address and the other must be a value to be used as an offset. The
processor checks that the resulting address lies within the specified region.

• The same instruction set can be used for processors with different wordlengths;
the only requirement is that the wordlength is a number of bytes.

• The processor has a small number of registers. Some registers are used for
specific purposes such as accessing the stack or building large constants.

• Instructions are easy to decode.

All instructions are 8-bit; each instruction contains 4 bits representing an operation
and 4 bits of immediate data. A special instruction, OPR causes its operand to be
interpreted as an inter-register operation. Instruction prefixes are used to extend
the range of immediate operands and to provide more inter-register operations.

David May: December 11, 2016 10



Version 1 Simple, Understandable, Reliable, Efficient

The prefixes, which are inserted automatically by compilers and assemblers, are:

• PFIX which concatenates its 4-bit immediate with the 4-bit immediate of
the next 8-bit instruction.

• NFIX which complements its its 4-bit immediate and then concatenates the
result with the 4-bit immediate of the next 8-bit instruction.

The state of the processor is represented by 5 registers. Two of these are operated
as a stack and used to hold the sources and destination of inter-register operations.

register use

pc the program counter

sp the stack pointer
oreg the operand register

areg the first register in the operand stack
breg the second register in the operand stack

Instruction Issue and Execution

The processor core is intended to be implementable without a pipeline to max-
imise responsiveness; this potentially allows a very simple design.

The instructions are all 8-bit, so that on a 32-bit implementation four instructions
are fetched every cycle. Typically less than 40% of instructions require a memory
access, so it is practical to support the processor using a unified memory system.

Each processor has a short instruction buffer which is one word long. The rules
for performing an instruction fetch are as follows:

• Any instruction which requires data-access performs it during the memory
access stage.

• Branch instructions fetch their branch target instructions during the memory
access stage.

• Any other instruction (such as ALU operations) performs an instruction
fetch if it is the last instruction in the instruction buffer.

• If the instruction buffer is empty when an instruction should be issued, a
special no-op is issued; this will load the instruction buffer.

David May: December 11, 2016 11



Version 1 Simple, Understandable, Reliable, Efficient

Instruction set Notation and Definitions

In the following description

Bpw is the number of bytes in a word
bpw is the number of bits in a word

pc represents the program counter
sp represents the stack pointer
oreg represents the operand register
areg represents the first stack register
breg represents the second stack register

u4 is a 4-bit unsigned source operand in the range [0 : 15]

tuple[n] is word n of tuple tuple
base @ offset is a pointer to a location offset bytes from base

Data access

The data access instructions fall into several groups. One of these provides access
via the stack pointer.

LDWSP areg, breg ← sp[oreg], areg load word from stack
STWSP sp[oreg], areg ← areg, breg store word to stack
LDAWSP areg, breg ← sp @ oreg×Bpw, areg load address of word in stack

Access to constants and program addresses is provided by instructions which ei-
ther load values directly or enable them to be loaded from a location in the pro-
gram:

LDC areg, breg ← oreg, areg load constant
LDAP areg, breg ← pc @ oreg, areg load address in program
PBASE areg, breg ← pchandle, areg load pc handle

Access to data structures is provided by instructions which combine an address
with an offset:

LDWI areg ← areg[oreg] load word
STWI areg[oreg]← breg store word
LDAWI areg ← areg @ oreg×Bpw load address of word

David May: December 11, 2016 12



Version 1 Simple, Understandable, Reliable, Efficient

Expression evaluation

SWAP areg, breg ← breg, areg swap top stack values

ADDC areg ← areg + oreg add constant
ADD areg ← breg + areg add
SUB areg ← breg − areg subtract

WSUB areg ← breg @ areg×Bpw form word address

EQC areg ← areg = oreg equal constant
EQ areg ← breg = areg equal
LSS areg ← breg <sgn areg less than signed

AND areg ← breg ∧ areg and
OR areg ← breg ∨ areg or
XOR areg ← breg ⊕ areg exclusive or
NOT areg ← −1⊕ areg not

SHL areg ← breg � areg logical shift left
SHR areg ← breg � areg logical shift right

Branching, jumping and calling

The branch instructions include conditional and unconditional relative branches.
A branch using an offset in the stack is provided to support jump tables.

BR pc← pc @ oreg branch relative unconditional
BRF if ¬areg then pc← pc @ oreg branch relative false

BRX pc, areg ← areg, breg branch absolute

The procedure calling instruction uses a program address in the stack to deter-
mine a subroutine entry point, leaving the return address on the stack. The RET
instruction can also be used simply to branch to a program address on the stack.

CALL sp[0], pc, areg ← pc, areg, breg call subroutine
RET pc← sp[0] return from subroutine

Typically, the stack is initialised at the start of program execution. It can be ex-
tended on subroutine entry and contracted on exit using the LDAWI instruction.
It is also possible to allocate a new tuple on subroutine entry using a GETM in-
struction; The ENTER and EXIT instructions can then be used to move the stack
pointer to and from the new tuple.

David May: December 11, 2016 13



Version 1 Simple, Understandable, Reliable, Efficient

SETSP sp, areg ← areg, breg set stack pointer

ENTER sp, areg[1]← areg, sp switch to new tuple
EXIT sp← sp[1] switch from new tuple

Tuples

A new tuple is created using one of the GETM instructions. The tag is initialised
when the tuple is created. It can be accessed using the TAG instruction. The
number of words in the tuple can be obtained using the SIZE instruction. There is
a special tuple nil of size 0 which differs from all other tuples.

GETMI areg ← array areg : oreg create tuple immediate
GETM areg ← array areg : breg create tuple

TAG areg ← tagof areg read tag
SIZE areg ← sizeof areg read size
NIL areg, breg ← nil, areg load nil tuple

Registers and Marking

The marking process starts from the registers; if a register holds the address of
a tuple, the tuple is marked. For the simple instruction set described here, it is
sufficient to mark the tuples addressed by sp and pc because any tuple created
will be marked when it is created and will be stored in memory before the next
garbage collection cycle starts.

For a processor with a register file, it is possible that the address of a newly created
tuple will remain for some time in a register instead of being stored in memory.
This means that the register contents would have to be available to the garbage
collector at the start of each garbage collection cycle.

If the garbage collector is implemented in a memory subsystem, it would be possi-
ble for the memory subsystem to store the addresses of all created tuples between
the time they are created and the time when they are stored in memory; these
stored addresses could be used to mark the tuples at the start of each garbage col-
lection cycle. Alternatively, the GETM instructions could be designed to store
each newly created tuple address in a memory location.

David May: December 11, 2016 14



Version 1 Simple, Understandable, Reliable, Efficient

Instruction summary

LDWSP areg, breg ← sp[oreg], areg load word from stack
STWSP sp[oreg], areg ← areg, breg store word to stack
LDAWSP areg, breg ← sp @ oreg×Bpw, areg load address of word in stack
LDC areg, breg ← oreg, areg load constant
LDAP areg, breg ← pc @ oreg, areg load address in program
LDWI areg ← areg[oreg] load word
STWI areg[oreg]← breg store word
LDAWI areg ← areg @ oreg×Bpw load address of word
ADDC areg ← areg + oreg add constant
EQC areg ← areg = oreg equal constant
BR pc← pc @ oreg branch relative unconditional
BRF if ¬areg then pc← pc @ oreg branch relative false
GETMI areg ← array areg : oreg create tuple immediate

SWAP areg, breg ← breg, areg swap top stack values
ADD areg ← breg + areg add
SUB areg ← breg − areg subtract
WSUB areg ← breg @ areg×Bpw form word address
EQ areg ← breg = areg equal
LSS areg ← breg <sgn areg less than signed
AND areg ← breg ∧ areg and
OR areg ← breg ∨ areg or
XOR areg ← breg ⊕ areg exclusive or
NOT areg ← −1⊕ areg not
SHL areg ← breg � areg logical shift left
SHR areg ← breg � areg logical shift right
BRX pc, areg ← areg, breg branch absolute
CALL mem[sp], pc, areg ← pc, areg, breg call subroutine
RET pc← mem[sp] return from subroutine
PBASE areg, breg ← pchandle, areg load pc handle
SETSP sp, areg ← areg, breg set stack pointer
ENTER sp, areg[1]← areg, sp switch to new tuple
EXIT sp← sp[1] switch from new tuple
GETM areg ← array areg : breg create tuple
TAG areg ← tagof areg read tag
SIZE areg ← sizeof areg read size
NIL areg, breg ← nil, areg load nil tuple

David May: December 11, 2016 15


