
Communicating Process Architecture for Multicores

David May

Bristol University and XMOS

David May 1 CPA, Surrey July 10, 2007



Introduction

We can build chips with hundreds of processors

We can build computers with millions of processors

We can support concurrent programming in hardware

We can define and build digital systems in software

David May 2 CPA, Surrey July 10, 2007



Architecture - aims

Regular, tiled implementation on chips, modules and boards

Scale from 1 to 1000 processors per chip

System interconnect with scalable throughput and low latency

Streamed (virtual circuit) or packetised communications

David May 3 CPA, Surrey July 10, 2007



Architecture - aims

High throughput, responsive input and output

Instruction set designed to support compiler optimisations

Power efficiency - compact programs and data, mobility

Energy efficiency - event driven systems

David May 4 CPA, Surrey July 10, 2007



Interconnect

Processor needs multiple bidirectional links - a 500MHz
processor can support several 100Mbyte/second streams

Manufacturing processes now have many layers of interconnect

Fully connected networks can be used on-chip

� Clos network for 512 links uses much less area than 128 tiles

In modules and systems, n-dimensional grids can be used

David May 5 CPA, Surrey July 10, 2007



Routing - modules and systems

Simple hardware operating on first few bits of message

Incoming bits compared with tile address, bit-by-bit

If all pairs match, the tile is the destination

If not, the first bit number of the first non-matching pair is used to
select an outgoing route via a lookup table

This is sufficient to perform efficient deadlock-free routing in all
n-dimensional arrays.

David May 6 CPA, Surrey July 10, 2007



Two-dimensional array example

processor entry processor entry processor entry processor entry
0 rrdd 4 rldd 8 lrdd 12 lldd
1 rrdu 5 rldu 9 lrdu 13 lldu
2 rrud 6 rlud 10 lrud 14 llud
3 rruu 7 rluu 11 lruu 15 lluu

Each table entry selects either a right link (r), left link (l), up link
(u) or down link (d).

Performance can be enhanced using multiple links on each path

David May 7 CPA, Surrey July 10, 2007



Interconnect protocol

Communication protocol provides control and data tokens

Can be used by software to construct applications-optimised
protocols

Allows the interconnect to be used under program control to

� establish virtual circuits to stream data

� transport a series of packets

Alternatively can be used for dynamic packet routing by
establishing and disconnecting circuits packet-by-packet

David May 8 CPA, Surrey July 10, 2007



Processes

Each processor includes hardware support for a number of
processes, including:

� a set of registers for each process

� a process scheduler which dynamically selects which
process to execute

� a set of channels for communication with other processes

� a set of ports used for input and output

� a set of timers to control real-time execution

� a set of clock generators to enable synchronisation of the
input-output with external time domains

David May 9 CPA, Surrey July 10, 2007



Processes - use

Allow communications or input-output to progress together with
processing.

Implement hardware functions such as DMA controllers and
specialised interfaces

Provide latency hiding by allowing some processes to continue
whilst others are waiting for communication with remote tiles.

The set of processes in each tile can also be used to implement
a kernel for a much larger set of software scheduled processes.

David May 10 CPA, Surrey July 10, 2007



Processor instruction set

How many registers for each process?

� not so many that the file for all the processes is big and slow

� enough for the processes to operate efficiently

Another issue - they have to be addressed as instruction
operands and we want short (16-bit) instructions

Even with 16 registers, 12 bits are required to specify three
operands leaving only 4 opcode bits.

David May 11 CPA, Surrey July 10, 2007



Processor instruction encoding

Provide dedicated registers to access program, stack and data
regions in memory

Provide 12 operand registers for general purpose use - three
register operands can then be encoded using 11 bits (as
12 � 12 � 12 � 2048) leaving 5 opcode bits.

One or two opcodes can be used to allow 32-bit instructions

� instructions with up to 6 operands (for cryptography, DSP etc)

� extended immediate range for jumps and stack offsets

� lots of spare opcodes

David May 12 CPA, Surrey July 10, 2007



Processor - Resources

Each processor manages physical resources: processes,
synchronisers, channels, timers, locks and clock generators.

Processes claim and free resources using special instructions.

Resources interact directly with the process scheduler and
instructions such as inputs and outputs can potentially result in a
process pausing until a resource is ready and then continuing.

Information about the state of a resource is available to the
scheduler within a single processor cycle.

David May 13 CPA, Surrey July 10, 2007



Process Scheduler

The process scheduler maintains a set of runnable processes,
run, from which it takes instructions in turn.

A process is removed from the run set when:

� its registers are being initialised prior to it being able to run.

� it is waiting to synchronise with another process before
continuing or terminating.

� it has attempted an input but there is no data available.

� it has attempted an output but there is no room for the data.

� it is waiting for one of a number of events.

David May 14 CPA, Surrey July 10, 2007



Process Scheduler - aim

Share a unified memory system between processes in a tile.

Should be possible as 2 instructions are fetched each cycle and
data accesses are typically 25-30% of instructions

Guarantee each of n processes 1
�

n processor cycles.

Use spare cycles to increase average performance or save
energy.

David May 15 CPA, Surrey July 10, 2007



Process scheduler - use

Imagine a chip with 128 processors each able to execute 8
processes

It can be used as if it were a chip with 1024 processors each
operating at one eighth of the processor clock rate.

Each processor behaves as symmetric multiprocessor with 8
processors sharing a memory with no access collisions and with
no caches needed.

David May 16 CPA, Surrey July 10, 2007



Process Scheduler - Implementation

Each process has a short instruction buffer sufficient to hold at
least four instructions.

Instructions are issued from the instruction buffers of the
runnable processes in a round-robin manner.

Processes which are not in use or are paused are ignored.

The execution pipeline has a memory access stage which is
available to all instructions.

David May 17 CPA, Surrey July 10, 2007



Use of memory access stage

Any instruction which requires memory access performs it

Branch instructions fetch their branch target instructions unless
they also require a data access (in which case they will leave the
instruction buffer empty).

Any other instruction performs an instruction fetch for the
process - or for another process.

Note: If a process’s instruction buffer is empty when an
instruction should be issued, a special fetch no-op is issued to
fetch the next instruction.

David May 18 CPA, Surrey July 10, 2007



Concurrency - aim

Fast initiation and termination of processes

Fast barrier synchronisation - ideally one instruction per process

Compiler optimisation using barriers to remove join-fork pairs

Compiler optimisation of sequential programs using multiple
processes (such as splitting an array operation into two half size
ones)

David May 19 CPA, Surrey July 10, 2007



Fork-join optimisation
while true

�

par

�

in(inchan,a)
� �

out(outchan,b)

�

;

par

�

in(inchan,b)
� �

out(outchan,a)

�

�

par

�

while true

�

in(inchan,a); SYNC c; in(inchan,b); SYNC c

�

� �

while true

�

out(outchan,b); SYNC c; out(outchan,a); SYNC c

�

�

David May 20 CPA, Surrey July 10, 2007



Concurrency and Synchronisation

Hardware synchronisers allow synchronisation to be performed
at 1 instruction/process

Instructions provided to

� get a synchroniser

� get and attach new processes to a synchroniser

� free a synchroniser and all of its attached processes

� transfer data directly between the registers of two processes

Synchronisation instructions interact with the scheduler via the
synchronisers

David May 21 CPA, Surrey July 10, 2007



Communication
Communication is performed using channels, which provide
full-duplex data transfer between channel ends

The channel ends may be

� in the same processor

� in different processors on the same chip

� in processors on different chips

The channel-end identifiers can be used anywhere in a system

The channels provide a uniform method of communication
throughout a system with multiple tiles or multiple chips.

David May 22 CPA, Surrey July 10, 2007



Communication
Channel communication is implemented in hardware and does
not involve memory accesses

This supports fine grained computations in which the number of
communications is similar to the number of operations.

Within a tile, it is possible to use the channels to pass addresses.

Channels carry messages built from tokens

� data takens are just bytes

� control tokens are used to encode communication protocols

David May 23 CPA, Surrey July 10, 2007



Messages

Each message starts with a header containing the identifier of
the destination channel end.

This is usually followed by a series of data or control tokens,
sent and received by software using special instructions.

Each message ends with an end of message control token.

Packet-based communication or virtual circuit communication
can be programmed.

David May 24 CPA, Surrey July 10, 2007



Channel Ends
A channel end can be used as a destination by any number of
processes

They are served on a round-robin basis.

In this case the sender will normally send an identifier of a
channel end which can be used to send a reply, or to establish
bi-directional communication.

As the identifiers of channel ends can be used anywhere, they
can themselves be communicated.

David May 25 CPA, Surrey July 10, 2007



Synchronised Communications

As most messages consist of many individual data items, there
is no need for all of the individual items to be acknowledged.

It is impossible to scale interconnect throughput unless
communication is pipelined

This requires that the use of end-to-end synchronisations is
minimised.

Synchronised communication is implemented by the receiver
sending an acknowledgement to the sender, usually as a
message consisting of a header and an end-of-message token.

David May 26 CPA, Surrey July 10, 2007



Compound Communications
A convenient way to express sequences of communications on
the same channel is with a compound communication.

proc inarray(chan c, []int a) is

?

�

for i = 0 for 10 do c ? a[i] ?
�

proc outarray(chan c, []int a) is

!

�

for i = 0 for 10 do c ! a[i] !

�

The synchronisations at the end of each of these compound
communications ensure that each compound output is matched
by exactly one compound input.

David May 27 CPA, Surrey July 10, 2007



Ports, Input and Output

Ports provide interfaces to physical pins.

Inputs and outputs using ports provide

� direct access to the pins

� accesses synchronised with a clock

� accesses timed under program control

A condition can be set which causes an input to delay

� the time at which the condition is met can be timestamped

David May 28 CPA, Surrey July 10, 2007



Timers and Clocks

Each tile has a free-running clock and a set of timers which can
be used to read the current time or to wait until a specified time.

Input and output operations can be synchronised with an
internally generated clock or an externally supplied clock.

When an output port is driven from a clock, the data on the
pin(s) changes state synchronously with the clock.

If several ports are driven from the same clock, they will appear
to operate as a single port.

David May 29 CPA, Surrey July 10, 2007



Time domains

The processes executed by a processor can handle external
devices at several different rates determined by clocks supplied
externally or generated internally.

The ports decouple the internal timing of input and output
program execution from the operation of the input and output
interfaces.

The processor can operate using its own clock, or could
potentially be asynchronous.

David May 30 CPA, Surrey July 10, 2007



Ports, Input and Output example
proc linkin(port in 0, in 1, ack, int token) is

var state 0, state 1, state ack;

�

state 0 := 0; state 1 := 0; state ack = 0; token := 0;

for bitcount = 0 for 10 do

�

select

�

case in 0 ?= � state 0: state 0 � � token := token � � 1

case in 1 ?= � state 1: state 1 � � token:=(token � � 1)

�

512

�

;

ack ! state ack; state ack := � state ack

�

�

David May 31 CPA, Surrey July 10, 2007



Timed ports example

proc uartin(port uin, byte b) is

� var starttime;
in ?= 0 at starttime;

sampletime := starttime + bittime/2;

for i = 0 for 7

t := t + bittime; (uin at t) ? � � b ;

(uin at (t + bittime)) ? nil

�

David May 32 CPA, Surrey July 10, 2007



Events and alternative input - aim

Allow a process to wait for input from any of a set of channels or
ports

Very rapid response so that repeated alternatives can be used in
low-level input-output operations

Support compiler optimisations to minimise response times

Allow procedures expressing compound communications to be
used as guards

David May 33 CPA, Surrey July 10, 2007



Events - implementation
An event transfers control to an associated program entry point
which is set for a specific resource by a setvector instruction

Event generation for the resource can then be enabled and
disabled using enable instructions

Having enabled events on one or more resources, a wait
instruction is used to wait until an event transfers control to its
associated entry point.

All of the events which have been enabled by a process can be
disabled using a single clear events instruction.

David May 34 CPA, Surrey July 10, 2007



Events - Compound communications
It is important to allow calls to procedures defining compound
communications to be used in guards:

select

� case inarray(c, a) � � P(a)

case inarray(d, a) � � Q(a)

�

This is done by a setenv instruction to initialise an environment
register in the port

This is usually set to the stack pointer value at the time the event
is enabled by the communicating procedure.

David May 35 CPA, Surrey July 10, 2007



Events - optimisations
Optimise repeated alternatives in inner loops where a process is
operating as a programmable state machine - the guarded
components are usually short instruction sequences

Move setting of event vectors and other invariants outside the
loop

Provide conditional versions of event enable instructions to
optimise guard enabling

Provide conditional versions of wait to replace the loop-closing
branch

David May 36 CPA, Surrey July 10, 2007



Events vs. Interrupts

A process can be dedicated to handling an individual event or to
an alternative handling multiple events.

The data needed to handle each event have been initialised prior
to waiting, and will be instantly available when the event occurs.

This is in sharp contrast to an interrupt-based system in which
context must be saved and the interrupt handler context restored
prior to entering it - and the converse when exiting.

David May 37 CPA, Surrey July 10, 2007



Summary

Communicating process architecture can be used to design and
program multicore chips with performance scaling to thousands
of processes, or virtual processors.

Each process can be used

� to run conventional sequential programs

� as a component of a concurrent computer

� as a hardware emulation engine or input-output controller

Communicating processes provide a natural way of expressing
energy efficient event-driven programs.

David May 38 CPA, Surrey July 10, 2007



Summary

The architecture is tuned to compiler and software needs -
supporting direct execution of concurrent software

The processor instruction set enables optimisation of concurrent
and event-driven programs.

The compact instruction representation, position independent
code and high speed interconnect enables software mobility.

This reduces latency and power and supports dynamic re-use of
processors at runtime.

David May 39 CPA, Surrey July 10, 2007


