
Version 2 Exceptions, Interrupts, Processes

Exceptions, Interrupts and Processes
David May: November 17, 2019

Background

We want to make instruction emulation and system calls very efficient.

We want to make interrupts very efficient.

We want to make it impossible for an untrusted process - either miscompiled or
malevolant - to cause system failure.

We are probably expecting to implement and supply a preferred version of con-
currency, communication and input-output along with our implementations of C#,
Python - but still be able to implement others efficiently.

Contexts

Almost all implementations of processes (and interrupts) require context switches
in which most of the registers are saved and restored. We don’t have a lot of reg-
isters and it seems likely that they could all be saved or restored in a few cycles
- maybe even just one cycle. Our architecture should make it possible to provide
implementations that do this, whilst also allowing simple, less optimised imple-
mentations.

Our context can be represented in an object which holds 15 words. This requires
16 words in total, so there is the possibility of aligning these context objects in
memory so as to enable single cycle access. It would also be practical to provide
a separate memory for the contexts.

If we provide an architectural run list of processes that are ready to execute, it is
possible for these to be pre-loaded from memory into one or two context buffers
ready for execution; similarly, it is possible for them to be stored in buffers whilst
they are being written back to memory. This allows the process context switching
to proceed in parallel with process execution.

So a context could look like this:

David May: November 17, 2019 1



Version 2 Exceptions, Interrupts, Processes

General purpose registers r0 ... r9
Program counter pc
Workspace pointer wp
Environment pointer ep
Link register lr
Run link rl

This context structure can also be used for the exception and interrupt contexts.

It is important that exceptions and interrupts can schedule normal processes (de-
ferred handlers) to handle non-urgent tasks. This includes emulation of complex
instructions. The excepting context and excepting instruction are stored in reg-
isters r0 and r1 of the exception-handling context; these are used to access the
operands and can be passed on to registers r0 and r1 of the deferred handler.

Operation

We have three execution states, each with its own register set holding a context.
These are:

NORMAL used for a collection of concurrent processes
EXCEPTION used when a process gives rise to an exception or system call
INTERRUPT used for a call from a hardware device or from a process

There is also an IDLE state.

There are flags to record the state - one set for NORMAL, one set for EXCEP-
TION, one set for INTERRUPT. The NORMAL register set is used if neither the
exception flag nor the interrupt flag is set. The EXCEPTION register set is used if
the exception flag is set and the interrupt flag is not set. The INTERRUPT register
set is used if the interrupt flag is set.

Exceptions - calls, unimplemented instructions and exceptions will set the excep-
tion flag. The excepting context and excepting instruction are stored in regis-
ters r0 and r1 of the EXCEPTION context and can be used to access the opcode
and operands of the excepting instruction using GETOP and PUTOP instructions.
These instructions will access the registers in the excepting context.

Interrupts - hardware and software will set the interrupt flag. They can not occur
in INTERRUPT state. The reason for the interrupt is supplied in register r0 and
can be used to determine what action to take. For a software interrupt, the reason
is supplied as an instruction operand; for a hardware interrupt, it is supplied by
the hardware device from a register that can be set by software when the device is
configured/enabled.

David May: November 17, 2019 2



Version 2 Exceptions, Interrupts, Processes

There is an EXIT instruction that clears the flag associated with the register set in
use.

NORMAL mode is used to execute a collection of processes. There are instruc-
tions to move to the next process (NEXT) to pause and re-schedule the current
process (PAUSE) and to schedule a process (RUN). This enables the processor
to optimise process scheduling by context flow, pipelining the process contexts
through the normal register set. These instructions can be executed in EXCEP-
TION and INTERRUPT mode. The NEXT instruction only takes effect when the
processor returns to NORMAL mode.

There are instructions to create a new process; these get an object for the pro-
cess context and supply initial values for the ep and the pc. GETP creates an
(untrusted) process; GETTP creates a trusted process. DEFER creates a trusted
process, copying the r0 and r1 register values of the EXCEPTION context and
enabling the deferred handler to access the operands of the excepting instruction
from memory.

Only trusted processes can execute NEXT, PAUSE, RUN, DEFER, GETOP and
PUTOP instructions.

Garbage Collector

There are objects in memory for the exception and interrupt contexts, along with
a collection of objects for normal processes.

At the point that the garbage collector starts, there will be an interrupt context
and an exception context in the associated registers; there may also be a normal
context in the normal registers. The first action is to save these to their associated
objects in memory. As soon as this action starts, and for the rest of the marking
phase, when any pointer is loaded, its associated object will be marked.

The garbage collector operates by marking the contexts in memory, starting with
the interrupt and exception contexts and continuing with the contexts on the run
list. It maintains a list of the objects waiting to be marked (which may include
context objects). It uses this list only when it has reached the end of the run list.
This means that it prioritises marking of contexts waiting to run.

If the context switcher encounters a context that has not been marked when it is
writing back a context (for example, as a result of executing a NEXT instruction),
it waits until the context has been marked before continuing. This ensures that
the original pointers in the object (which may have been stored and overwritten
during execution) will be marked, along with any new pointers that have been
loaded.

David May: November 17, 2019 3



Version 2 Exceptions, Interrupts, Processes

A consequence of this is the that garbage collector can be implemented entirely
as part of the memory.

David May: November 17, 2019 4


