Version 1.0

Bootstrapping
David May: February 27, 2015

Introduction

Bootstrapping is a technique that is widely used in compiler development. It has
four main uses:

1. Itenables new programming languages and compilers to be developed start-
ing from existing ones.

2. It enables new features to be added to a programming language and its com-
piler.

3. It also allows new optimisations to be added to compilers.

4. It allows languages and compilers to be transferred between processors with
different instruction sets

New programming languages

Let SY be the source of a compiler for language y written in language z, and let
E,. be an executable compiler for language x.

Suppose b is a new programming language and that there is a source S° of a
compiler for b written in a. An executable compiler for b can be created using the
executable compiler for a:

Ey, = Ea(SZ)

Assuming that language b is expressive enough to write a compiler, it can now be
used to write its own compiler. The pair S?, E}, can then be used to compile S?
into £}, in place of Sy, E, and:

Ey, = Ey(S}p)

This means that language a is no longer needed in the further development of
language b.

David May: February 27, 2015 1



Version 1.0

Adding new features

The process of adding new features is similar to that of developing a new pro-
gramming language.

Let SY be the source of a compiler for language y written in language x, and let
E. be an executable compiler for language x. Assuming that the £, and S¢ are
correct:

E, = E,(S%)

Suppose language b is a superset of language a. An executable compiler for b can
be created using the executable compiler for a:

By = Ea(SS)
The pair S?, Ej, can then be used to compile S? into Fj, in place of Sg, F, and:
E, = Ey(SP)

Notice that this process can be carried out repeatedly, starting from a very simple
language and progressively adding syntactic or semantic features. Once included
in the executable version of the compiler, a new feature can be used in the source
of the compiler.

Compiler optimisation

Let S; be the source of a compiler for language a written in language a, and let
E; be an executable compiler for language a. Assuming that the E; and S; are
correct:

Let S;+1 be the source of an optimising compiler for language a written in lan-
guage a. An executable optimising compiler O; can be created:

Oi = Ez(SH-l)

Note that O; can optimise, but has not itself been optimised. However, it can now
be used to create an optimised version of the executable optimising compiler:

Eiy1 = Oi(Sit1)
Now the pair F;,, S;y1 can be used in place of E;, S; and:
EH—I - Ei+1(si+1>

Notice that this process can be carried out repeatedly, starting from a very sim-

David May: February 27, 2015 2



Version 1.0

ple non-optimising compiler and progressively introducing optimisations. As the
process continues, the new optimisations are applied to the compiler itself. This
means that the executable compiler may reduce in size even though the source
becomes larger and more complex.

Transferring to a new instruction set

Let S, be the source of a compiler for instruction set x, and let £Y be an exe-
cutable compiler in instruction set x that compiles programs into instruction set ¥.
Assuming that the £¢ and S, are correct:

By = E5(Sa)

Suppose b is a new instruction set and that there is a source of a compiler for b.
An executable compiler in instruction set b can be created using the executable
compiler in a:

Eab = Eg(Sb)

Now E° can be used to create an executable compiler in instruction set b that
compiles programs into instruction set b:

E} = E}(S)
The pair S, E} can then be used to compile .S} into Efj in place of Sy, E¢ and:
Ez? = Ezl; (Sb)

This means that the compiler has been transferred to the new instruction set b (and
a is no longer needed).

Footnote

In using the above technique, it is essential to maintain a matching pair S, E that
can be used to exactly reproduce E. The best way to do this is to perform

E' = E(S)

and check that the binary images of £’ and E are identical.

David May: February 27, 2015 3



