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Abstract

The ambiguity inherent in a localized analysis of events
from video can be resolved by exploiting constraints be-
tween events and examining only feasible global explana-
tions. We show how jointly recognizing and linking events
can be formulated as labeling of a Bayesian network. The
framework can be extended to multiple linking layers, ex-
pressing explanations as compositional hierarchies. The
best global explanation is the Maximum a Posteriori (MAP)
solution over a set of feasible explanations. The search
space is sampled using Reversible Jump Markov Chain
Monte Carlo (RJMCMC). We propose a set of general move
types that is extensible to multiple layers of linkage, and use
simulated annealing to find the MAP solution given all ob-
servations. We provide experimental results for a challeng-
ing two-layer linkage problem, demonstrating the ability to
recognise and link drop and pick events of bicycles in a rack
over five days.

1. Introduction

The visual analysis of events is often ambiguous when
performed locally in isolation from other events. A global
analysis will generally provide a more reliable solution, ex-
ploiting constraints that exist between the different things
happening during a given period. We propose a general
framework for exploiting such constraints.

The term ‘event recognition’ refers to mapping an ob-
servation into previously modeled event types. Assuming
independence from surrounding events, each observation is
normally assessed separately, and the event type that best
explains the observation is chosen as the recognized event.

Linking events is the process of grouping related events
to represent high-level explanations. Often events are re-
lated if they involve the same agent or the same object.
Global constraints such as arity and temporal ordering gov-
ern the linking process. For example, linking the event of a
person entering a room to the departure event of the same
person provides a high-level explanation about the complete

act and its duration. A one-to-one correspondence (arity)
constraint is expected and the first event must occur before
the second. A feasible explanation is one that does not vio-
late these constraints.

Event recognition and linkage could be performed sepa-
rately where the event is first recognized for each observa-
tion, and the linkage can be decided next. In this paper, we
propose simultaneously (i.e. jointly) recognizing and link-
ing events into complete explanations. We apply joint event
recognition and linkage to theBicyclesproblem, first intro-
duced in [4]. The complexity of this problem demonstrates
the generality and capabilities of the framework. We refer
to the act of leaving the bicycle in the rack as a ‘drop’, and
the act of retrieving the bicycle as a ‘pick’. The task is to
correctly associate people to the bicycle they have dropped
or picked, and to link picks to earlier drops. Two types of
detections are considered; the first is of people entering and
leaving the rack area, and the second is of changes within
the racks that indicate the appearance and disappearance of
bicycles, and are referred to as ‘bicycle clusters’, as each
may contain multiple bicycle detections.

Ambiguities in the recognition process increase with oc-
clusion when multiple individuals approach the racks. We
refer to these time intervals, during which one or more
people are simultaneously inside the rack area, as “activity
units” [5]. Figure 1 illustrates an example of an activity unit
by highlighting the people and the bicycle clusters. Each

Figure 1. An example of an activity unit showing 5 individuals
(left) and several bicycle clusters (right).
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activity unit is an event recognition and linkage problem.
The linking is constrained so each person is linked to one
bicycle cluster at most. This emerges from the natural con-
straint that a person cannot drop/pick more than one bicycle
per visit to the racks. We further link drops to subsequent
picks forming a ‘higher-level’ linkage problem. Each drop
can be connected to one pick at most from a later activity
unit, and vice versa.

Searching the space of feasible explanations is of expo-
nential complexity. We need a method to enumerate these
explanations and assess their posterior probabilities given
the observations. To avoid confusion, events that are ob-
served directly from a single detection are called ‘atomic
events’, while high-level explanations are referred to as
‘compound events’ as they arise from linking other events.
We propose a novel framework and argue it can be used
whenever,
• The task is to recognize and link related events.
• These linkages can be represented as a hierarchy of

(compound) events.
• The labeling of each atomic event can be assessed

given an associated observation.
• Links between events are scored, favoring some links

over others, and are governed by natural constraints.

Related work is reviewed next, and Section 3 details
the method. Section 3.1 explains how a dynamic Bayesian
network can be built to model the posterior dependencies.
Section 3.2 reviews Markov chain Monte Carlo (MCMC)
sampling, and is followed by explaining how reversible
moves can traverse the space of feasible explanations in
Section 3.3. The selected features and the collected dataset
for theBicyclesproblem are explained in Section 4.1. The
results (Section 4.2) demonstrate that maximizing the joint
posterior using this proposed framework improves the ac-
curacy over separately recognizing and then linking the
events.

2. Related Work

Explaining and linking observations by proposing global
feasible explanations and assessing those explanations has
been previously applied to several domains. Multi-target
tracking in radar surveillance was first tackled by Reid [13]
in a Bayesian framework. At each scan, the radar detects
noise and target measurements. The problem is to simulta-
neously associate target measurements into trajectories and
discard noisy measurements. Reid searched the space of ex-
planations using the Multiple-Hypotheses Tree (MHT) al-
gorithm, where alternative explanations are explored within
a tree structure. Ohet. al. [11] use an MCMC approach
to sample from the solution space and find the Maximum a
Posteriori (MAP) explanation. This work demonstrated the
remarkable performance of MCMC over MHT.

Visual tracking resembles radar tracking, as broken tra-
jectories, tracklets and noisy observations have to be con-
nected into complete trajectories. Traditionally, observa-
tions are associated by considering a couple of frames. A
recent trend towards global solutions, despite the combina-
torial complexity, uses approaches such as Bayesian net-
work inference [8], structural EM [17] and linear program-
ming [14]. MCMC finds an approximate solution and has
been increasingly employed in visual tracking of pedestri-
ans [1, 15, 16] but also for ants and bees [9]. Smith [15]
tracks an unknown number of objects using RJMCMC. A
derived work by Yuet. al. [16] combines segmentation
along with tracking. They model both spatial and temporal
moves (extending those of Smith), and search the space of
possible explanations within a sliding window. One of the
earliest similar problems in visual tracking was introduced
by Huang and Russell [7], as part of ‘Roadwatch’ for track-
ing cars across wide-area traffic scenes. They assign each
car seen upstream to its corresponding observation down-
stream, allowing for on-ramp and off-ramp observations.
Their solution uses MHT, thus it cannot scale to tracking
cars between more than two cameras due to the growing
complexity. An MCMC sampling approach is proposed for
a scalable solution [12].

Similar reasoning can be used to recognize and link
events. Gong and Xiang learn the links between events us-
ing Dynamic Multi-linked HMMs [5]. They learn causal
and temporal relationships from videos of loading and un-
loading planes. Their work assumes all parallel events can
be dependent and can not link events with temporal gaps or
enforce global constraints. Chanet. al.argue that recogniz-
ing and linking events provide the most likely events along
with the best track fragment linkage [3]. Applied to recog-
nizing plane re-fueling event sequences, their approach is
confined to brute force search as a proof of concept. Our
previous work searches the space of feasible explanations
for linking dropping and picking bicycles using MHT [4],
where the branch with the minimum cost represents the best
explanation.

In this paper, we propose a novel framework for jointly
recognizing and linking related events. Unlike [5], we focus
on causal relationships allowing events to be linked across
temporal gaps. Our framework assumes a natural hierar-
chy of events is known, and partitions the observations into
plausible explanations governed by related constraints. We
finally use the power of RJMCMC [6] (successfully applied
in other domains [11, 15]) to sample the posterior distribu-
tion. We re-formulate theBicyclesproblem as two-layers of
event recognition and linkage, and present results that show
RJMCMC with simulated annealing can better search the
space when compared to greedy and MHT searches.



3. The Method

For a chosen scene domain, we suppose the composition
of events forms a hierarchy. The base of the hierarchy is
a set ofatomic eventsthat are detected directly. Higher-
levels arecompound eventscomposed by linking a pair of
simpler events (atomic or compound), providing a higher
level explanation.

Figure 2 illustrates two examples of the hierarchy of
events for theBicyclesproblem. The hierarchy shows two
atomic event types: people (x) and bicycle clusters (y), and
two layers of linkage. The first layer links people to bicycle
clusters. The link (z) can explain a drop or a pick compound
event (shown in brackets), then two such linking nodes are
combined into a higher-level link, that explains the drop-
pick (dp) compound event.

Figure 2. The basic unit for an explanation of theBicyclesproblem
(left) and a sample feasible explanation (right) for 5 people (x) and
4 bicycle clusters (y). Dotted frames surround activity units.

To explain our method, we first detail how a Bayesian
network can be built for a sequence of detections based on a
given event hierarchy. The complete set of labelings of the
Bayesian network corresponds to the set of explanations.
Though the Bayesian network is completely general and can
in principle be used to discover optimal explanations, we
need a tractable way to search through the set of feasible
explanations for the MAP solution. We search the space of
explanations using MCMC with simulated annealing. The
last part of this section introduces general move types that
can traverse the space of event linkages.

3.1. The Posterior Probability

We start by transforming the set of atomic events into
a single Bayesian network that represents all possible ex-
planations. We first present a simple example for recog-
nizing and linking a pair of atomic events within a single
layer of linkage. Figure 3 (left) shows a Bayesian network
with three observations;ox, oy ands, wheres is the score
of linking eventsx andy. Three hidden random variables,
(x, y, z), explain the first and the second event types, and
whether the two events are linked, respectively. The joint
probability is factorized so the compound event is depen-
dent on its constituent events.

For theBicyclesproblem, suppose we have observedn

people andm bicycle cluster events, then Figure 3 (right)
shows a plate representation linking eachx event to all pos-
sible y events according to the domain’s event hierarchy.

Figure 3. Directed graph linking two events (left) and a plate rep-
resentation for multiple events (right).

Figure 4 is an unrolled example forn = 3 andm = 2. The
different kinds of nodes in the Bayesian network are labeled
on the left hand side. Each detection is represented by an
observed Random Variable (RV) connected to a hidden RV.
Thex atomic events represent tracked people and can be la-
beled as dropping (e1), picking (e2) or passing through (e3).
Each bicycle cluster is represented by ay atomic event and
can be labeled as dropped (g1), picked (g2) or noise (g3).
Each pair ofx andy detections parents a linking nodez,
that can be labeled by a drop (d), pick (p) or be unlinked
(f ). A ‘d’ state, for example, indicates the person dropped
a bicycle into the associated cluster. Although the labels
may seem partly redundant, they will enable us to combine
evidence from observations associated with each event in a
consistent fashion. The linking nodes are governed by nat-
ural constraints, represented by the deterministic nodec. In
theBicyclesproblem, for example, a maximum of one link-
ing node relating the same person can be labeled as a drop
or a pick within the explanation. Figure 5 shows a labeled
Bayesian network corresponding to the first activity unit in
the sample explanation of Figure 2.

We aim to find the MAP explanationω⋆ (a labeling of all

Figure 4. An unrolled Bayesian network for multiple events

Figure 5. A sample explanation (left) and its correspondinglabel-
ing of the Bayesian network (right). The deterministic function
evaluates to 1 for feasible explanations only.



hidden RVs) given all observed RVsY where

ω⋆ = argmax
ω

p(ω|Y ) (1)

For the graph in Figure 4, the posterior can be re-arranged as

p(ω|Y ) = 1

Z

Q

i

p(xi|oxi
)

Q

j

p(yj |oyj
)

Q

ij

p(zij |xi, yj , sij)p(c|{zk})

(2)

whereZ is the normalizing factor that need not be evaluated
when searching for the maximum.p(c|{zk}) is a determin-
istic function that evaluates the labels of allz linking nodes,
and equals 1 if the explanation is feasible.

Unfortunately, the number of linking nodes in the con-
structed Bayesian network increases exponentially with the
number of atomic events, while the number of feasible links
increases only linearly. The product

∏
i p(zi|x, y, s), from

the posterior in (2), can be replaced by a proportional ex-
pression that is independent of all links labeledf as follows
(We abbreviatep(zi|x, y, s) into p(zi|o) in the derivation).
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∝
∏

i:zi=t

p(zi=t|o)
p(zi=f |o) (5)

After presenting the Bayesian network for the first layer,
we present the complete Bayesian network for theBicycles
problem. Figure 6 represents this two-layered linkage prob-
lem for n = m = 3. Two activity units (dotted frames) are
shown in the unrolled example. Notice that we only hypoth-
esize and mutually constrain links between people and bi-
cycle clusters within the same activity unit, thereby greatly
reducing the number of possible explanations. For the sec-
ond layer, the linking nodev connectsz nodes from differ-
ent activity units, and can represent a drop-pick compound
event (dp) or be unlinked (f ). The linking score assesses
the likelihood of linking a drop to a pick event. An ad-
ditional random variablez0 represents unobserved events.
Some drops remain unlinked indicating the bicycle is still
within the racks, and some picks are related to drops that
occurred before the observation period. The posterior prob-
ability can be retrieved from the graphical model, where dif-
ferent explanations imply different labelings. The posterior
at both linking layers is rewritten according to Equation 5
to be independent of false links.

This section has shown how a Bayesian network can
be constructed for two levels of event linking. The same
method of construction could be used for any binary hierar-

Figure 6. An unrolled Bayesian network for theBicycleProblem
showing 2 activity units. Detected people (x) and bicycle clus-
ters (y) are linked within activity units to explain drops and picks.
Events are linked in a second layer to explain drop-picks. Expla-
nations at each layer are constrained by deterministic RVsc1, c2.

chy of atomic and compound events, given a different set of
labels and constraints that arise from the domain.

3.2. MCMC

Instead of exhaustively searching the space, MCMC
samples the posterior distribution using a Markov chain.
The set of possible states in the Markov chainΩ is the set
of all feasible explanations, and a conditional proposal dis-
tribution q(ω, ω′) defines the probability of proposing state
ω′ given the current state isω. After a state is proposed
using q, the move to that state is made with the probabil-
ity α(ω, ω′) known as the ‘acceptance probability’. A thor-
ough review of MCMC techniques can be found in [2]. We
use the Metropolis-Hastings algorithm and define the ac-
ceptance probabilityα as proposed by Green’s Reversible
Jump MCMC (RJMCMC) [6], where the proposal distribu-
tion is split into two steps:jm for selecting a move type and
gm for selecting a specific move within that type. Green’s
formulation allows introducing a pair of reversible moves
instead of self-reversible moves only, maintaining the de-
tailed balance for convergence.

For finding the MAP solution, adding simulated anneal-
ing is in principle a better alternative [2], although previous
related work has not used this [1, 9, 11, 15, 16]. MCMC is
a sampling technique that is not designed to search for the
global maximum. Adding annealing is a minor modifica-
tion where the Markov chain is non-homogeneous and its
invariant distributionϕ at each stepi in the chain depends
on a ‘temperature’T that is decreased according to a ‘cool-

ing schedule’ϕ(ω) = π(ω)
1

Ti .

3.3. Designing Markov Chain Moves

When using RJMCMC to traverse the space of feasible
explanations, a different explanation is proposed at each
step along the Markov chain based on the current one. For
discrete search spaces, multiple types of moves are needed



to traverse the search space [6]. We designed 4 move types
to traverse the search space (Figure 7). These connect or
disconnect a link, change one of the linked events or switch
two links. It should be noted that this is not the minimal
set of move types. A change move for example can be
constructed from a disconnect move followed by a connect
move. Disconnecting would decrease the posterior prob-
ability significantly, which makes it a less probable move
along the chain. Accordingly, change and switch move
types enable efficient search of the space and faster con-
vergence. Other complex changes can be constructed from
a sequence of these moves.

Figure 7. Four moves are proposed to link events, break links,
change linked events and switch linkages.

The Bicyclesexample uses the designed 4 move types
for each layer. In the initial explanationω0, all people are
passing through and all detected clusters are noise. This is
a valid explanation, though unlikely to be the best. At each
step of the Markov chain, a move is applied to the current
explanation. Figure 8 shows a sequence of moves applied
successively. Each applied move creates a new feasible ex-
planationω′, and can change multiple labels in the Bayesian
network. Moves of type ‘change drop’, for example, change
the states of two hidden RVs of typev: (dp → f, f → dp).

We now discuss how we propose a move at each step
of the Markov chainq(ω, ω′). RJMCMC splits proposing
a new explanation into two steps: choosing the move type
jm then choosing a specific movegm. Randomly choosing
a move type does not efficiently search the space of expla-
nations. We thus estimate the number of distinct moves of
each type that can be applied to the current explanation. For
example, the number of possible ‘disconnect’ moves in the
first layer equals the number of dropping and picking people
in the current explanation. These counts are used as weights
in choosing the move type. Weighting increases the accep-
tance rateρaccept and speeds convergence as will be shown
in the experiments. The acceptance rateρaccept is the ra-
tio of the number of accepted moves to the length of the
Markov chain.

Next, a specific move of that type is chosen and applied
to the current explanation. This ‘within-type’ choice can
also be performed uniformly at random. Alternatively, we
can design a customized ‘within-type’ proposal distribution
for each proposed move type. These are application-specific
and depend on the expected ambiguities in the observations.

We use a distance measure for each move type that weights
the preference for choosing moves. For example, the ‘con-
nect’ move type in the first layer prefers connecting people
to bicycle clusters without alternative links. AssumeB(xi)
yields the set of clusters that could be connected to person
xi, while T (yj) yields the set of people that could be con-
nected to clusteryj, then the distance measure for this move
typeδconnect is defined in Equation 6.

δconnect(xi) =
∑

yj∈B(xi)

1

|T (yj)|
(6)

We do not explain the proposed distance measures for the
other move types due to space limitation. These are domain
specific and their choices do not affect the framework.

4. Experiments and Results

Three aspects of the framework are evaluated. We in-
vestigate the advantage of jointly recognizing and linking
events versus performing each task alone. We also com-
pare three search techniques for finding the MAP solu-
tion: MHT, MCMC and MCMC with the addition of simu-
lated annealing. Then, the MAP solution is compared with
ground-truth revealing the ability of the complete frame-
work to explain all observations. We first discuss how the
visual features were obtained and introduce the dataset.

4.1. Features and Dataset

In theBicyclesscenario two types of detections are iden-
tified from a CCTV camera mounted high above the ground:
people trajectories (x) and bicycle clusters (y). Trajec-
tories were retrieved by an off-the-shelf background sub-
traction tracker [10]. Changes to the bicycle rack before
the person approaches it and after departing are grouped
into connected components representing bicycle clusters.
Four observations and linking scores are required:p(x|ox),
p(y|oy), p(z|sz) and p(v|sv) (see Figure 6). Supervised
training is used to estimate Gaussian class conditional den-
sities for each likelihood.

p(x|ox) assesses whether the person is dropping, picking
or passing through by comparing the blob size before enter-
ing and after exiting the racks. An increase in the blob size
signifies a pick and vice versa. Noise or broken trajectories
will produce poor assessments.

p(y|oy) is measured by comparing the number of pixels
representing new and removed edges. Assuming the back-
ground is relatively free of edges, a significant increase in
edges within the changed pixels indicates a dropped bicy-
cle, and vice versa. The remaining clusters are expected to
be heterogeneous or noise clusters.

p(z|sz) assesses the linkage of a person to a bicycle clus-
ter by measuring the maximum degree of overlap between



Figure 8. A sequence of{connect drop-pick→ connect drop→ change drop→ disconnect pick} moves was applied. The last move affects
both layers as disconnecting a pick cancels the drop-pick linked to that pick. The subscript next to the move type indicates the layer at
which the move is applied.

the bounding box of the cluster and the bounding boxes of
the foreground regions representing the person across the
whole trajectory.

The pixel matches between the dropped and picked clus-
ters is used to computep(v|sv). It assumes bicycles do not
change their shape or position between being dropped and
picked. Figure 9 shows how these matches are established.
The ratio of the intersection of the two areas to the mini-
mum area is used to estimate Gaussian conditional densities
for correct and incorrect links. We use this new estimate of
the bicycle’s bounding box to refinep(z|sz).

The dataset consists of 7 sequences collected from two
sites (1-5: first site, 6-7: second site). Sequences 1-3 are
those used in our previous work [4]. Sequences 6-7 are
recorded by a CCTV camera outside a busy UK train sta-
tion, and are more challenging with a much greater level
of activity and uncertainty (Figure 10). The rack area was
manually delimited with a polygon. Table 1 summarizes
statistics of these sequences. Priors and conditional proba-
bilities were estimated from the first sequence and the cor-
responding hand-generated ground truth. These were kept
constant for all other sequences across both sites (Table 2).
Supervised training of the likelihoods was also performed
using the first sequence and fixed for all the sequences, as
all the features are designed to be scale and viewpoint inde-
pendent.

(a)

(d)

(b)

(e)

(c)

(f)

(g)

Figure 9. Two images of the racks (a) and (b) are compared to re-
veal changes (c) representing a dropped bicycle, and a noisecluster
due to lighting changes. Later, two consecutive reference images
(d) and (e) are also compared to reveal two picked bicycles (f). By
matching dropped (yellow) and picked (pink) clusters (g), white
pixels signify the match.

Figure 10. The two sites of theBicyclesdataset. Manually labeled
polygons delimit the rack area

Dataset Sequences
1 2 3 4 5 6 7

Duration 1h 1h 11h 12h 12h 15h 15h
|X| 58 27 128 126 137 112 197
|Y | 59 25 72 175 128 206 1847
|Drops| 24 11 20 20 14 28 39
|Picks| 20 12 19 20 13 17 41
|Drop-Picks| 20 11 18 20 13 14 22
avg(exp/x) 21.7 8.3 19.6 3.2 1.7 10.21 63.4
max(exp/x) 76 24 83 83 50 56 197

Table 1. Dataset statistics;|X|: number of detected people,|Y |:
number of detected bicycle clusters, exp/x: number of different
explanations involving each person, and gives a measure of the
dataset’s inherent ambiguity.

p(x = e1) = p(x = e2) = 0.495
p(x = e3) = 0.01
p(z = d|x = e1, y = g1) = 0.5
p(z = f |x = e1, y = g1) = 0.5
p(z = p|x = e2, y = g2) = 0.5
p(z = f |x = e2, y = g2) = 0.5
p(v = dp|z1 = d, z2 = p) = 0.4
p(v = dp|z1 = d, z2 = u) = 0.2
p(v = dp|z1 = p, z2 = u) = 0.05

Table 2. Estimated priors and conditional probabilities.

4.2. Results

The framework proposes a set of move types and
weighted choices of these move types to search the space.
We first compare convergence using the minimal set of
move types (connect and disconnect moves only) to that us-
ing the full set. For the 7 sequences, the mean ofρaccept,
over 100 Markov chains, increased by a factor of between
1.9 and 7.4 when incorporating the switch and change
moves. This is because both move types enable larger jumps
within the search space. Next, we compare weighted versus
uniform choice of moves. Figure 11 shows the performance
of one MCMC chain (3rd sequence) under different choices
of proposal distributions.ρaccept increases from 0.2 for uni-
formly selected move types to 0.4 for weighed choices, and
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Figure 11. Convergence under various uniform and weighted
move-type proposal distribution (jm) and ‘within-move’ proposal
distribution (gm) using MCMC.

convergence is significantly faster.
We compare MCMC alone with adding annealing using

both exponential and linear cooling schedules showing two
chains of each case (Figure 12). The temperature was re-
duced from 4 to 0.01 along all annealing chains.
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Figure 12. From the4th sequence, two runs of standard MCMC,
two runs of exponential annealing and two runs of linear annealing
are compared. One linear annealing and one standard run achieved
the best performance.

Table 3 compares the negative log of the MAP solu-
tion across the different techniques for all the recorded se-
quences. Each run consists of 10 parallel and independent
chains (nmc = 5000), where the MAP solution is the max-
imum of the MAP solutions across chains. We ran each
40 times and recorded the mean and standard deviation of
the MAP. The table reveals that adding annealing enables
finding a higher or equal posterior (lower -log(p)) for all 7
sequences. Linear cooling was used for annealing. The ta-
ble shows the advantage of jointly sampling the space of
event recognition and linkage over performing each task
separately. The baseline greedy approach maximizes each
observation locally and then selects the best link based on
the linking scores iteratively, keeping the solution feasible,
until the posterior can no longer be increased.

The MAP solution is then compared to a manually ob-
tained partial ground truth. The ground truth labels each
person with the type of event accomplished, and records
drop-pick pairs. The accuracy is defined as the ratio of cor-
rectly labeled events to the overall number of tracked peo-

Greedy MHT MHT MCMC MCMCM-SA
k=50 k=500 µ σ µ σ

1 102.25 58.78 57.86 57.90 0.11 57.86 0.00
2 23.54 4.64 4.64 4.64 0.00 4.64 0.00
3 609.66 493.18 468.80 429.30 3.23 423.98 2.36
4 6272.69 6149.95 6144.30 6079.88 3.43 6078.40 3.23
5 5034.46 4998.39 4975.82 4943.71 3.59 4939.33 1.87
6 860.37 812.96 812.96 814.71 1.69 811.50 2.36
7 934.36 608.92 - 451.92 9.29 433.50 7.76

Table 3.− log(p) compared across greedy, MHT, 40 runs of
MCMC and 40 runs of MCMC with simulated annealing. The
result was not available for the last MHT search (k=500) due to
our implementation running out of memory.

ple. It was noticed that the MAP solution might not result in
the highest-possible accuracy. This could result from an in-
correct modeling of the posterior and the priors, or noise in
the features selected. Table 4 compares the accuracy values
for the MAP solutions presented in Table 3. It is expected
that the accuracies for sequences (6-7) are lower due to the
increase in clutter. The7th sequence suffers from frequent
abrupt lighting changes that result in bicycle clusters being
poorly detected. Figure 13 gives some examples of recog-
nized and linked drop and pick events across the dataset.

Greedy MHT MHT MCMC MCMC-SA
k=50 k=500 µ σ µ σ

1 72.41 91.38 91.38 88.36 1.09 87.46 1.79
2 85.19 100.00 100.00 100.00 0.00 100.00 0.00
3 58.59 84.38 84.38 87.68 0.89 83.36 1.65
4 73.81 74.60 75.40 83.93 1.09 83.15 1.31
5 89.05 82.48 88.32 91.90 0.79 92.65 0.90
6 66.07 60.71 60.71 68.53 1.68 70.98 1.04
7 45.69 44.67 - 47.28 1.18 47.61 0.88

Table 4. The accuracy results (%) for the MAP solutions.

Even though all the results presented above utilize the
data in a batch mode, an online version of the solution has
been developed. This runs a shorter chain at the end of each
activity unit, and finds the best explanation for all the ob-
servations up to the current time stamp. The MAP solution
initializes the Markov chain for the next activity unit.

5. Conclusion and Future Work

This paper proposes a novel framework for jointly
recognizing and linking visually ambiguous events. The
approach combines observations along with linkage and
global constraints in one probabilistic graphical model. We
propose a set of reversible moves to traverse the search
space using RJMCMC. Adding annealing and weighted
proposal distributions assists in finding the MAP solution.
The framework can in principle be extended to multiple
layers of linkage. We have evaluated the approach on
the Bicyclesproblem for a challenging dataset. The same
approach could be applied to other domains for linking
relates events with a wide temporal gap. We are currently
evaluating the method to recognize and link people entering



Figure 13. Five examples of connected events. The first four are correctly connected. The fourth column represents a simulated theft. The
fifth example shows an incorrect connection. Recall that no clothing color comparison is performed. Individuals are connected by linking
the person to a cluster and correctly linking dropped to picked bicycle clusters.

a building to those departing.
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