## You-Do, I-Learn: Discovering Task Relevant Objects and their Modes of Interaction from Multi-User Egocentric Video

Dima Damen Dima.Damen@bristol.ac.uk Teesid Leelasawassuk Csztl@bristol.ac.uk Osian Haines Osian.Haines@bristol.ac.uk Andrew Calway Andrew.Calway@bristol.ac.uk Walterio Mayol-Cuevas Walterio.Mayol-Cuevas@bristol.ac.uk

We present a **fully unsupervised** approach for the discovery of i) task relevant objects and ii) how these objects have been used. A **Task Relevant Object (TRO)** is an object, or part of an object, with which a person interacts during task performance. Given egocentric video from multiple operators, the approach can discover objects with which the users interact, both static objects such as a coffee machine as well as movable ones such as a cup. Importantly, we also introduce the term **Mode of Interaction** (**MOI**) to refer to the different ways in which TROs are used. Say, a cup can be lifted, washed, or poured into. When harvesting interactions with the same object from multiple operators, common MOIs can be found.

**Setup and Dataset:** Using a wearable camera and gaze tracker (Mobile Eye-XG from ASL), egocentric video is collected of users performing tasks, along with their gaze in pixel coordinates. Six locations were chosen: kitchen, workspace, laser printer, corridor with a locked door, cardiac gym and weight-lifting machine. The Bristol Egocentric Object Interactions Dataset is publically available <sup>1</sup>.



Figure 1: An overview of the locations in the dataset.

**Discovering TROs:** Given a sequence of images  $\{I_1, ..., I_T\}$  collected from multiple operators around a common environment, we aim to extract *K* TROs, where each object  $TRO_k$  is represented by the images from the sequence that feature the object of interest. We investigate using appearance, position and attention, and present results using each and a combination of relevant features. For attention, we exploit the high quality and predictive nature of eye gaze fixations.

Results compare k-means clustering to spectral clustering, and propose estimating the optimal number of clusters using the standard Davies-Bouldin (DB) index. Figure 2 shows the best performance for discovering TROs by combining position (relative to a map of the scene) and appearance (HOG features within BoW) over a sliding window w = 25, using gaze fixations for attention, spectral clustering and estimating the number of clusters using the Davies-Bouldin (DB) index.

**Finding MOIs:** Given consecutive images  $(I_t, I_{t+1}, I_{t+\rho})$  clustered into the same TRO, a video snippet  $u_i^k$  for TRO k is defined as

$$u_i^k = \{ \Psi(I_j, \Delta(j), \omega); \quad I_j \in TRO_k; \quad j = t..t + \rho; \quad \rho \ge \xi \}$$
(1)

where  $\Psi$  crops a window of size  $\omega$  from image  $I_j$  around  $\Delta(j)$ , and  $\Delta(j)$  is the interpolated gaze at frame *j* as gaze information is missing in some frames. The collection of all video snippets  $U_k = \{u_i^k\}$  shows different ways in which  $TRO_k$  was used.

On average, 16.6 video snippets are extracted for each TRO ( $\sigma = 7.4$ ). We cluster  $U_j$ , and represent each cluster by the video snippet  $\hat{u}_j$  closest to the centre of the cluster  $\mu_j$  (i.e. mean snippet), as well as the percentage of

Figure 2: Discovered TROs. An overview of the locations is shown at the top. Blue dots represent true-positive (19 objs), red dots represent false positive (7 objs) and green dots represent false negative (1 obj).

snippets within that cluster  $p(MOI_j)$ . We vary the threshold  $\lambda$  to accept  $p(MOI_j)$  to produce recall-precision curves. Figure 3 shows an example of the method successfully discovering two MOIs for the 'socket'.



Figure 3: For the 'socket', the two common MOIs ('switching', 'plugging') are found (left & right). The representative *video snippet* is shown (up) with the other snippets in the same cluster (below) - only one snippet is incorrectly clustered (shown in red).

**Video Guides:** In addition, the approach enables the automatic generation of *help snippets* on how objects have been used before. We showcase video help guides using inserts on a pre-recorded video. A suitable video insert (i.e. MOI snippet) is chosen every time a gazed-at object is first recognised. In this assistive mode, we use the real-time texture-minimal scalable detector  $^2$  due to its light-weight computational load that makes it amendable to wearable systems. Figure 4 shows frames from the help videos and a full sequence is available <sup>3</sup>. Recall that these inserts are *extracted, selected and displayed* fully automatically.



Figure 4: In the assistive mode, when a TRO is detected, video snippet is inserted showing the most relevant common MOI based on the object's current appearance.

task 🌠 \_\_ \_ \_ 🏹 🍋 🗮 \_ \_ \_ \_ \_

**Computer Science Department** 

University of Bristol

Bristol, UK

http://www.cs.bris.ac.uk/~damen/BEOID/

<sup>&</sup>lt;sup>2</sup>http://www.cs.bris.ac.uk/~damen/MultiObjDetector.htm <sup>3</sup>http://www.cs.bris.ac.uk/~damen/You-Do-I-Learn