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Abstract. We present SEMBED, an approach for embedding an ego-
centric object interaction video in a semantic-visual graph to estimate the
probability distribution over its potential semantic labels. When object
interactions are annotated using unbounded choice of verbs, we embrace
the wealth and ambiguity of these labels by capturing the semantic re-
lationships as well as the visual similarities over motion and appearance
features. We show how SEMBED can interpret a challenging dataset of
1225 freely annotated egocentric videos, outperforming SVM classifica-
tion by more than 5%.
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1 Introduction

An egocentric camera captures rich and varied information of how the wearer in-
teracts with their environment. The challenge for the visual understanding of this
information is currently significant and not only incited by the enormous variety
of such interactions but also by limitations in the available visual descriptors,
e.g. those rooted in motion or appearance. Supervised learning from labelled ex-
amples is used to alleviate some of these ambiguities. Egocentric datasets [12, 10,
34, 6] and interaction recognition methods [10, 28, 9, 23] differ in the features used
and classification techniques adopted, yet they all assume a semantically distinct
set of pre-selected verbs or verb-noun combinations for supervision. When free
annotations are available - unbounded choice of verbs or verb-nouns - from au-
dio scripts [1] or textual annotations [6], a single label is selected to represent
each interaction using a majority vote. Less frequent annotations are treated as
outliers, though they typically represent a meaningful and correct annotation.
For example, lifting an object from a workspace could be described as pick-up,
lift, take or grab; all valid labels. Note that assuming multiple valid labels is
different from the problem of Ambiguous Label Learning, [3, 14], where the aim
is to find a single valid label from a mixed set of related and unrelated labels.
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Fig. 1. Given a dataset of free annotations, with potentially ambiguous semantic la-
belling (left), we propose to deviate from the one-vs-all classical approach (middle)
and instead build a graph that encapsulates semantic relationships and visual similar-
ities in the training set (right). Recognition then amounts to embedding an unlabelled
video (denoted by ‘??’) into the graph and estimating the probability distribution over
potential labels.

Egocentric video offers a unique insight into object interactions in particu-
lar. The camera is ideally positioned to capture objects being used and, equally
interesting, the different ways in which the same object is used. One interaction
(e.g. open) applies to a wide variety of objects, and each video can be labelled by
multiple valid labels (e.g. open door vs push door). In this context, recognition
cannot be simplified as a one-vs-all classification task. Capturing the semantic
relationships between annotations and the visual ambiguities between accom-
panying video segments can better represent the space of possible interactions.
Figure 1 shows a graphical abstract of our work.

Given a dataset of egocentric object interactions with free annotations, we
contribute four diversions from previous attempts: (i) We treat all free anno-
tations as valid, correct labellings, (ii) A graph that combines semantic rela-
tionships with visual similarities is built, inspired by previous work on object
class categories in single images [8] (Sec. 3.1), (iii) A test video is embedded
into the previously learnt semantic-visual graph and the probability distribution
over its possible annotations is estimated (Sec. 3.2) and (iv) When verb mean-
ings are available, we discover semantic relationships between annotations using
WordNet (Sec. 3.3).

We test semantic embedding (SEMBED) on three public egocentric datasets
[6, 34, 9]. We show that as the number of verb annotations and their seman-
tic ambiguities increase, SEMBED outperforms classification approaches. We
also show that incorporating higher level semantic relationships, such as the
hyponymy relationship, improves the results. Note that while we focus on ego-
centric object interaction recognition as a rich domain of semantic and visual
ambiguities, some of the arguments can apply to action recognition in general.
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2 Embedding Object Interactions - Prior Work

To the best of our knowledge, embedding for egocentric action recognition has
not been attempted previously. We first review works on recognising egocentric
object interactions, then review works which incorporate semantic knowledge for
recognition tasks.

Egocentric Object Interaction Recognition: Egocentric action recogni-
tion works range from self-motion [17] (e.g. walk, cycle) to high-level activi-
ties (e.g. [34, 18, 20, 2, 35]). On the task of object interaction recognition, ap-
proaches vary in whether they use hand-centred features [15, 19], object-specific
features [10, 6, 23, 29] or a combination [12, 21]. Ishihara et al [15] use dense tra-
jectories in addition to global hand shape features and apply a linear SVM to
determine the action class. Kumar et al [19] sample and describe superpixel re-
gions around the hand. Their method allows for hand detectors to be trained
spontaneously with the user performing the action.

Object-specific features are better suited for recognising verb-noun actions
(e.g. pick-cup vs pick-plate) rather than a general picking action. In Damen
et al [6], spatio-temporal interest points have been used to discover object in-
teractions in an unsupervised manner. The works of Fathi et al [10, 9, 21, 11]
have tested features including gaze, colour, texture and shape for verb-noun ac-
tion classification. Of these, [10] specifically discusses the change in the object
state as a useful feature to recognise object interactions. Though attempting
video summarisation primarily, Ghosh et al [12] introduces a collection of fea-
tures that could be used to classify object-interactions such as distance from the
hand, saliency, objectness represented using a spatio-temporal pyramid to de-
tect change. These features were proven useful for segmenting object-interactions
from a lengthy video, but have not been tested for action classification per se.
On several publicly available datasets, Li et al [21] compare motion, object, head
motion and gaze information along with a linear SVM for object interaction clas-
sification. Their results prove that Improved Dense Trajectories (IDT) proposed
by [37] outperform other motion features.

With the emergence of highly-discriminative appearance-based features, pre-
trained Convolutional Neural Networks (CNN) on ImageNet have also been
tested. In [25], CNN is evaluated for distinguishing manipulation from non-
manipulation actions on an RGB-D egocentric dataset. Ryoo et al [30] combine
CNN with IDT along with novel time series pooling for dog-centric manipula-
tion and non-manipulation actions. More recently, fine-tuned multi-stream CNN
approaches have achieved state of the art results on egocentric datasets [22, 33],
though are tuned on each dataset independently.

Based on [21, 30] conclusions, in this work we report results on IDT as a
state-of-the-art motion feature and pre-trained CNN features a state-of-the-art
appearance feature. Testing tuned CNNs is left for future work.

Semantic Embedding for Object and Action Recognition: Using lin-
guistic semantic knowledge for Computer Vision tasks, including action recog-
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nition, has been fuelled by the accessibility of text or audio descriptions from
online sources.

One such dataset which made this possible was gathered from YouTube
videos [4] with free annotations. The dataset includes a variety of real-world sce-
narios, though not limited to egocentric or object-interactions. For each video,
multiple annotators were asked to describe the video. Both [26, 13] use this
dataset for action recognition. In Motwani and Mooney [26], the most frequently
annotated verb for each video is used, and verbs are grouped into classes using
semantic similarity measures, extracted from the WordNet hierarchy as well as
information corpuses. Videos are described by HoG and HoF features around
spatio-temporal interest points. Guadarrama et al [13] find subject, object and
verb triplets in an attempt to automatically annotate the action. They create
a separate semantic hierarchy for each, formulated by co-occurrences of words
within the free annotations and use Spearman’s rank to find the distances be-
tween clusters. Semantic links are used to generate specific, rather than general,
annotations and a classifier is trained for each leaf node within the hierarchies.
Their method allows zero-shot action annotation by trading-off specificity and
semantic similarity. While combining semantics, both works use majority voting
to limit the description per class to a single verb.

Another recent YouTube dataset was collected of users performing tasks
while narrating their actions [1]. Labels are extracted from audio descriptions
using automatic speech recognition. Verb labels are then used to align videos
using a WordNet similarity measure as well as visual similarity (HoF and CNN)
to find the sequence of actions in a task.

Semantics have also been used for object recognition with images. Jin et al [16]
use WordNet to remove noisy labels from images which have multiple labels.
Similarly, Ordonez et al [27] use WordNet to find the most frequently-used object
labels amongst multiple annotations. We build our work on Fang and Torresani
[8], where images are embedded in a semantic-visual graph. In [8], images are
clustered depending on the semantic relationships between the labels and edges
of the graph are weighted with the visual similarity. They use ImageNet as the
database for training, and benefit from the fact that images within ImageNet
are organised according to the WordNet hierarchy. We differ from [8] in how we
add visual links to the semantic graphs as will be explained next.

3 Semantic Embedding of Egocentric Action Videos

We next, in Sec. 3.1, explain how we build a semantic-visual graph (SVG) that
encodes label and visual ambiguities in the training set. In Sec. 3.2, we detail how
videos with an unknown class are embedded in SVG, and how the probability
distribution over their annotations is estimated. Finally, in Sec. 3.3 we explore
further semantic relationships when verb meanings are annotated.
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3.1 Learning the Semantic-Visual Graph

The Semantic-Visual Graph (SVG) is a representation of the training videos,
with three sources of information encoded. First, videos that are semantically
linked, e.g. have the same label, are linked in SVG. Second, nodes that are
visually similar, yet semantically distinct, should also be linked as these indi-
cate visual ambiguities. Third, edge weights correspond to the normalised visual
similarity, over neighbouring nodes, using a visual descriptor and a defined dis-
tance measure. In this section we explain how SVGu, an undirected graph, is
constructed, then normalised to achieve the directed graph SVG.

SVGu is an undirected graph, where one node xi ∈ SVGu corresponds to
one training video. Assume AX(xi, xj) is a binary function that checks whether
two video labels are semantically related. Initially, AX(xi, xj) is true when both
videos are annotated by the exact same verb. This assumption is revisited in
Sec. 3.3. Edges in SVGu are created between nodes with a semantic relationship:

xi _ xj ∈ SVGu ⇐⇒ AX(xi, xj) = true (1)

The undirected edge xi _ xj ∈ SVGu is assigned a weight wxi_xj
= Dv(xi, xj)

where Dv is a distance measure defined over the visual descriptor chosen. Assume
rank(Dv(xi, xj)) is a function that returns the relative position of the distance
measure amongst all the remaining pairs of videos such that,

rank(Dv(xi, xj)) = n ⇐⇒ Dv(xi, xj) = minn(Dv(xk, xl)) ∀xk, xl ∈ SVGu and AX(xk, xl) 6= true

(2)
and minn is the nth minimum element in the list. In addition, assume
ranki(Dv(xi, xj)) is a function that returns the relative position of Dv(xi, xj)
amongst all nodes not connected to xi such that,

ranki(Dv(xi, xj)) = n ⇐⇒ Dv(xi, xj) = minn(Dv(xi, xl)) ∀xl ∈ SVGu and AX(xi, xl) 6= true

(3)
Further links are added to SVGu to encode visual ambiguities such that,

xi _ xj ∈ SVGu ⇐⇒ rank(Dv(xi, xj)) ≤ m or ranki(Dv(xi, xj)) = 1 (4)

where m is the number of visual connections in SVGu that correspond to the
top m visually similar and semantically dissimilar nodes in SVGu. We differ
from [8] in that we ensure each node is connected to its top visually similar but
semantically distinct node.

The undirected graph SVGu is then converted to a directed graph by replac-
ing each edge with two directed edges.

xi _ xj ∈ SVGu ⇒ {xi → xj , xj → xi} ∈ SVG (5)

The weights of directed edges are initially the same as the weights for their
undirected counterparts however they are normalised to define the probability
of traversing from video xi to xj ,

P (xi → xj) =
1/wxi→xj∑
k

1/wxi→xk

∀xi → xk ∈ SVG (6)
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Fig. 2. The Semantic-Visual Graph (SVG) is built for training data, with semantic
links (green) and visual links (blue) between videos. Given a test video x, two nearest
neighbours are found (yellow) and a Markov Walk of 2 steps (step1-red and step2-
orange) finds the probability distribution over potential labellings. Ref. supplementary
material for animation.

The reciprocal of the weights is taken so that the most visually similar path will
have the highest probability.

3.2 Embedding in Semantic-Visual Graph

Given a test video, x, we first embed the video into SVG then use the Markov
Walk (MW) method from [8] to determine Class (x). To embed x, we begin by
finding the set R which contains the z closest neighbours to x based on visual
distance, such that

R = {xi ∈ SVG | rank(Dv(x, xj)) ≤ z} (7)

We embed x into SVG by adding directed edges connecting x to nodes in
R: x→ xi ∀xi ∈ R with normalised weights P (x → xi). Following the em-
bedding, MW attempts to traverse the nodes in the directed graph to estimate
the probability of Class(x). Given the Markovian assumption and a predefined
number of steps t, we calculate the probability distribution of reaching a node
xi as follows

P (xi+t | x) =
∏
xi∈R

(
P (x→ xi)

t∏
j=1

P (xi+j−1 → xi+j)
)

(8)

To perform MW efficiently, we construct the vector q such that

q(i) =

{
P (x→ xi) xi ∈ R
0 otherwise

(9)

We also construct a matrix A such that A(i, j) = P (xi → xj) (Eq. 6), note that
this matrix is asymmetrical as nodes have a different set of neighbours in SVG.
Accordingly, P (xi+t | x) = qTAt where qT is the transpose of q and t is the
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number of steps in MW. We can then accumulate P (Class(x)) for every unique
annotation ax ∈ AX as follows

P (Class(x) = ax) =
∑

AX(xi+t,ax)=true

P (xi+t | x) (10)

We then select arg maxClass(x) P (Class(x)) as the semantic label of x. Figure 2
shows an example of SVG and video embedding. In the figure, given two nearest
neighbours z = 2 and two steps in MW t = 2, the probability distribution over
possible labellings is calculated.

3.3 Semantic Relationships: Synsets and Hyponyms

In Sec. 3.1, videos are considered semantically linked only when the annotated
verbs are the same. SVG then enables handling ambiguities via incorporating
visual similarity links in the graph. However, further semantic relationships, such
as synonymy and hyponymy relationships, can be exploited between annotations.
In linguistics, two words are synonyms if they have the same meaning, and the
set of all synonyms is a synset. Moreover, two words are described as a hyponym
and a hypernym respectively if the first is a more specific instance of the second.
The terms originate from the Greek word hypó and hypér - under and over.

Synonymy and hyponymy relationships are encoded in lexical databases.
WordNet (v3.1, 2012) is a commonly-used lexical database that is based on
six semantic relations [24]. In the WordNet verb hierarchy, verbs are first sep-
arated into their various meanings by the notation 〈word〉.v.〈s〉 where s ≥ 1 is
the number of disjoint meanings. The meanings are then arranged in hierarchies
that encapsulate semantic relationships. To benefit from such hierarchies, verbs
should be annotated with their meanings. We annotate [6] using verb meanings,
and Fig. 3 shows how such annotations of the same action can be synonyms and
hyponyms, as annotators chose different or more specific action descriptions.

Fig. 3. Five free annotations for two sequences from the BEOID dataset [6], and the
respective semantic relationships between the annotations from WordNet [24]. In the
hierarchy, each parent-child relationship represents a hypernym-hyponym pair. The
dotted circle encapsulates a synonymy relationship. The start and end times of the
actions are also shown. For placing a cup on a mat (left), synonyms put.v.1 and place.v.1
were chosen by annotators. put down.v.1, a hyponym of put.v.1 was also used. For
washing a cup (right), the verbs wash.v.3, wash up.v.3 and rinse.v.1 were chosen.
rinse.v.1 is a hyponym of wash.v.3.
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Name Users Seq. OI Seg.s Used OI Seg.s Semantic Verbs

CMU [7] 5 35 516 406 12 (33.8, 30.5)

GTEA+ [9] 13 30 3371 1000? 25 (40.0, 75.5)

BEOID [6] 3-5 58 1488 1225 75 (16.3 34.2)

Fig. 4. Dataset details (top) and video length distributions (bottom). Number of users,
segments, Object-Interaction (OI) segments and used segments in the results (length
< 40s) are detailed. We report the number of annotated verbs along with µ and σ
for the number of segments per verb. ?: Due to the size of GTEA+ we sampled 1000
videos randomly. Ref. supplementary material for frequencies of verb annotations per
dataset.

Given annotated meanings, we define the term action synsets (AS) to in-
dicate that annotations are linked by a synonymy relationship solely, and the
term action hyponym (AH) to indicate that annotations are linked by both the
synonymy or the hyponymy relationships. For comparison, we define the term
action meaning (AM) where annotations are linked only when the annotation
matches exactly. We use the general term AX where AX ∈ {AM, AS, AH} is
one of the the possible types of semantic relationships tested.

4 Datasets, Experiments and Results

We selected three publicly available datasets that primarily focus on object in-
teractions from egocentric videos [7, 9, 6] (Figure 4).

Verb annotations: We exploited the annotations provided by the authors to
split the CMU and GTEA+ sequences into object-interaction segments. For
CMU, object-interaction annotations are only provided for the activity of mak-
ing brownies. Annotators chose from 12 disjoint verbs to ground-truth seg-
ments. In GTEA+ annotators chose from verb-noun pairing to ground-truth,
e.g. cut cucumber versus divide bun and similarly squeeze ketchup versus com-
press bun. When removing the nouns, verbs could be used interchangeably but
free annotations were not available to annotators.

While BEOID contains a variety of activities and locations, ranging from a
desktop to operating a gym machine, it does not provide action-level annota-
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Table 1. As the number of verbs increases from 12 to 75, the best performance
changes from SVM to SEMBED. Results are obtained with γfv = 10 and γbow = 256,
k ={3,5,5}, m = 240, z={2,6,4}, t={20,20,8} for CNN and z={4,5,14}, t={4,20,10} for
IDT. For completion, state-of-the-art results on verb-noun classes are reported under
‘Other Works’ thus are not directly comparable to our verb only results.

FEATURES CNN IDT
ENCODING FV BOW FV BOW

METHOD SVM K-NN SEMBED SVM K-NN SEMBED SVM K-NN SEMBED SVM K-NN SEMBED Verbs Other Works

CMU [7] 58.6 46.6 46.3 55.9 43.3 52.0 69.4 58.1 57.4 55.9 57.6 61.6 12 48.6 [34], 73.4 [36]

GTEA+[9] 15.6 30.0 31.0 25.1 33.5 33.6 43.6 43.4 42.1 27.8 34.5 40.3 25 60.5 [21], 65.1 [22]

BEOID [6] 20.9 34.4 37.5 15.2 19.1 19.6 38.7 36.0 37.4 34.8 39.6 45.0 75 -

tions so we annotated BEOID using free annotations1, allowing annotators to
split video sequences into object-interaction segments in addition to choosing
the verb. We recruited 20 native English speakers. These annotators were given
a free textbox to label each segment with the verb that best described the seen
interaction in their opinion. Once a verb has been chosen, the annotators were
given the set of potential meanings extracted from WordNet for the chosen verb.
Again, they were asked to select the meaning that, in their opinion, best suited
the segment. Multiple annotators (8-10) were asked to label each task to inten-
tionally introduce variability in the choice of verbs and start-end times of object
interaction segments.

Motion and Appearance Features: We test two state-of-the-art feature de-
scriptors to represent both the motion and the appearance of the videos. These
are the Improved Dense Trajectories (IDT) [38] and Overfeat Convolutional Neu-
ral Networks pre-trained for ImageNet classes (CNN) [32]. For CNN features,
we take every 5th frame from 30fps video, starting always from the first frame,
and rescale to 320x240 pixels.

Encodings: We test two encodings, using Bag of Words (BoW) [5] and Fisher
Vectors (FV) [31] with Euclidean distance. For IDT, when creating the BoW and
FV representations, we use a 25% random sample from every video to model the
Gaussians for efficiency. We vary the number of Gaussians (γfv) and the size of
the codebook (γbow) in reported results.

Classification: In all results, leave-one-person-out cross validation has been
used. Namely, when testing a video containing one person performing an action,
all other videos captured from the same person are excluded from the training
set. For SVM results, as the tested datasets contain an imbalance in the distribu-
tion of instances per class, we weight the classes by the term w(c) = 1/prior(c)λ

where λ ∈ [0, 1] is the exponent that best fits the distribution of segments per
verb for a given dataset (ref supplementary material).

Results on annotated verbs: Table 1 compares the three datasets for ev-
ery 〈features, encoding, classifier〉 combination. The following conclusions can
be made: (i) for all datasets, motion features (IDT) outperform appearance fea-
tures (CNN) when classifying verbs without considering the object used. (ii)
for CMU and GTEA+, we produce comparable results to published results us-

1 Annotations can be found at: http://www.cs.bris.ac.uk/~damen/BEOID/
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Fig. 5. Results as γfv and γbow vary for CMU, GTEA+, BEOID. Results were shown
with k = 5, m = 240, z = 10, t = 10. Similar performance is seen for other parameters.

ing motion information on the same datasets. These are reported under ‘Other
Works’ but are not directly comparable as published works tend to report on
verb-noun classes. (iii) For the three datasets with varying number of verbs, as
the number of verbs increases (12→ 75) with an increase in semantic ambiguity,
SEMBED outperforms standard classifiers (SVM and K-NN). While the table
shows the best results for encoding, Fig. 5 reports comparative results as γ is
changed - γfv = 10 generally led to higher accuracies on all datasets, compared
to γbow = 256.

We test the sensitivity of SEMBED to its key parameters z and t and report
results in Fig. 6 showing the accuracy over various features for BEOID and
across the three datasets for IDT-BOW (Ref. supplementary material for all
combinations). As noted, z and t behave differently for the various appearance
and motion descriptors as well as for different encodings. Generally, SEMBED
is more sensitive to the choice of z than t. This is because the Markovian Walk
(MW) is unable to represent the probability distribution over labels unless the
starting positions are representative of the visual ambiguity. Figure 6 also shows
that MW isn’t too helpful for CMU (as t increases, accuracy decreases) because
it has visually distinctive verb classes. On all datasets, SEMBED is resilient to
changing m values; the results are comparable on 180 ≤ m ≤ 400.
Results on annotated verbs and meanings: As mentioned earlier, we
also annotate BEOID with verb-meaning ground-truth. This resulted in 108
〈word〉.v.〈s〉 annotations for the 1225 segments in the dataset. Note the increase
in the number of classes from 75 when using verbs only to 108 when using verb-
meaning ground-truth. This increase is due to two reasons - one helpful, another
problematic. For example, it is helpful when annotators choose between hold.v.1:
“keep in a certain state, position” and hold.v.2: “hold in one’s hand”. Annota-

Fig. 6. Evaluation of SEMBED sensitivity to z and t parameters with m = 240.
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Table 2. As synonymy (AS) and then hyponymy (AH) semantic relationships are in-
corporated, accuracy increases for all features on the BEOID dataset. γfv = 10, γbow =
256, m = 240, {AM,AS,AH}: zCNN={3,3,2}, tCNN={20,20,14}, zIDT ={6,10,13},
tIDT ={20,20,2}.

FEATURES CNN IDT
ENCODING FV BOW FV BOW

METHOD SVM K-NN SEMBED SVM K-NN SEMBED SVM K-NN SEMBED SVM K-NN SEMBED Classes

AM 13.2 24.6 26.2 12.1 7.8 11.7 25.9 28.5 32.2 26.1 31.6 38.2 108

AS 17.9 25.6 27.1 12.7 8.1 12.7 29.8 30.4 33.5 29.6 33.6 40.6 102

AH 18.1 25.0 26.9 12.2 7.4 16.3 36.2 33.1 34.5 29.1 35.2 41.9 84

Fig. 7. SVG for three semantic levels on BEOID (top). Example using AH (bottom),
SVM and K-NN produce incorrect results. The Markov walk of SEMBED allows the
video to be correctly classified.

tors would then use the first for when a button is pressed and the second for
when an object is grasped. However, frequently, WordNet meanings can appear
ambiguous resulting in problematic cases, especially in the context of egocentric
actions. An example of this is the action of turning a tap on so water would
flow. Annotators used turn.v.1: “change orientation or direction” and turn.v.4:
“cause to move around or rotate” interchangeably. In WordNet though, turn.v.1
and turn.v.4 are not semantically related, introducing unwanted ambiguity af-
fecting the ground-truth labels. While we accept that WordNet may not be the
best method to incorporate meaning, we report results as semantic links are
incorporated.

We test the three types of semantic relationships AX = {AM,AS,AH}. His-
tograms of all classes for the various semantic relationships are included in the
supplementary material. Table 2 shows that embedding consistently improved
performance as synsets and then hypernyms are grouped. Results also demon-
strate the advantages of introducing semantic links between videos. Additionally,
IDT continues to outperform CNN. Figure 7 shows one example of SEMBED in
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action when using meanings and AH semantic links2. It should be noted that
the best performance of SEMBED on meanings is inferior to using verbs only.
This is due to the difficulty in assigning meanings to verbs as previously noted.
Approaches to address meaning ambiguities are left for future work.

5 Conclusion and Future Directions

The paper proposes embedding an egocentric action video in a semantic-visual
graph to estimate the probability distribution over potentially ambiguous labels.
SEMBED profits from semantic knowledge to capture interchangeable labels for
the same action, along with similarities in visual descriptors.

While showing clear potential, outperforming classification approaches on a
challenging dataset, results merely evaluate the arg max label when compared
to ground-truth. Further analysis of the probability distribution will be targeted
next. Other approaches to identify semantically related object-interaction labels
from, for example, other lexical sources, overlapping annotations or object labels
will also be attempted. SEMBED’s ability to scale to other object interactions
and more discriminative visual descriptors will also be tested.
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