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Abstract—Automatic discovery of changes in a human’s routine
is one of the requirements for the future of smart home living,
and its contribution to the E-health of the community. In this
paper, a Bayesian modelling approach is used which models
routine change discovery as a pairwise model selection problem.
The method is evaluated on a collected office kitchen dataset
that captures snapshots of the routine of the same person over
multiple years (2014-2017). The results show that our method is
able to detect not only the presence of routine changes, but also
which activity patterns have been changed, fully automatically,
and in a fully unsupervised manner. Moreover, changes within the
same activity pattern can be discovered. Interestingly, discovered
changes demonstrate subtle variations that are missed by the
visual inspection of a human observer.

I. INTRODUCTION

Human routines contain useful information for understand-
ing people’s behaviour patterns. Routine, as a term, is used by
the general public to refer to the common, regular or standard
course of activity patterns. It is tightly linked to temporal
regularity. For example, routine morning coffee and evening
coffee both contain the same act of making coffee. However,
since they regularly happen at a different times of day, they
make two different routines.

Generally speaking, most people tend to follow their rou-
tines unless they are influenced by other factors. It is the
human nature for a person to stay in his/her comfort zone.
Once a person has stepped out of the comfort zone, it indicates
that something may have changed in his/her life. Primarily, if
we are able to discover the routine changes between routine
models of the same person, captured at independent durations
(e.g. this year vs next year), we can detect health-related
changes of prime importance to long-term monitoring. For
example, spending lengthened periods in front of the TV and
less on the dining table could be a sign of depression [1].

Routine changes can be obvious or subtle, based on their
potential for visual discovery. An obvious change is when the
change is visible and possible to identify by observations, and
the point at which the change takes place is rather explicit. This
type of routine change can either be caused by the change of
external environments or the person himself is actively willing
to change. On the other hand, a subtle change is significantly
harder to visually identify and in most cases, people do not
recognise when the change begins. Such type of change occurs
as natural behaviour shifts and usually requires significantly
longer-term recordings to identify. In this paper, we proposed

a method to discover the obvious routine changes regardless
of whether it is actively changed by will or passive change by
external factors. The proposed method is built on top of our
previously proposed unsupervised routine modelling approach
using Dynamic Bayesian Network(DBN) [2].

II. RELATED WORK

Pattern modelling allows us to understand the laws of the
world surrounding is. Discovering changes in learnt patterns
always remains an interesting research topic because we are
naturally attracted by difference, and change indicates extra
information that has not been captured before. The methods
used to discover change in visual patterns vary significantly
based on the different tasks people want to perform, e.g.
environmental changes in remotely-sensed data [3], image
change detection algorithms [4]. In these works, the aim is
to separate ‘unimportant’ changes from those that require
detection, primarily using some threshold over changes. More
advance methods include probabilistic mixture models [5],
minimum description length [6], predictive models (spatial and
temporal) [7], [8], shading models [9] as well as background
modelling [10]. All the change detection methods above focus
on detecting pixel-level changes, but incapable of detecting
changes in complex activities and routine patterns.

In action and activity recognition problems, change de-
tection is usually an extension of the proposed modelling
method. In supervised learning, the training dataset represents
the ‘normal’ or standard action/activity we are interested in.
The features are extracted for the best description of the
activity properties. Therefore, if part of the feature is abnormal
compared to the rest, the corresponding activities represented
by these features should be considered as changed or abnor-
mal [11]. [12] proposes a method to detect abnormal events in
group activities. An energy potential is calculated for detecting
abnormal events based on the group’s position and velocity
relative to its neighbours. As people move closer, the energy
increases slowly whereas the magnitude and direction of the
velocity remain unchanged. A bag of words representation and
SVM are used to detect abnormal activities. Similarly, [13]
introduces a Social Force model to detect abnormal behaviours
in crowd videos. A grid of particles is placed on top of the
image with the space-time average of optical flow. If the
particles are treated as individuals, the interaction force is
estimated and mapped onto image plane to calculate force



flow per pixel per frame. The abnormalities are localised in
the frame by locating the regions of high force flow.

The abnormal events and change detection methods de-
scribed above cannot be applied directly to discovering change
in routine patterns because the definition of change in routine
and the change in activities/events are fundamentally different.
In routine patterns, a change would not be considered unless
the change itself has become a new routine pattern. In other
words, rather than looking for abnormalities within a single
routine model, routine change discovery should be achieved by
identifying the difference between two or more routine models.
In the next section, we propose a method based on Bayesian
statistics to perform pairwise model comparisons.

III. METHOD

Before we propose a method for routine change discovery,
we must understand why and how routine changes. As the
person’s routine itself is a long-term activity pattern, the
changes in routine can take relatively long time to build up. For
example, if morning coffee is a routine of a person for months,
not drinking coffee one morning does not indicate the routine
has changed. That is simply a one-off out-of-routine activity. It
is considered as a routine change only if he continues to refrain
from drinking coffee in the morning for a period of time,
making ‘not drinking coffee’ a routine in itself, or replacing
it with a different beverage. Thus a routine change is a
replacement of one activity pattern in a routine by another,
which becomes in its own right a routine activity pattern.
Replacement here should be understood in its general term as
the activity might cease to exist, or might be newly introduced
in a routine. The precondition of routine change detection is
that the detected change is an eligible routine pattern. In other
words, it has to be part of the routine itself.

We build on our previous work of unsupervised routine
modelling [2], where a Dynamic Bayesian Network (DBN)
is able to model daily human routines using spatial, pose
and time-of-day information as sources of input. Our previous
work assessed variations of the independence assumptions
within the DBN model. Compared to other approaches where
a DBN is trained in an unsupervised way, we automatically
select the number of hidden states for fully unsupervised
discovery of a single person’s indoor routine. We emphasize
unsupervised learning as it is practically unrealistic to obtain
ground-truth labels for long term behaviours. Thus in the next
section, we assume that a Bayesian routine model can be
built using the method in [2] and focus on detecting changes
in human routine. Our routine detection method would be
applicable to other types of Bayesian routine models.

A. Bayesian Model Selection

In Bayesian model selection, an efficient approach is to
compute the posterior over the models.

p(M|D) =
Pr(D|M)Pr(M)∑
j=1..K

Pr(Mj , D)
(1)

where M is an abstract expression of the model, D is the
set of observations from the data, and K is the number
of models. From this, we can compute the MAP model
M̂ = argmaxMp(M|D). If we use uniform prior over
models where p(M) ∝ 1. Thus we just need to maximise
p(D|M) =

∫
p(D|θ)p(θ|M)dθ which is called the marginal

likelihood or the evidence for model M. One might think
that using p(D|M) to select models will always favour the
one with more parameters, eventually over-fitting. However, it
is not the case if we use marginal likelihood. This is called
the Bayesian Occam’s razor effect [14] which states that one
should pick the simplest model that adequately explains the
data. Another way to explain the Occam’s razor effect is that
the probabilities must sum to 1. Although complex models are
able to fit the data better, they need to spread their probability
mass thinly, hence will not obtain as large probability as a
simpler model, based on the conservation of probability mass
principle.

In the case of routine model detection, assume two
pre-trained models M1,M2, and two observed data
sets or recordings D1, D2. If both sets of recordings
have been used in training M1, it is expected that
the likelihood of the data is higher when tested us-
ing that model, namely Pr(D1|M1) ≥ Pr(D1|M2) and
Pr(D2|M1) ≥ Pr(D2|M2). While this is generally true for
any case, we now consider the case where D1 represents
an activity pattern that persists throughout both recordings
while D2 represents an activity pattern that is only frequent
in the first recording. One would expect that the drop in
likelihood will be noticeably less than that for the activity
pattern represented by the data D2.

Pr(D1|M2)

Pr(D1|M1)
� Pr(D2|M2)

Pr(D2|M1)
(2)

The notion of comparing ratios of likelihoods is referred to
as the Bayes factor (BF). If we assume we have uniform
priors on all the models, then the model selection is equivalent
to selecting the model with the highest marginal likelihood.
Let’s suppose we are considering only two models the null
hypothesis (M1), and the alternative hypothesis (M2). The
Bayes factor is defined as the ratio of marginal likelihoods,

BF1,0 ≡
p(D|M2)

p(D|M1)

p(M1)

p(M2)
(3)

With the uniform prior, p(M2)
p(M1)

= 1. If BF1,0 > 1, thenM2 is
favoured, otherwise M1 is preferred. However, when BF is
only slightly greater than 1, we are not confident to judge that
M1 better explains the data. [15] proposed a scale of evidence
indicating which model should be favoured based on the BF
value.

B. Proposed Method and Implementation

We propose to discover routine changes based on the theory
of Bayesian model selection. First, we would like to find out
whether we could detect any routine change between the two



time periods. Second, we would like to identify the particular
activity (or activities) that has undergone change.

Let us assume there are two routine models M1 and M2

which are built using different data captured at different
durations (weeks/months), namely D1 and D2. In general, we
assume that D1 should fitM1 the best, as the model is trained
using this data. To determine exact routine patterns that have
changed, we examine the BF value (Equation 3) on a per frame
basis instead of the overall trend. The log-likelihood value is
on a point estimate basis so that we can understand how well
each data point fits the model. In theory, if there is a drop in
log-likelihood on certain frames in M2, it may indicate that
the pattern in those frames has changed compared to M1.
We use this point estimate to discover which activity patterns
within M1 have changed comparing to M2.

If two Bayesian models M1,M2 share the same indepen-
dence assumptions, we additionally assume that they share
the same number of parameters forM1 andM2 to avoid any
marginalisation or normalisation concerns. Thus, the models
are built using exactly the same complexity but different
parameter values resulting from different training data.

We use the Bayes factor (BF) value on the point estimates
for model selection. For frames that produce significantly low
likelihoods when tested on the alternative model, we believe
that this is comparable to ‘decisive’ evidence mentioned
in [15], and we consider that as evidence of routine change in
those frames. However, these extremely low likelihood values,
in fact, result in a low likelihood of all subsequent frames in
the sequence due to the Markovian assumption.

Pr(D1|M2) = Pr(d1|M2)

T∏
t=2

Pr(dt|dt−1,M2) (4)

The first order Markov assumption states that the estimation of
the immediate past captures everything we need to know about
the entire history, expressed in Equation 4. This means that
when a single frame’s likelihood, in a sequence, approaches
zero, the following data points will also report an accumu-
lated MLE that approaches zero. This applies to frames that
could, independently, result in high MLE when tested solely.
Figure 1 (left) shows an example of the situation we described
above. Once a single frame reports a low likelihood, below the
fixed constant, the output continues to report failure cases for
the remainder of the sequence.

In order to circumvent the problem, and evaluate the likeli-
hood of fitness for longer sequences, instead of inputting the
entire sequence at once, we use a sliding window approach.
We choose a window length W with a jump interval L. By
doing this, we limit the failure cases within the window as
a new start point is introduced each time a new window is
taken as input. Among the overlapping windows, we select the
maximum likelihood value as the final result of that particular
frame. By selecting the maximum, we are allowing each frame
to fit the new model the best, using past or future frames as
part of the sliding window. It is worth mentioning that there is
a trade-off in using the sliding window approach. Each time a

Figure 1: Left: An example of sequence from office kitchen1
directly fitting into routine model M1(red) and M2(blue).
Right: An example of likelihood value of office kitchen1 fitting
routine model M1(red) and M2(blue) using sliding window
approach.

sequence of data is taken as input, the Bayesian model treats
the first data point as the start of the sequence, and has a
separate initial probability associated with it. Therefore, in
theory, the likelihood estimate will be different for the first data
point of each sliding window because they are not considered
as an initial point when the entire sequence is taken as input
directly. However, we compared estimations of the start point
of sliding window using both initial and transition probabilities
for W = 300, and found them to be only marginally different.
However, it can only be true for large enough W, as for shorter
sequences the initial probability will have a significant effect
on the estimation results.

Using the sliding window approach, we calculate the MLE,
Prs, of each frame:

Prs(dt|D,M2) = max
i=1:W

L

{Pr(dt−iL|M2)

dt∏
j=dt−iL+1

Pr(dj |dj−1,M2)}

(5)

We can then assess the BF for each frame, and report
on abnormalities resulting in significantly large BF values,
namely:

BFs(dt|D,M1,M2) =
Prs(dt|D,M2)

Prs(dt|D,M1)
(6)

C(dt,M1,M2) =

{
1 BFs(dt|D,M1,M2)� 0.01

0 otherwise
(7)

Thus a frame will only be considered as abnormal
C(dt|M1,M2) = 1 when its estimation fails for every sliding
window. All other cases are regarded as the effect of the
Markovian assumption. Figure 1 (right) shows an example of
a log-likelihood plot for discovering routine changes using the
sliding window approach. Compared to figure 1 (left), most
of the abnormal estimations caused by Markov assumption
are successfully removed. Red represent D1 fitting M1, blue
represent the same data fitting M2. The remaining glitches
imply that, as noted in Equation 7, the data fits M1 but does
not fit M2.

While this method enables us to find frames in the various
sequences that represent routine change, these do not directly
correspond to routine activity patterns. Thus, we need to
associate theses frames to the activity pattern. In this way, we
can find out which pattern has changed. To evaluate the change



in routine patterns, we calculate the percentage of frames of
each activity pattern with BFs << 0.01, as follow:

Rc(A
k
,M1,M2) =

1∑
tM1(At) = Ak

∑
t:M1(At)=Ak

C(dt,M1,M2)

(8)

where A is the symbol of a routine pattern; Ak is the kth

routine pattern inMi;Mi(At) is the prediction of the activity
at t using DBN model Mi, and = is the Boolean equality
operator. Note that the method uses the null hypothesis model
M1 for discovered patterns, as it is the model on which the
data was trained. A threshold could be introduced to judge
whether the discovered activity pattern has changed. A routine
pattern is believe to have changed if Rc(A

k,M1,M2) > αRc
.

IV. ROUTINE CHANGE DATASET

To our knowledge, no datasets are publicly available for
long-term routine modelling using visual input, let alone rou-
tine change discovery. In most published datasets, instructions
are given to the participants so that they perform activities in
some exact given orders such as [16] and [17]. These scripted
activities cannot exhibit realistic patterns of a person’s routine
or behaviour. When people are told to do something, their
mind will be more focused on following the exact order each
time. In this case, the dataset will be far from natural. A couple
of datasets do attempt non-scripted or long-term recording
of multiple activities are publicly available [18], [19]. The
TUM Kitchen Dataset [18] uses a multiple cameras system
in a simulated kitchen environment. Each recording consists
of a single person performing a single activity - ‘prepare the
dining table’, multiple times but recorded over a single day.
It is thus not usable for routine modelling. [19] uses a human
morning routine dataset [20] for activity analysis. However,
the work focuses on using motion capture data, and the visual
information using RGBD cameras is not publicly available.
The recently released EPIC-KITCHENS dataset [21], captured
using wearable cameras records non-scripted kitchen activities
for three consecutive days, however it is not long-term and thus
cannot be used for routine change discovery.

The self-recorded Bristol Routine Change Dataset - BRCD1

(Fig 2), captured in office kitchen, is viable for assessing
changes in routine. It contains three different recordings for
the same individual over several years, specifically years 2014,
2016 and 2017. The video sequences, recorded using a single
RGB-D sensor (PrimeSense) captured a single individual in
an office kitchen and each annual recording lasted for 6
consecutive working days. The camera is set at the entrance
of the kitchen, and the recording is manually started each time
the person enters the kitchen and is stopped when the subject
leaves. We have no control over when the subject enters the
kitchen as well as what the subject does. All activities are non-
scripted in order to obtain natural behaviour patterns. Over the
three years, we do not script any changes of pattern or ask the
subjects to perform anything differently. In addition, We do

1Bristol Routine Change Dataset, publicly available from:
http://people.cs.bris.ac.uk/∼damen/Routine/

Figure 2: Bristol Routine Change Dataset (BRCD)

Table I: Semantic activities for routine change dataset

Oct 2014 Jan 2016 May 2017
Prepare tea Get hot water Use microwave

Wash Wash Wash
Get hot water Put cup Get hot water
Get cold water Prepare tea Get cold water

Use fridge Use fridge Prepare tea
Put cup Throw tea bag Use fridge

Make porridge Make coffee
Use microwave

not remind the subject of her previous routines over the years,
and simply capture her normal office kitchen activities over
time. As the time gap between each recording is large, we
believe that interesting routine changes would be observed, as
the change in routine in real life is expected.

Table I shows the different ground-truth activity labels for
office kitchen 2014, 2016 and 2017. The labels are listed in
a descending order in terms of appearance frequency, in other
words, how many times an activity took place.

V. EVALUATIONS AND RESULTS

In this section, we demonstrate our result of routine change
discovery. In terms of understanding what actually happens
when a routine change occurs, semantic ground-truth is re-
quired, for which we report Rc(A

k
gt,M1,M2). We show the

results of routine change discovery among the routine models
for 2014, 2016 and 2017, namely M1, M2 and M3. Based
on the concept of marginal likelihood, all three models are
trained using the same parameters settings.

Figures 3 plots the log-likelihood value for the first record-
ing of the dataset. It shows that recording fits M1 the best as
it has the highest overall likelihood value despite the glitches
in M2 and M3. We can conclude that in terms of routine
similarity, both the M2 and M3 show significant differences
than M1 with lower log-likelihood estimates. However, M3

may be more similar to M1 as its MLE value is generally
higher than M2 for the majority of the time.

The percentage of change per pattern Rc (Equation 8)
is shown in table II. We set two heuristic thresholds to
represent the different levels of pattern change: αR1 = 25%
represents a moderate level of pattern change (in bold),
αR2

= 50% represents a major pattern change (in red). In



wash prepare tea use fridge get hot water
get cold water make porridge

Figure 3: Log-likelihood result of sequence 1 in the 2014
recording fitting routine model M1(red), M2(blue) and
M3(black).

Table II: The Evaluation of routine change discovery among
routine model M1, M2 and M3 with semantic ground-truth.

M1 → M2 → M3 →
M2 M3 M1 M3 M1 M2

Prepare tea 12.0% 13.1% 53.7% 5.8% 59.5% 8.2%
Wash 7.7% 1.0% 36.4% 0.1% 35.4% 17.1%
Get hot water 10.3% 6.8% 42.1% 18.9% 94.8% 21.5%
Get cold water 48.6% 32.0% 82.4% 11.3%
Use fridge 38.3% 80.5% 77.7% 47.6% 81.1% 15.0%
Put cup 0% 0% 58.6% 33.4%
Make porridge 28.3% 28.3%
Throw tea bag 57.8% 54.9%
Make coffee 81.6% 6.4%
Use Microwave 100% 100% 53.6% 8.8%

M1 → M2,M3, we see little pattern change for three of
the most frequent patterns: ‘prepare tea’, ‘wash’ and ‘get hot
water’. The percentage of change is not significant as they
are all below the threshold αR1

. A close to major change
has been identified for the activity pattern ‘get cold water’ in
M2. Theoretically speaking, the change rate should be 100%
because there is no such label in office kitchen 2016. The result
shows that the routine modelM2 is able to explain nearly half
of the frames labelled as ‘get cold water’ from office kitchen
2014. By inspecting all recordings in office kitchen 2016, we
conclude that some of the recordings in office kitchen 2016
may be similar to ‘get cold water’ due to the similarity in
spatial and pose features. In M3 the change rate for ‘get
cold water’ is 32.0%. More importantly, we detect one major
change (in red) for the routine pattern ‘use fridge’ in M1

when tested using M3. When inspecting Table I, we notice
that this pattern moves into the least frequent pattern in office
kitchen 2017. The subject indeed stops adding milk into her
tea in 2017, despite using it frequently in 2014 and 2016.

The table also shows pattern changes evaluation of office
kitchen 2016(M2) in M1,M3 as well as office kitchen

Figure 4: Visual comparison of the changes in activity pattern
‘get cold water’. Left: Example recordings from office kitchen
2014 that is identified as pattern change when testing with
M3. Right: Example recordings of pattern ‘get cold water’ in
office kitchen 2017. Green box: Visually identical by human
inspection. Red box: Visually different by human inspection.

2017(M3) in M1,M2. The pattern ‘throw tea bag’ shows
change in both models. All patterns in M3 are explained
by M2 showing no pattern changes in that model. However,
almost all patterns in bothM2 andM3 exhibit major changes
when tested using M1. We can conclude that M1 is a more
specific model compared to later pattern models.

Qualitatively, we inspect the pattern ‘get cold water’ in
M1 → M3 by examining the frames of the routine change
discovery (Fig 4). The example recordings from office kitchen
2014 that are identified as pattern changes are on the left.
On the right are example recordings of ‘get cold water’ from
office kitchen 2017. All images in the green box show they are
visually identical, images in red are visually different. Thus,
for all the recordings that are identified as a change in office
kitchen 2014, only part of them can be visually identified
as different. Note that we are comparing individual frame
similarities. Differences could also arise from the Markovian
assumption of ordering activities. This is harder to inspect.

Interestingly, the method is able to discover some minor
changes in routine patterns that may go unnoticed by a human
observer. A typical example we present here is related to
pattern ‘prepare tea’, which exists in all three routine models
across the years, is a frequent activity and has thus been
part of the three routine models. However, a minor change
takes place between recordings in the kitchen layout. In office
kitchen 2014, there is a small compost bin on the worktop.
The subject discards the used tea bag into the bin during her
‘prepare tea’ process. In the recordings of both office kitchen
2016 and 2017, the bin has been removed. The frames when
the tea bag is being thrown is picked up by the method as a
change in routine. Although the overall difference in prepare
tea, when compared to M2 and M3 is only 12% and 13.1%
respectively, such action difference within activities can still be
meaningful and worth discovering. Figure 5 top show frames
identified as change by our algorithm when comparing toM2

andM3. These show the person using the compost bin within



Figure 5: Top: Example frames of activity ‘prepare tea’ that is
recognised as change when compare toM2 andM3. Bottom:
Example frame of activity ‘prepare tea’ in office kitchen 2016
and 2017.

the activity pattern ‘prepare tea’. However, as the kitchen
layout changes in the latter years, the compost bin does not
exist anymore during the recording of office kitchen 2016 and
2017 (area circled in red - bottom).

One of the important characteristics of our dataset is
unscripted behaviours, which leads to performing the same
activity in different ways. The Bayesian statistical method is
able to find out the change of actions within the same activity.
It is proven to be useful in discovering routine changes and
somewhat powerful as it can discover the detail which a human
observer may ignore.

VI. CONCLUSION

In this paper, we aim to discover the long-term routine
changes in an unsupervised manner. Unlike changes in actions
and activities, routine change is a replacement of one activity
pattern in a routine by another, which becomes in its own
right a routine activity pattern. We propose a routine change
detection method using Bayesian statistics. We use the concept
of the Bayesian factor to convert the routine change discovery
problem into a model selection problem. Furthermore, we can
discover which activity pattern has been changed by looking
into the data fitness on a per frame basis. The method is tested
on a newly introduced dataset of routine for one individual
over multiple years, that exhibits natural changes in a person’s
routine. The results are evaluated using semantic ground-truth
and qualitatively. The evaluation shows that routine changes
have been successfully discovered at activity pattern level.
The minor changes with the same activity pattern can also
be discovered.
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