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Abstract—Routine can be defined as the frequent and regular
activity patterns over a specified timescale (e.g. daily/weekly
routine). In this work, we capture routine patterns for a single
person from long-term visual data using a Dynamic Bayesian
Network (DBN). Assuming a person always performs purposeful
activities at corresponding locations; spatial, pose and time-of-day
information are used as sources of input for routine modelling.
We assess variations of the independence assumptions within the
DBN model among selected features. Unlike traditional models
that are supervisedly trained, we automatically select the number
of hidden states for fully unsupervised discovery of a single
person’s indoor routine. We emphasize unsupervised learning as
it is practically unrealistic to obtain ground-truth labels for long
term behaviours.

The datasets used in this work are long term recordings of
non-scripted activities in their native environments, each lasting
for six days. The first captures the routine of three individuals in
an office kitchen; the second is recorded in a residential kitchen.
We evaluate the routine by comparing to ground-truth when
present, using exhaustive search to relate discovered patterns to
ground-truth ones. We also propose a graphical visualisation to
represent and qualitatively evaluate the discovered routine.

I. INTRODUCTION

Research for elderly care assistance in smart home en-
vironments has become a popular research topic in recent
years. For example, [1] gives an overall review of smart
home technology; and [2] explains the effectiveness of smart
home technology in social and health care support. However,
smart home automation is often hindered by the challenges
of analysing long term data and defining semantic labels for
daily activities. In this paper, we focus on modelling a person’s
routine as a concise and commonly understood representation
of the person’s behaviour. Routine is accepted by the general
public as the common, regular or standard course of activity
patterns. Our work aims to model a person’s routine by
analysing relatively long term data using a single RGB-D
camera in an indoor environment. Such modelling can facilitate
automatic healthcare for occupants by detecting changes and
out-of-routine activities.

Due to inter-personal differences and weak association to
semantic labels, routine modelling is difficult to achieve in a
supervised manner practically. While unsupervised determinis-
tic models of routine such as [3] have been proposed, they use
heuristic thresholds that make them difficult to generalise be-
yond the used datasets. In attempting to solve the problem, we
were inspired by research on activity recognition using prob-
abilistic graphical models. Although standard Hidden Markov
Model (HMM) is commonly used for activity recognition, it
is not sophisticated enough for activity pattern modelling. The

Hierarchical Hidden Markov model (HHMM) is proven to be
useful for supervised activity patterns modelling. Its graphical
model consists of a terminate state which requires labeled
information to determine when a certain activity stops. This in-
dicates supervised learning for the model. Thus we propose to
model the routine using a Dynamic Bayesian Network (DBN).
Our DBN avoids using heuristic thresholds and incorporates
routine-independent priors to improve performance.

Importantly, we emphasise the relationship between activ-
ity patterns and time - in routine modelling we are not only
interested in what happens, but also in when does it happen.
For example, ‘morning coffee’ and ‘evening coffee’ share the
same activity pattern ‘making coffee’, but at different times
of day. Therefore, we employ the concept of time envelops to
encode durations relative to the start of the day where activities
are common or frequent. These are discovered from time of
day, and each frequent activity pattern is linked to at least one
envelope. The effectiveness of integrating time envelopes in
routine modelling is experimentally shown. Additionally, both
location and pose are used as a combined feature in activity
representation.

Related works are discussed in Sec. II. The method is
detailed in Sec. III including the selection of model and
parameters. The description of the dataset is in Sec. IV. Results
are shown in Sec. IV-A including a visualisation approach to
modelled routines in Sec. IV-B.

II. RELATED WORK

Research for elderly care assistance in smart home envi-
ronment has become a popular topic in recent years. Under-
standing the long term daily routines for people can better
help to take care of their wellbeing. Researchers in the field
of sensor networks frequently use smart meters and on-body
sensors to model daily routines in indoor environments. As
routine is closely related to different time periods of the day,
[4] proposed using a combination of motion (PIR) and door
sensors to discover the time intervals of certain events. [5]
proposed a method to extract spatio-temporal activity models
using a wireless sensor network inside a home. A device
triggered by the moving person is used to generate labelled
activities. Eventually, the daily routine model of a person is
built by finding the most probable, network-level, sequences
of nodes, sensing features, namely location, time and duration.
[6] also modelled activities in a smart home environment.
They introduce an unsupervised method to firstly discover the
frequent and repeatable sensor events, then cluster them into
groups of activities to recognise each activity class.



Although using visual data has the advantage of being
remote, able to observe how the action was performed and less
hardware driven, most research work in Computer Vision is
related to activity recognition and few have attempted routine
modelling. However, since modelling activities is part of the
routine modelling process, it is useful to discuss relevant
approaches to activity recognition. [7] proposed deterministic
models to discover activities using visual data with unstruc-
tured scenes. They used an unsupervised hierarchical activity
model which combines global and local motion features to
build activity events at different resolutions. [8] used Markov
Clustering Topic Model (MCTM) to address the problem
of unsupervised mining of multi-object spatio-temporal be-
haviours in crowded and complex public scenes. The model
has a two layer structure and is learned offline from unlabelled
training data with Gibbs sampling. But in our case, the time
envelopes can hardly been incorporated into the topic model.

A statistical model does not require any heuristic thresholds
and is able to explain results as well as calculate confi-
dence levels. [9] introduced multi-scale statistical model for
behaviour representation called an Abstract Hidden Markov
Model (AHMM). It is similar to a Hierarchical Hidden Markov
Model (HHMM) but the termination of high level behaviour
has a direct connection with the lower level behaviour in
a hierarchical model. The spatial and trajectory information
are used as their primary features. Brand et al [10] use cou-
pled HMMs for supervised complex activity recognition. Two
HMMs are coupled by introducing conditional dependencies
between their state variables. The result shows that coupled
HMM are typically good at modelling activities that do not
strictly obey the Markovian assumption, such as interacting
processes. It is far less sensitive to initial conditions than
conventional HMMs. HHMM was used in [11] for monitoring
behaviours. Rather than learning all parameters of HHMM at
once, they proposed a two-phase learning algorithm to learn
the parameters of primitive behaviour first. [10] coupled two
HMMs by introducing conditional dependencies between their
state variables for supervised complex activity recognition. The
results show that coupled HMMs are capable of modelling
activities that do not strictly obey the Markovian assumption,
such as interacting processes. [12] developed a Dynamic Multi-
Linked Hidden Markov Model (DML-HMM) to discover
temporal and causal correlations among discrete events for
behaviour interpretation. Their results show that DML-HMM
has better performance in modelling activities in a noisy and
cluttered scene compared to other DBN models such as Multi-
Observation HMM and Coupled HMM. [13] proposed a novel
on-line forward-backward relevance algorithm on top of an off-
line Multi-Observation HMM to model the outdoor activities
on surveillance footage. All the works above are achieved in
a supervised manner. The number of states for each hidden
node is determined manually by using the knowledge of the
dataset.

The terminology routine has a finer granularity than that of
activities, as each routine should contain one or more frequent
reoccurring activities in different time periods. [3] provided
a clear definition of routine. In their proposed method, the
frequent transitions in spatial and pose features are used
to represent activity patterns. They are discovered using a
combination of top-down and bottom-up hierarchical method
to find frequent activity patterns. However, [3] uses a number

of heuristic thresholds which makes it difficult to generalise.
Our work focuses on modelling routine patterns using an
unsupervised probabilistic approach. To tackle the problem,
we use a general Dynamic Bayesian Network (DBN). DBNs
capture temporal causality and allow modelling dependencies
within each time step. To generalise to any routine, we do not
make assumptions about interacting processes.

Our work focuses on modelling routine patterns in an
indoor environment using an unsupervised general Dynamic
Bayesian Network (DBN) model. The contributions are pre-
sented as: (i) Our DBN is trained using unlabelled data and
the number of hidden states for each node within the DBN
is determined automatically. (iii) Time envelopes are included
based on the inseparable connection between time and activi-
ties in routines. (iii) We systematically assess the independence
assumptions in the DBN model, (iv) We test on datasets with
non-scripted behaviours in their natural environments to model
routine for a single person, and (V) A graphical visualization
is proposed to qualitatively analyse and communicate routines
without ground-truth.

III. METHOD

A Dynamic Bayesian Network (DBN) is a probabilistic
model that represents a set of random variables and their
dependencies over adjacent time steps, with two types of
nodes: hidden and observed. Each node is associated with a
probabilistic function that takes the variables of parent nodes
as input, and models the probability distribution function for
the child node. In addition, it is natural that the person will
interact with certain objects to perform activity patterns in an
indoor environment. Thus, the frequent visited locations are
considered as ’hot spots’. Different human poses at different
’hot spot’ and time are used to represent indoor routines.
Therefore, we consider three observed nodes at each time
step: 3D location of the person in the environment, 𝑂𝐿

𝑡 , the
body pose 𝑂𝐻

𝑡 and the corresponding time of day 𝑂𝐸
𝑡 . Each

observed node is associated with a hidden node that attempts
to model discrete frequent locations 𝐿𝑡, poses 𝐻𝑡 and time
envelopes 𝐸𝑡 respectively. The notion of time envelopes is
inspired by routine modelling in sensor networks [4], where
it refers to the loose time period that always includes the
routine event. Here we model these time envelopes as latent
variables (i.e hidden nodes) that are discovered from time-of-
day information using clustering.

Figure 1 shows three DBNs with different independent
assumptions, with Figure 1(A) shows our proposed model.
This is based on the assumption that the spatial, pose and time
features are only dependent given an activity. Thus, there are
no dependencies among the first layer hidden nodes. In (B),
we encode dependencies in the first layer, where we assume
that given the time of day, the person is more likely to visit
certain locations, which may lead to performing certain poses.
In (C), we investigate the need for incorporating time-of-day
in the model, by excluding its observed and hidden nodes. The
proposed DBN (A) and its variations (B), (C) will be evaluated
in Sec IV-A.

To model the routine using the proposed DBN in Fig-
ure 1(A), for example, we need to sequentially learn four
aspects of the model:



(A) (B) (C)

Fig. 1. Three DBN models: (A) Proposed Model; (B) Variation 1: Dependencies in first layer; (C) Variation 2: Without Time Envelope.

1) The conditional probabilities between the observed
and hidden nodes is estimated using a Gaussian Mix-
ture Model, with the number of Gaussians assumed to
be equal to the number of states in the hidden node;
namely 𝑃 (𝑂𝐻

𝑡 ∣𝐻𝑡), 𝑃 (𝑂𝐿
𝑡 ∣𝐿𝑡), and 𝑃 (𝑂𝐸

𝑡 ∣𝐸𝑡).

2) The conditional probabilities between hidden nodes
within the same time step; namely 𝑃 (𝐿𝑡∣𝐴𝑡),
𝑃 (𝐻𝑡∣𝐴𝑡), and 𝑃 (𝐸𝑡∣𝐴𝑡).

3) The conditional probabilities between consecutive
time steps; namely 𝑃 (𝐴𝑡+1∣𝐴𝑡), 𝑃 (𝐿𝑡+1∣𝐿𝑡, 𝐴𝑡+1),
𝑃 (𝐻𝑡+1∣𝐻𝑡, 𝐴𝑡+1), 𝑃 (𝐸𝑡+1∣𝐸𝑡, 𝐴𝑡+1).

4) Prior probability of activities 𝐼(𝐴𝑡) which we assume
to be uniform.

Before the graphical model can be trained, we must decide
on the number of states for each hidden node. For the first
layer of hidden nodes [𝐸𝑡,𝐿𝑡,𝐻𝑡] we use K-mean clustering
to group data points as locations of interest, pose clusters and
time envelopes. We use the Elbow Test [14] to estimate the
optimal number of clusters, and thus the number of states,
avoiding heuristic thresholds.

𝑅(𝑘) =
( 𝑘∑

𝑖=1

𝑙𝑖∑

𝑗=1

∣(𝑌𝑖𝑗 − 𝑌 𝑖)∣
)
/
( 𝑘∑

𝑖=1

𝑘∑

𝑗,𝑖 ∕=𝑗

∣(𝑌𝑖 − 𝑌 𝑗)∣
)

(1)

In equation 1, 𝑘 is the number of clusters, 𝑙𝑖 is the total
number of points in cluster 1 ≤ 𝑖 ≤ 𝑘, and 𝑌 represents the
data points. For each 𝑘, 𝑅(𝑘) calculates the sum of intra cluster
distances over the sum of inter cluster distances. The optimal
number of clusters is then determined where 𝑅 converges. The
condition of the optimum value of 𝑘 is shown equation 3,

𝑔(𝑘) = 𝑅(𝑘 + 1)−𝑅(𝑘) (2)

𝑘 = min 𝑘 𝑤ℎ𝑒𝑟𝑒 ∣𝑔(𝑘)∣ − ∣𝑔(𝑘 + 1)∣ ≥ 0

𝑎𝑛𝑑 𝑔(𝑘 + 1) ≥ 0 (3)

The number of states for the second layer of hidden nodes,
that is of the Activity node 𝐴𝑡, which we refer to as 𝑁 , is
determined by the likelihood value of the model. Once the
optimum numbers of states 𝑘𝐿, 𝑘𝐻 and 𝑘𝐸 are determined
by the ‘Elbow Test’, we train the DBN across a certain range
of 𝑁 values. During the EM optimisation, the log-likelihood
value is calculated for each model. As the value indicates how
well the system has fitted the data, it can be used to choose
the optimum value of 𝑁 for each dataset.

We use Murphy’s Bayesian Network toolbox [15] for
model implementation. Since our proposed model is a dynamic
model with full observations, we use the junction tree inference
engine together with Expectation Maximisation (EM) for in-
ferencing and parameter tuning. During training, the transition
matrices are estimated. We randomly initialised these parame-
ters and apply EM on top of the forward-backward inference.
Theoretically, the DBN should converge to an optimal result.
However, it often falls into a local optimum due to the large
number of parameters to tune. One solution is to use simulated
annealing for approximating the global optimum. The draw-
back is the lengthened computation time. Instead, we introduce
dataset-independent priors to the transition matrices based on
the assumption that the state is more likely to remain the same
during transitions between time 𝑡 and 𝑡+ 1. For example, for
transition matrix 𝑃 (𝐴𝑡+1∣𝐴𝑡), we give a high probability along
the diagonal and significantly smaller probability 𝜖 elsewhere.
This prior is understandably closer to the optimal solution
than a random initialisation. The assumption only works on
the transition matrices connecting hidden nodes between 𝑡 and
𝑡 + 1. The remaining conditional probabilities are randomly
initialised.

For all datasets (Sec. IV), the OpenNI library is used to
extract the 3D location, as well as silhouettes using background
subtraction [16]. The spatial observation node 𝑂𝐿

𝑡 represents
the 3D coordinate of the center of body. The pose observation
node 𝑂𝐻

𝑡 represents silhouettes scaled to 100×60 then reduced
in dimension using Principal Component Analysis (PCA) to
the first 80 components. Despite recording using an RGB-D
sensor, although the quality of some of the estimated poses
from non-frontal viewpoints is poor and cannot be reliably
used, the example is shown in Fig 2; we managed to obtain



Fig. 2. Top: office kitchen recordings. Bottom Left: The RGB and depth
image of the residential kitchen. Bottom: Right: Example recorded silhouette
images of residential kitchen.

clean silhouettes using our own customised background sub-
traction technique(result shown in sec IV-B). Finally, the time-
of-day observation node 𝑂𝐸

𝑡 is the time stamp in milliseconds
relative to the start of the day. This could be changed should
a different scale of routine be considered (e.g. weekly routine,
monthly routine).

IV. DATASETS AND RESULTS

Collecting visual data for routine modelling is a chal-
lenging task. Unlike action and activity recognition, datasets
that are viable for routine modelling need to exhibit three
characteristics. First, the recorded activities need to appear
frequently to be considered as routines. Second, the dataset
should be a long-term recording. By long-term we do not refer
to the length of each individual recorded sequence, but to the
range of time that the dataset covers. Activities can only be
considered as routines if they occur frequently in period of
days, weeks or even months. Therefore, those datasets that
only focus on action or activity instances cannot be used
for routine modelling. Finally, the recording should be non-
scripted - the participant is free to act according to his/her
own behavioural habits. Up to our knowledge, no publicly
available long-term dataset with visual or depth sensors are
available for routine analysis. For example, the TUM Kitchen
Dataset [17] is used for kitchen activity analysis, but is actually
a simulated lab environment. The recording is not long-term
as their research focus is on analysing multiple individuals
performing the same task. The morning dataset from [18] and
Watch-n-Patch dataset [19] both contain no repetitive activities
per person, and it is mostly scripted, which do not meet the
requirement for routine discovery.

We thus present two datasets for routine modelling, cap-
tured in kitchens as activities in the kitchen tend to be goal
oriented. The two datasets are from office and residential
kitchens respectively. The datasets are summarised in table I,
and the details are described next. Both dataset will be public
available in the future.

Office Kitchen Dataset: The office kitchen dataset contains
four sets of recordings, from one viewpoint, shown in figure 2.
Each set captures all kitchen activities of one individual over
a period of 6 days using a single RGB-D sensor. We refer to
each visit to the kitchen as a ‘sequence’. The dataset captures
three individuals, one recorded twice with the recordings being
fifteen months apart. All activities performed are non-scripted
in order to obtain a natural behavior pattern. In this dataset,
the skeleton data, RGB and depth images are available to

Fig. 3. Office Kitchen 1 routine patterns on time line of three working days.

use. Figure 3 shows an example of the ground-truth patterns
from three days captured in office kitchen 1. Each timeline
represents a single day. As seen from the figure, kitchen activ-
ities take place during the morning and afternoon frequently,
and less frequently in the early evening. Even within the
morning routine, the starting time varied between 9:49A.M.
and 10:23A.M, which highlights the need for encoding time
envelopes rather than exact times. The sub-activities within the
same time envelope are similar, but in no way identical.

Residential Kitchen Dataset: The participant in this dataset
lived in a sensor-equipped house for one week. The dataset
only captures the participant’s morning activities (6am -
12pm). This represents the most realistic dataset on routine in
the vision community to date. Data is recorded using an RGB-
D sensor in the kitchen. However, while this dataset presents
huge opportunities, a practical obstacle is that the raw data
captured only silhouettes and 3D bounding box information
due to privacy concerns. Unlike office kitchen recordings, the
average length of the sequence is significantly longer and
the variance of recording length is also higher. For example,
cooking a proper meal at home may take more than half an
hour whereas making a cup of tea only takes several minutes.
Figure 2 shows the layout of the residential kitchen in both
RGB and depth, as well as sample recordings.

Note that while ground-truth labels could be provided for
the Office Kitchen dataset by watching the videos, this is not
possible for the Residential Kitchen recording. We address this
in Sec. IV-B.

A. Experiments and Results

We first report results on the Office Kitchen dataset for
which we have ground-truth labels. However, in unsupervised
modelling, quantitative evaluation is challenging, even when
ground-truth is available. Figure 4 shows a common problem,
where the ground-truth consists of four semantic labels for
a recorded sequence. The discovered activity patterns from
the DBN do not have semantic labels associated with them,
as they are automatically discovered. They thus are not ex-
pected to match the ground-truth labels perfectly. We use an
exhaustive search method to map the discovered patterns to
the corresponding ground-truth labels to calculate accuracy
for evaluation purposes. We match each ground truth label to
the modelled routine pattern that has the highest overlapping
frames. This one-to-one match could result in discarding some
frames as false positive. After this assignment is achieved,
discovered patterns are labeled from which the accuracy can
be calculated as the percentage of frames with a correct match
to ground-truth.

Due to random initialisation, the accuracy might not be ex-
actly the same for every optimisation iteration. We thus report



TABLE I. INFORMATION SUMMARY OF DATASETS AND RECORDED SEQUENCES; PID: PARTICIPANT ID, #SEQ.: NUMBER OF SEQUENCES RECORDED,
𝐿𝑚𝑎𝑥 : MAX LENGTH, (S): IN SECONDS

Dataset & Recordings MM/YYYY PID Gender #Seq. 𝐿𝑚𝑎𝑥(s) 𝐿𝑚𝑖𝑛(s) 𝐿𝑚𝑒𝑎𝑛(s) 𝐿𝑠𝑑(s)

D1

Office Kitchen 1 10/2014 P1 F 16 176 39 98 42
Office Kitchen 2 01/2016 17 152 37 90 33
Office Kitchen 3 02/2016 P2 M 15 100 28 69 23
Office Kitchen 4 02/2016 P3 M 15 122 23 56 26

D2 Residential Kitchen 04/2016 P4 M 19 2520 65 502 596

Fig. 4. An example of unsupervised results interpretation. Using exhaustive search for evaluation.

Fig. 5. Top: Accuracy for number of activities 𝑁 ; Gray shading indicates
chosen values by the proposed unsupervised model. Bottom: Accuracy for
DBN models.

the accuracy from the average of 15 iterations. In figure 5, we
show the accuracy as the number of discovered activities 𝑁
changes. The optimal 𝑁 resulting from automatically selecting
the number of states for all nodes in the DBN is shaded in gray
for each case. For recording 4, the optimal 𝑁 matches the
highest accuracy. The biggest drop in accuracy is in Office
Kitchen 2, for which we show an analysis of the optimal
number of state combination of 𝐾𝐿 and 𝐾𝐻 in table II. In
this case, the chosen number of states by the Elbow Test

TABLE II. ACCURACY FOR NUMBER OF STATES FOR OFFICE KITCHEN

2

𝑘𝐿/𝑘𝐻 4 5 6 7 8
3 0.64 0.62 0.66 0.59 0.62
4 0.64 0.62 0.66 0.56 0.57
5 0.62 0.80 0.67 0.65 0.57
6 0.56 0.65 0.61 0.63 0.64
7 0.69 0.80 0.60 0.51 0.60
8 0.55 0.63 0.71 0.74 0.58

TABLE III. AUTOMATIC SELECTION OF OPTIMAL NUMBER OF STATE

USING UNSUPERVISED APPROACH. 𝑁 IS THE NUMBER OF ACTIVITY

PATTERN, 𝑘𝐿 IS THE NUMBER OF LOCATION ‘HOT SPOT’, 𝑘𝐻 IS THE

NUMBER OF POSES, 𝑘𝐸 IS THE NUMBER OF TIME ENVELOPE.

𝑁 𝑘𝐿 𝑘𝐻 𝑘𝐸
Office Kitchen 1 7 6 5 3
Office Kitchen 2 7 5 6 3
Office Kitchen 3 8 4 7 3
Office Kitchen 4 7 5 5 3

Residential Kitchen 4 4 5 2

clearly affects the accuracy. The complete results on optimal
number of states for each hidden node is shown in table III.
Although the model performance of auto parameter selection
is not the highest when compared with ground-truth, they fits
DBN model the best using the current data. Since the ground-
truth is manually labelled and is not been used in learning the
DBN model, the labels may not be the best representation of
the data. Thus, there is a slight decrease in performance when
we compare our result with the manual ground-truth.

Figure 5 (bottom) also displays the result comparison
between the three proposed DBNs (Sec III). It shows that by
using the independent proposed model with time information
- DBN(A), our routine modelling achieves higher accuracy
than the two variations on all recordings. This is because we
believe that pose/location/time will remain independent unless
they are related by a regular activity pattern. When pairwise
dependencies are incorporated in DBN(B), confusion may be
added due to the a force connection between similar poses and
location hot spots. In fact (B) may perform better if a person



Fig. 6. An example graphical visualization with associated correlations.
Descriptively, this sample routine shows the person around 9:20 going first to
the cupboard before approaching the coffee machine

performs distinct poses at distinct locations and times - which
in practice does not apply as it requires larger and more spread
out indoor space. The result also highlights the importance of
modelling time envelopes for routine discovery, as DBN(A)
outperforms DBN(C) in every case. The biggest difference is
shown for office kitchen 2, where the accuracy drops from
83% to 66% when time envelopes are excluded, which is a
20.1% drop in performance. Note the missing value for Office
Kitchen 1 on DBN(C) as more than one transition matrix
become singular during optimisation and stops the model from
converging.

B. Graphical Visualisation

As no ground truth is available for the Residential Kitchen
dataset, and similarly for any long-term routine data, we
introduce a graphical visualisation that demonstrates all the
elements of the discovered routine. The visualisation cap-
tures temporal associations between frequent activity patterns,
frequent locations, frequent poses and their corresponding
temporal envelopes. We believe that such visualisation could
be appropriate for qualitatively evaluating our unsupervised
routine modelling.

Figure 6 shows an example of the proposed graphical
visualisation. It consists of four main parts: the activity pattern
graph (middle), associated locations, poses and a ‘clock’ to
display the time envelope. In the activity pattern graph, the
width of the arrow indicates the degree of temporal correlation
between different patterns, while the arrow indicates which
pattern precedes the other temporally. The location of the
person is plotted as a Gaussian distribution. The darker colour,
highlighted by orange circles, indicates the person is more
likely to appear at certain locations with the given activity
pattern. In the sample visualization in Figure 6, the location
graph shows a very strong correlation of activity pattern (left)
with the worktop in the kitchen, as well as high correlation
between pattern (right) and both the sink and the coffee ma-
chine. Each activity pattern is also associated with certain pose
clusters - visualised using the cluster mean of the silhouettes.
The transparency is related to the probability of the pose
occurring. The ‘clock’ visualization shows the mean time of
the associated time envelopes, with size indicating probability.

Figure 7 is the graphical visualisation for the residential
kitchen. It illustrates time envelopes of 8:20 and 10:20. It
also shows a strong correlation (shaded in red) among three
different patterns at 𝑁 = 4. A similar correlation is found
at 𝑁 = 6 with some remodelling in spatial and pose patterns.
The area shaded in purple shows a clear split in spatial patterns
between 𝑁 = 6 and 𝑁 = 7 with few changes in pose.

The blue area shows that two activity patterns share the same
spatial and pose combination, with the only difference being
the probability associated with each location. Visually, one
could conclude that the routine is sufficiently presented at
𝑁 = 4, which is in fact the selected optimal 𝑁 . At 𝑁 = 4,
the discovered routine for this dataset are: use microwave
to prepare meal(top), wash dishes(right), boil water(left) and
make tea(bottom). Be aware that since we don’t have ground-
truth, the above semantic routine for this dataset is obtained by
intuitively understanding of the silhouette video, which is less
accurate than the conclusions we can make about the Office
Kitchen dataset.

Figure 8 shows routine patterns for Office Kitchen 2.
Although manual ground-truth is available, we present it in a
graphical form for consistency and comparison purposes. The
figure shows three discovered time envelopes: 10:20, 14:10
and 16:55. When 𝑁 = 6, we see a strong correlation in the
red shaded area which transit from bottom left to top right. It
shows the temporal links between the worktop, fridge, boiler
and sink with the corresponding pose transitions. Compared
with ground-truth, the discovered routine is: get milk from
fridge,wash cup and make beverages in the time envelope
around 10:20 and 14:10. While we observe similar patterns
and correlations at 𝑁 = 7, both the spatial and pose patterns
in the red shaded areas have been remodelled into two different
patterns. Also comparing 𝑁 = 4 to 𝑁 = 5, the green shaded
area shows a clear split in spatial, pose and time. It leads to
a separation of different poses resulting in a better modelling
of activity patterns. This hopefully demonstrates that by using
different number of 𝑁 , the activity patterns are explained at
different levels of granularity.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a Dynamic Bayesian Network
(DBN) for modelling daily routines of a single person in indoor
environments. It uses spatial and pose features and incorporates
the concept of time envelopes. Two additional variations of
the model are evaluated based on the different dependency
assumptions among the features. All models are learned in an
unsupervised manner and dataset-independent initialisations.
Results show that the proposed DBN which incorporates the
knowledge of the time envelope achieves the highest accu-
racy. Finally, a graphical visualisation presents the discovered
routine patterns and their corresponding correlations when
ground-truth is not available.

Our future work will focus on discovering routine changes.
The Office Kitchen dataset will be used as recording 1 and
recording 2 are of the same person albeit 15 months apart.
Visible routine changes can be observed in this dataset and
could be automatically discovered. Further recordings could
also be obtained.

Data Statement & Ack: Office Dataset and
annotations are available on the project’s webpage:
https://www.cs.bris.ac.uk/∼damen/Routine/. Residential
dataset cannot be released for privacy reasons and is part of
the SPHERE project. Y Xu has been partially supported by
EPSRC-IRC project SPHERE (EP/KO31910/1). Work also
supported by EPSRC LOCATE (EP/N033779/1).



Fig. 7. Graphical visualization for residential dataset. It presents the correlations among location, pose and time for different number of activity pattern 𝑁 .
Shaded areas highlight related, typically split, patterns as 𝑁 changes. The shaded optimal 𝑁 in this case is 𝑁 = 4.

Fig. 8. Graphical visualization for Office Kitchen 2. 𝑁 = 6 gives the highest accuracy when compared to ground-truth data. 𝑁 = 7 is the optimal pattern
number selected automatically by our method.
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