
Recurrent Assistance: Cross-Dataset Training of LSTMs on Kitchen Tasks

Toby Perrett Dima Damen
Department of Computer Science, University of Bristol, UK

<firstname.lastname@bristol.ac.uk>

Abstract

In this paper, we investigate whether it is possible to
leverage information from multiple datasets when perform-
ing frame-based action recognition, which is an essential
component of real-time activity monitoring systems. In par-
ticular, we investigate whether the training of an LSTM
can benefit from pre-training or co-training on multiple
datasets of related tasks when it uses non-transferred vi-
sual CNN features. A number of label mappings and multi-
dataset training techniques are proposed and tested on three
challenging kitchen activity datasets - Breakfast, 50 Sal-
ads and MPII Cooking 2. We show that transferring, by
pre-training on similar datasets using label concatenation,
delivers improved frame-based classification accuracy and
faster training convergence than random initialisation.

1. Introduction
Real-time monitoring of activities is essential for assis-

tive technologies, to provide guidance, prompt reminders,
raise alarms as well as provide input to higher-level rou-
tine observation methods. In this paper we focus on frame-
based action recognition - the task of classifying the action
taking place in each individual frame, which is a fundamen-
tal building block of real-time activity monitoring. Frame-
based recognition poses significantly larger challenges than
the more widely studied video-level action classification,
which tends to be performed offline on temporally trimmed
videos.

One of the main problems with the use of assistive visual
monitoring systems in the wild is the requirement of a large
amount of training data for each new environment, as mod-
els trained in one location tend not to generalise well to oth-
ers. If improvements could be found, by leveraging existing
data to circumvent or at least speed the training process in
new environments, deployment of such systems could be-
come faster and easier, enabling more widespread use and
providing robust results.

Carreira and Zisserman [1] recently showed that there is
an advantage to pre-training on large, related datasets for

video-level action classification. However, no such inves-
tigation exists in the literature with regards to frame-based
action classification. Some works have looked at Recurrent
Neural Netowrks (RNNs) learning from multiple sources,
but only with regards to synthetic and non-vision data [19].

In this paper we address these two issues by exploring
the transfer performance of Long Short Term Memory re-
current networks (LSTMs) for frame-based action classi-
fication on three related datasets - Breakfast [10], 50 Sal-
ads [20] and MPII Cooking 2 [14].

2. Background
Two of the most commonly used benchmarks for ac-

tion recognition are the HMDB51 [12] and UCF101 [17]
datasets. These, along with more recent ones, such as Ac-
tivityNet [6] and Kinetics [1], are all based around video
segment classification. That is, videos are pre-split by a hu-
man into segments containing only a single action (either
by annotating action boundaries or by uploading a video
tagged “long jump” or “fix bicycle”), and these segments
are wholly classified. One of the best performing meth-
ods for this type of task is Temporal Segment Networks
(TSN) [23], which extracts features from frames spaced
evenly throughout the video clip. Features are extracted
from two-stream CNNs based on the Inception architec-
ture [21]. These features are classified and a consensus
from all examined frames is used as the overall classifica-
tion for the clip. Other well-known methods based on this
two-stream RGB and optical flow approach which look at
segments as a whole include [3], [9] and [16], amongst oth-
ers. Alternatively, 3DCNNs have also been tested on video-
level classification, though typically with slightly lower ac-
curacies compared to two-stream CNNs [22] [8].

Whilst these methods are suitable for applications such
as video tagging, they are not designed for on-the-fly frame-
based action recognition, where each new video frame is
classified as soon as it is first seen. This is because the
architectures do include the concept of temporal memory
- each clip is only examined in full and all frames are re-
quired for a consensus. In order to classify frames individ-
ually when they are first seen, it is helpful to include some

1



form of memory into a classification model. For example,
this would be required if trying to determine the difference
between “open fridge” and “close fridge,” as a single frame
would be ambiguous and thus insufficient in making the dis-
tinction.

One of the most widely-used methods for this, within
a deep learning framework, is a Recurrent Neural Net-
work (RNN), with the most common implementation being
made up of LSTM. These have proven popular for video
classification [13], where the last output of the LSTM is
used as the classification label, but as labels are available at
every frame they are well suited to frame-based classifica-
tion.

Many works have looked at the transfer performance
with regards to CNN training , and it is common prac-
tice for networks pre-trained on ImageNet [2] to be used
as the starting point for many classification and recognition
applications. Carreira and Zisserman [1] recently showed
that improved results can be delivered on the HMDB51 and
UCF101 datasets by pre-training on the large-scale Kinet-
ics dataset. The classification model is first trained on the
Kinetics dataset, followed by fine-tuning on the HMDB51
and UCF101 datasets separately, depending on which one
is being evaluated.

There are, interestingly, fewer works considering trans-
fer learning on RNNs. Spieckermann introduced Factored
Tensor RNNs [19][18] to perform joint and transferred
learning, but these were not tested on visual data. Rather,
gas turbine emission time series were used, as well as a fric-
tionless cart-pole simulation. No such investigation exists
in the literature with regards to frame-based action classifi-
cation.

Datasets with per-frame labels include Charades [15],
Thumos 15 [7], Breakfast [10], 50 Salads [20], and MPII
Cooking 2 [14]. As we will be investigating learning from
multiple sources, it makes sense to concentrate on those
which record similar tasks, but from different domains,
so we use the Breakfast, 50 Salads and MPII cooking 2
datasets. Examples are given in Figure 1, and these datasets
are covered in more detail in Section 3.

In this work, we wish to tackle the issue of transfer learn-
ing for frame-based action classification using RNNs. Our
main contribution is an investigation into the transfer per-
formance of an LSTM network fed by a deep learning ar-
chitecture on three related datasets (Breakfast, 50 Salads,
MPII Cooking 2). We show that consistent improvement in
overall classification accuracy and training convergence can
be obtained by pre-training the LSTM on related tasks.

3. Datasets
For this work, we will use three datasets, which are all

based around activities in the kitchen. They thus share some
action-level labels (e.g. add salt, pour oil) , but are captured

in different rooms, with different viewpoints, participants
and recipes. Intuitively there should be some form of infor-
mation common to all tasks, which can be leveraged during
a shared training process.

Table 1 gives a brief overview. For all datasets in this pa-
per, 4 train/test splits are used, with 75% training and 25%
testing data. All splits use leave-person-out, i.e. no partici-
pant appears in both training and testing sets from the same
split.

3.1. Breakfast

The Breakfast dataset consists of 433 sequences per-
formed by 52 participants, containing 3078 actions across
50 classes (including a background class) in 18 different
kitchens. Multiple viewpoints are provided for each scene,
and RGB video is provided in a 320x240 resolution at
15 FPS. All the actions are delivered as part of 10 break-
fast routines such as “cooking scrambled eggs” and “mak-
ing tea,” which are performed in a freeform manner. For this
work, we have chosen to use the lowest level action labels.
Examples include “pour cereal” and “smear butter.”

3.2. 50 Salads

The 50 Salads dataset consists of 25 participants each
preparing 2 salads. We again use the lowest level action
classes, of which there are 52 (including the background
class which we have added). This gives a dataset size of
2967 labelled actions. RGB-D and accelerometer (attached
to cooking implements) data is provided, but for this work
just the RGB footage is used. This is 640x480 and recorded
at 30 FPS. Example actions include “cut tomato prep,” “cut
tomato core,” and “cut tomato post.” These pre- and post-
labels are not found in the other two datasets.

3.3. MPII Cooking 2

The MPII Cooking 2 dataset contains 275 sequences
containing 14105 actions across 88 classes (including the
background class which we have added). 30 participants
were told to cook certain dishes, but were not given pre-
cise instructions so this dataset can be considered freeform.
Footage is from one kitchen, and example actions are
“shake,” “spread,” and “apply plaster.” 30 FPS RGB video
is provided at a resolution of 1624x1224.

To give an indication of how difficult action classifica-
tion in these types of environments is, we first report the
results obtained when using TSN on pre-segmented action
clips from the Breakfast dataset, shown in Table 2. This
suggests that, if the decision is made to proceed with an
inception-based method, it is best to just consider the RGB
stream. An advantage of just using the RGB stream (in ad-
dition to improved results) is that optical flow is expensive
to compute. This is problematic for real-time frame-based



(a) Breakfast [10] (b) 50 Salads [20] (c) MPII Cooking 2 [14]

Figure 1: Example frames from the three datasets used in this work.

Dataset Frames (x1000) Sequences Actions Classes Participants Environments Viewpoints
Breakfast [10] 3042 433 3078 50 52 18 3-5
50 Salads [20] 578 50 2967 52 25 1 1
MPII Cooking 2 [14] 2871 273 14105 88 30 1 1

Table 1: Overview of the three datasets used througout this paper. The ‘Actions’ column shows the number of times an action
is annotated, and the ‘Classes’ column shows the number of distinct action classes.

Split RGB stream Flow stream Combined
0 18.76% 7.22% 11.45%
1 11.88% 7.14% 8.90%
2 19.87% 7.65% 13.76%
3 23.85% 7.26% 15.18%
Avg. 18.59% 7.32% 12.32%

Table 2: TSN results when using RGB, optical flow, and two
fused streams on the Breakfast dataset. Results are reported
on 25 video segments, the default parameter in TSN

classification and, as such, it tends to be computed a priori
offline.

We note that TSN reports segment classification accu-
racies of 68.5% and 94.0% on HMDB51 and UCF101 re-
spectively, which is much higher than the 18.59% average
obtained by the (best performing) RGB stream here. This
could be due to clips of kitchen actions (e.g. pour milk and
pour coffee) being more visually similar than actions used
in HMDB51 and UCF101 (e.g. cartwheel and ride horse).
In such cases, context is less informative in deciding the
class label.

4. Method

This paper attempts to explore the potential of using re-
lated datasets (i.e. those recorded of similar tasks) to de-
crease the amount of training required for a new dataset. We

argue that as training effort and/or time decreases, the po-
tential of deploying assistive systems in new environments
would increase.

Previous works have successfully shown that feature ex-
traction in itself is dataset-specific, and requires fine-tuning
for every new location. We will investigate whether the pro-
cess of training an RNN, which sits above a CNN-based fea-
ture extraction stage and usually takes the last CNN layer
as its input, can benefit from co-learning or pre-learning
from related datasets. This argument stems from the fact
that RNNs do not directly map observations to classifica-
tion outputs, which are indeed viewpoint and location spe-
cific, but focus on the temporal dependencies of classifi-
cation labels. Mathematically-speaking, assume xt is the
per-frame observation, and ot is the per-frame classifica-
tion result, typically encoded as a one-hot vector. A gen-
eral RNN learns not only the contribution of the per-frame
observations but also the contribution of previous frame(s)
decisions,

ot = φ(Wxt + Uot−1) (1)

In 1, W shows the observation contributions while U is
the output-to-output contribution over time. When train-
ing from related tasks, we argue that the memory model φ
could benefit from pre-training on related tasks as opposed
to random initialisations.

We first present how features can be extracted to pro-
duce dataset-specific single frame decisions (i.e. xt). We
then explain how these are fed into LSTMs - our choice
of RNN architecture, and how cross-dataset training can be



Split DT FV + SVM CNN + Softmax CNN + SVM
0 19.05% 22.00% 24.77%
1 18.90% 16.19% 17.01%
2 22.15% 19.90% 21.72%
3 20.53% 24.18% 25.38%
Avg. 20.16% 20.57% 22.22%

Table 3: Feature comparison on the Breakfast dataset. CNN
+ Sofmax refers to the RGB stream from the Inception net-
work with the result taken as the most likely class. CNN +
SVM refers to the same network, but with the softmax layer
fed to an SVM for classification.

achieved.

4.1. Feature extraction

We first compare hand-crafted Fisher-Vector encoded
Dense-Trajectories (provided by the authors of [11]) against
the RGB inception architecture, as used in the spatial stream
of TSN. For classification of the Fisher-Vectors, an RBF
SVM is used, which is trained on 50000 frames (using
more frames during training gives no improvement). A grid
search with 5-fold cross-validation is used to find the best
cost and gamma. Results are also reported with the RBF
SVM applied to the softmax layer of the RGB inception
stream (CNN+SVM), as well as just taking the most likely
class from the softmax layer (CNN + Softmax).

Results are shown for all four splits in Table 3. On av-
erage, the output from the softmax layer of the RGB in-
ception network outperforms the SVM trained on Dense-
Trajectory Fisher-Vectors. A further improvement is found
when using an SVM trained on the the output of the soft-
max layer. This confirms that the Inception architecture is
well suited to this problem, and that there appears to be ad-
ditional information within the softmax features for a recur-
rent network, in our case an LSTM, to learn from.

We carried out this preliminary study on the breakfast
dataset as it is the most challenging dataset with multiple
locations and viewpoints (see Table 1).

4.2. LSTM Architecture

To introduce an element of history into our model, we
choose to use an LSTM. Greff et al. [5] evaluated 8 dif-
ferent LSTM cell types on speech recognition, handwriting
recognition and polyphonic music modelling. They found
that there was no significant improvement over the widely-
used vanilla LSTM cell [4], which is what we will use in
this work. The vanilla LSTM consists of input, output and
forget gates, block input and output, and output activation
function and peephole connections. An example of the ef-
fect an LSTM can have on frame-based CNN classifications

is shown in Figure 2.
The softmax layer from the RGB Inception network is

used as a feature, so the input dimensionality is the number
of classes n in each dataset. Given a fixed amount of mem-
ory, there is a tradeoff between history size (i.e. how many
times the network is unrolled) and depth (i.e. how many
LSTM cells are stacked). We found that for these datasets
it is preferable to prioritise a larger history over depth. The
most likely explanation is that the CNN which feeds into the
LSTM has already done most of the abstraction from visual
data to labels. The problem being solved by the LSTM is
therefore more straightforward, namely the temporal com-
ponent. This suggests that long-term knowledge of which
action has been performed earlier in the sequence is more
valuable than better short-term insight.

To learn from long sequences, the training process in-
volves randomly selecting a subsequence with a length
equal to the LSTM history from a random video, and com-
bining a set number of these into a batch. The LSTM loss
function takes into account the loss from every frame, and is
calculated as the average log loss across the sequence. This
contrasts with snippet classification using LSTMs, where
only the loss from the last frame is considered.

Following preliminary evaluations, all trained LSTMs
in this paper share the following parameters; history: 300
frames, depth: 1, hidden layer size: 128, batch size: 128.

4.3. Joint and Transferred LSTM Training

A number of variations on the training process are tri-
alled, in order to investigate whether any improvement can
be found by training on multiple datasets. Traditionally,
RNNs, including LSTMs, are trained from random initial-
isations. In this paper, we use three methods for cross-
dataset learning including the baseline. These are:

1. None: Random initialisations for LSTM parameters

2. Joint: Training multiple datasets jointly

3. Transfer: Training on one dataset (referred to as the
source dataset) then fine-tuning on the second (referred
to as the target dataset).

To achieve Joint and Transfer learning, one first needs
to tackle the issue of the difference in number and identity
of classes in each dataset. Recall that for each LSTM, the
dimensionality of the input vector xt and the output vector
ot equals that of the number of classes n in the dataset. For
one LSTM to be trained using multiple datasets, this dimen-
sionality difference needs to be bridged.

We propose four different forms of label assignment.
Given one dataset L with l labels and another dataset M
with m labels (l < m), the first option is to map the labels
from L onto the labels of M , starting at label 0, which, by



stir_dough
crack_egg crack_egg crack_egg crack_egg crack_egg crack_eggGround Truth:
crack_egg crack_egg crack_egg crack_egg stir_doughCNN:
crack_egg crack_egg crack_egg crack_egg crack_egg crack_eggCNN + LSTM:

crack_egg

crack_egg
crack_egg

Figure 2: Example of a CNN and the same CNN with an LSTM on the Breakfast dataset (images are 5 frames apart). The
CNN mistakes two “crack egg” frames as “stir dough” (the hand positions and pan seem to be in similar locations to a bowl
when it is being stirred). The LSTM appears to have learned that stirring dough is unlikely to occur after cracking an egg,
and can correct for this.

convention, is the “background” class. The dimensional-
ity of the LSTM used in training is thus equal to the larger
number of labels, i.e. m. This is called merged label as-
signment. By enforcing a link between one of the largest
common classes, it is hoped that the LSTM can learn shared
information in a better way. More explicitly, given a label si
in any of the two datasets prior to label assignment, its as-
signed m dimensional form ci post label-assignment is

ci =


si if s ∈M
si if s ∈ L and i < l

0, otherwise.
(2)

Random label assignment is similar to merged label as-
signment, but the mapping of L to the first l entries of M is
done randomly, but still in a one-to-one manner. Here, the
i’th element of the newly assigned m dimensional label c is

ci =


si if s ∈M
srand(i) if s ∈ L and i < l

0, otherwise,
(3)

where 0 ≤ rand(i) < l is unique for each i, i.e. is chosen
without replacement. Multiple random label assignments
are trialled as a form of data augmentation. In this paper,
we using single (1) and multiple (3) random mappings per
source dataset. The idea behind providing multiple random
assignments is that the LSTM will learn long-term trends
which are independent of labels.

Concatenated label assignment involves creating an
l +m dimensional label, with labels from L corresponding
to the first l entries, and labels fromM corresponding to the
next m entries. For each dataset, the remaining labels are
zero-filled for both the input and the output vectors. Here,
the i’th element of the assigned l +m dimensional label c
is

ci =


si if s ∈ L and i < l

si+l if s ∈M and i ≥ l
0, otherwise.

(4)

5. Experiments
We first present results from each split of all three

datasets as a baseline for comparisons. The experimental
pipeline is as follows:

1. Train Inception RGB stream on training portion of
split.

2. Extract softmax layer responses for all images in the
dataset.

3. Train LSTM using extracted softmax features of the
training split.

4. Test LSTM using extracted softmax features of the test
split.

Results for this process on all splits of all datasets are given
in Table 4, which shows that the CNN+LSTM outperforms
the CNN on its own in every case, as well as outperform-
ing all features tested in Table 3. It also appears to make a
greater contribution on the Breakfast and 50 Salads datasets
compared to the MPII Cooking 2 dataset. This could be due
to it containing more temporal label information to learn
from - the Breakfast dataset contains a similar number of
frames, but has fewer label sequences as these are dupli-
cated in multiple viewpoints, and the 50 Salads dataset is
roughly 5 times smaller.

5.1. Joint and Transferred Training Results

For Joint learning, batches made up of a ratio of 5:3 in
favour of the dataset being evaluated gave the most promis-
ing results.

Table 5 shows the effect of different labels and
Joint/Transfer learning on the worst performing split of the
Breakfast dataset (split 1), jointly trained with or transferred
from the best performing split from the 50 Salads dataset
(also split 1). A baseline is given of the LSTM just trained
on Breakfast split 1, as shown earlier in Table 4.

Table 5 suggests that multiple random label assignments
can have a negative effect on classification accuracy, and



Dataset Split CNN CNN + LSTM
Breakfast 0 22.00% 30.78%
Breakfast 1 16.19% 19.53%
Breakfast 2 19.90% 28.75%
Breakfast 3 24.18% 32.26%
50 Salads 0 35.00% 37.86%
50 Salads 1 40.41% 48.77%
50 Salads 2 34.43% 38.22%
50 Salads 3 40.07% 45.84%
MPII 0 31.73% 36.84%
MPII 1 35.97% 39.47%
MPII 2 39.56% 40.74%
MPII 3 37.13% 39.71%

Table 4: CNN frame-based classification performance com-
pared against an LSTM with the CNN softmax layer as in-
put.

Training Label Arrangement Accuracy
N/A N/A 19.53%
Joint Merged 20.78%
Joint Concat 20.44%
Joint Random 20.98%?

Joint Multiple Random 19.02%?

Transfer Merged 20.80%
Transfer Concat 21.37%
Transfer Random 20.06%?

Transfer Multiple Random 19.69%?

Table 5: Evaluation of training methodologies and label ar-
rangements on split 1 of the Breakfast dataset. Joint and
transfer training is performed with split 1 of the 50 Salads
dataset. A ? indicates that an average is taken over three
runs of random label maps. The first line is a benchmark
with no transferred or joint learning.

that concatenated and merged label assignments can outper-
form random initialisation for transferred and joint learning
on this split. However, the most promising result is provided
by transferred training with concatenated labels.

We next carry out comprehensive evaluation of this pro-
posal (i.e. Transfer training with concatenated labels) on
the rest of the Breakfast dataset as well as all splits from
the 50 Salads and MPII Cooking 2 datasets. Table 6 shows
results on all splits of the Breakfast dataset. A small av-
erage improvement can be found when transferring from
either the 50 Salads (0.68%) or MPII Cooking 2 (1.08%)
datasets. Table 7 shows small performance improvements
can be found when transferring from the Breakfast (1.30%)
and MPII Cooking 2 (0.54%) datasets to the 50 Salads
dataset. Table 8 completes this round of experiments, and

Transfer Dataset
Split No Transfer 50 Salads 1 MPII 2
0 30.78% 32.23% 34.01%
1 19.53% 21.37% 20.56%
2 28.75% 28.51% 28.77%
3 32.26% 31.94% 32.29%
Avg. 27.83% 28.51% 28.91%

Table 6: Transfer performance of 50 Salads split 1 and MPII
Cooking 2 split 2 with label concatenation on the Breakfast
dataset.

Transfer Dataset
Split No Transfer Breakfast 1 MPII 2
0 37.86% 38.45% 39.89%
1 48.77% 49.07% 49.31%
2 38.22% 40.61% 38.11%
3 45.84% 47.75% 45.55%
Avg. 42.67% 43.97% 43.22%

Table 7: Transfer performance of Breakfast split 1 and MPII
Cooking 2 split 2 with label concatenation on the 50 Salads
dataset.

Transfer Dataset
Split No Transfer Breakfast 1 50 Salads 1
0 36.84% 36.97% 36.34%
1 39.47% 39.70% 40.80%
2 40.74% 41.33% 41.64%
3 39.71% 39.85% 39.12%
Avg. 39.19% 39.24% 39.48%

Table 8: Transfer performance of Breakfast split 1 and 50
Salads split 1 with label concatenation on the MPII Cook-
ing 2 dataset.

shows smaller improvements when transferring from the
Breakfast (0.05%) and 50 Salads (0.29%) datasets to the
MPII Cooking 2 dataset.

5.2. Convergence

To investigate the effect of Transfer learning on LSTM
convergence, one split is chosen from each of the three
datasets. The fine-tuning process is performed pairwise on
each combination of these three. First, training is run for
300,000 iterations on the source dataset with a learning rate
of 0.001, then the network is fine tuned on the target dataset
with the same learning rate, with a full test evaluation per-
formed every 2n iterations for n = 9, ..., 14. A comparison
is given against a network trained on each target dataset, but



Figure 3: Convergence on split 1 of the Breakfast dataset
when pre-trained with other datasets and random initial
weights.

Figure 4: Convergence on split 1 of the 50 Salads dataset
when pre-trained with other datasets and random initial
weights.

with random initial weights.
The results for the convergence experiment are shown in

Table 9. These are visualised in Figure 3 for the Breakfast
dataset, Figure 4 for the 50 Salads dataset, and Figure 5 for
the MPII Cooking 2 dataset. The Figures show how the ran-
dom initial assignment baseline is outperformed by the best-
performing transferred dataset. For all datasets, the LSTMs
pre-trained on other datasets converge quicker, as shown in
Table 9. Further, given a set number of iterations, the trans-
ferred training process gives better results than starting with
random initial weights in the vast majority of cases. There
is only one point (out of six where a full test is run) in each
training sequence where one of the pre-trained LSTMs does
not outperform random initialisation.

5.3. Discussion

The first point to note is that Transfer learning is more
successful than Joint training when considering only

Figure 5: Convergence on split 2 of the MPII Cooking 2
dataset when pre-trained with other datasets and random
initial weights.

LSTMs with these datasets. Transferring using label con-
catenation gives improved results over random initialisation
in the experiments run on all three datasets, which suggests
that shared temporal information is indeed being exploited.
Another result we observe is that transferring using label
concatenation causes faster training convergence than
random initialisation, and that for a set number of itera-
tions, classification performance is very likely to be higher.

Another interesting conclusion is that the MPII Cooking
2 dataset seems to transfer its temporal information to other
datasets better - both in terms of overall performance and
faster convergence, as well as benefiting from transferred
information itself, although to a lesser extent. There are a
number of possible reasons for this. One could be that it
is a largest dataset containing more label sequences. Or it
could be that its labelled classes are more general - exam-
ples include “clean,”, “close,” “chop” and “pour.” Labels
from the 50 Salads dataset comparatively tend to be more
specific - “add oil post,” “cut lettuce prep,” “mix salad core.”
This point would be worthy of further investigation in future
works.

6. Conclusion

In this work we have investigated whether frame-based
action classification using deep neural networks and LSTMs
can benefit from joint or transferred learning when only
considering the LSTM component. We used three re-
lated datasets - Breakfast, 50 Salads and MPII Cooking 2,
and discovered that small, reliable, improvements over the
widely-used random initialisation could be found by pre-
training LSTMs on datasets not being examined, and that
label concatenation is the best way of handling this process.
We also examined the convergence of LSTMs when pre-
trained, and found that, as expected, they converged faster
than random initial weights.



Iterations
Source Target 512 1024 2048 4096 8192 16384
N/A Breakfast 1 6.42% 10.20% 12.66% 14.85% 17.36% 18.08%
MPII 2 Breakfast 1 5.37% 13.02% 16.04% 16.33% 18.00% 18.85%
Salad 1 Breakfast 1 6.26% 10.94% 13.58% 14.91% 17.77% 18.13%
N/A Salad 1 6.61% 31.97% 35.29% 41.66% 44.24% 43.97%
MPII 2 Salad 1 15.72% 36.22% 39.10% 40.04% 44.73% 46.86%
Breakfast 1 Salad 1 9.05% 32.92% 31.36% 41.39% 44.18% 46.82%
N/A MPII 2 27.08% 28.59% 35.50% 37.30% 38.45% 39.36%
Breakfast 1 MPII 2 24.58% 32.73% 37.07% 38.96% 38.90% 41.10%
Salad 1 MPII 2 16.54% 36.57% 38.52% 37.71% 40.19% 39.63%

Table 9: Frame classification accuracy during the training process when using LSTM networks pre-trained on similar datasets.
No source dataset indicates that random initial weights were used to initialise the LSTM.

This work presents a number of possible avenues for fu-
ture research. These include attempting to understand why
some datasets transfer better than others for training recur-
rent neural networks and whether other classification archi-
tectures are more well suited to, and can benefit more from,
Transfer or Joint learning.

Data Statement & Ack: Public datasets were used in
this work; no new data were created as part of this study.
Supported by EPSRC LOCATE (EP/N033779/1).

References
[1] J. Carreira and A. Zisserman. Quo Vadis, Action Recogni-

tion? A New Model and the Kinetics Dataset. In Computer
Vision and Pattern Recognition, 2017. 1, 2

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A large-scale Hierarchical Image Database. In
Computer Vision and Pattern Recognition, 2009. 2

[3] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional
Two-Stream Network Fusion for Video Action Recognition.
In Computer Vision and Pattern Recognition, 2016. 1

[4] A. Graves and J. Schmidhubera. Framewise Phoneme Classi-
fication with Bidirectional LSTM and Other Neural Network
Architectures. Neural Networks, 18(5):602–610, 2005. 4

[5] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink,
and J. Schmidhuber. LSTM: A Search Space Odyssey. IEEE
Transactions on Neural Networks and Learning Systems, PP,
2017. 4

[6] F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles.
ActivityNet: A Large-Scale Video Benchmark for Human
Activity Understanding. In Computer Vision and Pattern
Recognition, 2015. 1

[7] H. Idrees, A. R. Zamir, Y. G. Jiang, A. Gorban, I. Laptev,
R. Sukthankar, and M. Shah. The THUMOS challenge on
action recognition for videos in the wild. Computer Vision
and Image Understanding, 155:1–23, 2017. 2

[8] S. Ji, W. Xu, M. Yang, and K. Yu. 3D Convolutional
Neural Networks for Human Action Recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence,
35(1):221–231, 2013. 1

[9] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei. Large-Scale Video Classification with Con-
volutional Neural Networks. In Computer Vision and Pattern
Recognition, 2014. 1

[10] H. Kuehne, A. Arslan, and T. Serre. The Language of
Actions: Recovering the Syntax and Semantics of Goal-
Directed Human Activities. Computer Vision and Pattern
Recognition, 2014. 1, 2, 3

[11] H. Kuehne, J. Gall, and T. Serre. An end-to-end generative
framework for video segmentation and recognition. In Win-
ter Conference on Applications of Computer Vision, 2016.
4

[12] H. Kuehne, T. Serre, H. Jhuang, E. Garrote, T. Poggio, and
T. Serre. HMDB: A large video database for human mo-
tion recognition. In International Conference on Computer
Vision, 2011. 1

[13] J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan,
O. Vinyals, R. Monga, and G. Toderici. Beyond Short Snip-
pets: Deep Networks for Video Classification. In Computer
Vision and Pattern Recognition, 2015. 2

[14] M. Rohrbach, S. Amin, M. Andriluka, and B. Schiele. A
Database for Fine Grained Activity Detection of Cooking
Activities. Computer Vision and Pattern Recognition, 2012.
1, 2, 3

[15] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev,
and A. Gupta. Hollywood in Homes: Crowdsourcing Data
Collection for Activity Understanding. In European Confer-
ence on Computer Vision, 2016. 2

[16] K. Simonyan and A. Zisserman. Two-Stream Convolutional
Networks for Action Recognition in Videos. In Advances In
Neural Information Processing Systems, 2014. 1

[17] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A Dataset
of 101 Human Actions Classes From Videos in The Wild.
arXiv 1212.0402, 2012. 1

[18] S. Spieckermann and D. Siegmund. Exploiting Similarity in
System Identification. In European Symposium on Artificial
Neural Networks, 2014. 2



[19] S. Spieckermann, S. Udluft, and T. Runkler. Data-effiicient
temporal regression with multitask recurrent neural net-
works. In Advances In Neural Information Processing Sys-
tems Workshop on Transfer and Multi-Task Learning, 2014.
1, 2

[20] S. Stein and S. J. McKenna. Combining Embedded Ac-
celerometers with Computer Vision for Recognizing Food
Preparation Activities. In International Joint Conference on
Pervasive and Ubiquitous Computing, 2013. 1, 2, 3

[21] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the Inception Architecture for Computer Vision.
In Computer Vision and Pattern Recognition, 2016. 1

[22] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.
Learning Spatiotemporal Features with 3D Convolutional
Networks. In International Conference on Computer Vision,
2015. 1

[23] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and
L. Van Gool. Temporal Segment Networks: Towards Good
Practices for Deep Action Recognition. In European Con-
ference on Computer Vision, 2016. 1


