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Autonomous Virulence Adaptation Improves
Coevolutionary Optimization

John Cartlidge and Djamel Ait-Boudaoud

Abstract—A novel approach for the autonomous virulence
adaptation (AVA) of competing populations in a coevolutionary
optimization framework is presented. Previous work has demon-
strated that setting an appropriate virulence, v, of populations
accelerates coevolutionary optimization by avoiding detrimental
periods of disengagement. However, since the likelihood of disen-
gagement varies both between systems and over time, choosing
the ideal value of v is problematic. The AVA technique presented
here uses a machine learning approach to continuously tune v
as system engagement varies. In a simple, abstract domain, AVA
is shown to successfully adapt to the most productive values
of v. Further experiments, in more complex domains of sorting
networks and maze navigation, demonstrate AVA’s efficiency over
reduced virulence and the layered Pareto coevolutionary archive.

Index Terms—Autonomous virulence adaptation, coevolution,
disengagement, genetic algorithms, machine learning, maze nav-
igation, optimization methods, reduced virulence, sorting net-
works.

I. Introduction

UNDER THE traditional genetic algorithm (GA) frame-
work evolving solutions are evaluated using a static, pre-

determined, exogenous fitness function. By contrast, under the
coevolutionary genetic algorithm (CGA) framework solutions
are reciprocally evaluated against contemporaneous solutions
that are themselves evolving; individuals receive an evaluation
score based upon their relative performance and the genotype-
fitness mapping varies over time. Measuring fitness in such
a manner removes the necessity for operationally defining an
objective function capable of transforming genotype space into
fitness space in such a manner that evolution will progress. As
a result, CGAs offer particular advantage in problem domains
where an objective function is difficult to define with a priori
knowledge. For example, consider chess: it is much easier to
define the rules of interaction between strategies (the rules of
chess) than it is to define a function capable of objectively
evaluating each strategy (chess-playing ability).

CGAs come in three broad varieties: cooperative, compet-
itive, and symbiotic. Cooperative CGAs are often utilized in
domains that can be naturally decomposed into independent
sub-components. Individuals are assessed through a series
of collaborative groupings, forming complete solutions to a
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common goal [1], [2]. In contrast, competitive CGAs employ
an antagonistic framework: evaluated through competition,
individuals represent complete solutions that are gradually
refined [3]–[5]. Finally, symbiotic (or symbiogenetic) CGAs
enable increasingly complex individuals to evolve from sim-
ple sub-units via transmission of genetic material [6], [7].
Although species interactions are often mutualistic (benefit-
ing all), other forms of symbiotic relationships may form;
including parasitism (one benefits at the expense of the other),
amensalism (one is harmed while the other is unaffected),
and commensalism (one benefits without affecting the other)
[8], [9].

Competitive CGAs can be decomposed into systems that
contain one population engaged in self-play and systems
with multiple, reproductively isolated, populations. Single-
population systems are often used when the problem domain
is symmetric. Examples include the game of tag, where
contestants take turns to pursue and evade [4], backgammon
[10], and Texas hold’em poker [11]. In each case, the challenge
is identical whichever side a contestant plays. In contrast,
2-population systems are often favored when the problem
domain is asymmetric; for example, competitions between list-
sorting networks and unsorted lists [3], or pursuit and evasion
contests with fixed roles [12]. Such domains naturally fit the
2-population framework; populations can take different genetic
(and phenotypic) representations and evolve toward different
objectives.

In asymmetric contests, there is often one side of particular
interest. For example, in [3], evolving quality sorting networks
is the primary objective; not the lists they sort. Common
terminology describes the population we are interested in as
learners (networks learn to sort) and the opposing population
as teachers (the lists act as a teaching set for networks).
Alternatively, using the biologically inspired terminology of
parasitism, the primary objective population (networks) are
hosts; the competing population (lists) are parasites.

This paper focuses exclusively on multiple population com-
petitive CGAs, in particular 2-population systems.1 One of the
problems affecting these systems is disengagement: occurring
when one population easily outperforms the other [13]. We
present autonomous virulence adaptation (AVA), a novel tech-
nique designed to reduce the likelihood of disengagement, and
demonstrate its efficacy in two complex domains.

1Henceforth, the term CGA will be used to represent 2-population compet-
itive coevolutionary GA systems.
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This paper is organized as follows. Section II outlines com-
mon CGA pathologies and remedies, including disengagement
and the reduced virulence (RV) technique. Harnessing the
pertinent knowledge from this literature review, Section III
introduces AVA, a technique capable of adapting RV values
during run-time in response to variations in system asymmetry.
In Section IV, the contrived greater than (GT) domain is used
to determine robust parameter settings for AVA. Using these
settings, experiments on sorting networks (Section V) and
maze-navigating robots (Section VI) demonstrate the efficacy
and versatility of AVA; requiring less domain knowledge than
RV and lower computational cost than LAPCA, a standard
Pareto archiving technique. Section VII concludes with an
overall performance summary and comparison of AVA vs.
alternative techniques, LAPCA and RV.

II. Competitive Coevolutionary Dynamics: A

Review of the Major Pathologies and Remedies

CGAs suffer from several pathologies. To combat these, a
suite of techniques have been developed. In this section, we
give the common pathologies and remedies a cursory aperçu.
Coevolving populations are denoted by P1 and P2 throughout.

A. Pathologies

1) Overspecialization: It occurs when coevolving popula-
tions become “too focused.” By exploiting the idiosyncratic
weaknesses of opponents, individuals may evolve in an un-
expected (perhaps unwanted) direction; potentially leading to
brittle solutions that are unable to generalize [14], [15].

Overspecialization, or focusing, is associated with the tra-
ditional machine learning problem of over-fitting; occurring
when an algorithm adapts so well to a specific training set
that the learning model treats noisy idiosyncrasies in the data
as meaningful. In CGAs, overspecialization may be avoided
by maintaining diverse training and rule sets (P1 and P2).

2) Mediocre Stability: CGAs may stabilize at a sub-
optimal equilibrium [10]; analogous to convergence at a local
optimum in evolution. Interspecific collusion is often cited as
the cause of mediocre stability [16]. For example, consider
chess players taking alternate turns to play white. Players can
improve reproductive success by striving to win; or they can
throw every game they play black: if an opponent does the
same, collusion guarantees both 50% of victories. While the
first scenario leads to progress, the second results in mediocre
stability that can be difficult to escape.

Intraspecific collusion is also possible [17]. By diversifying
into separate niches, each focusing on a different subset of the
full problem, a population may approach a mediocre stability
of sub-standard, brittle individuals. However, while individuals
are themselves brittle, the population as a whole may contain
information necessary to produce generalist strategies. As [18]
discusses, when using (co)evolution for learning, information
from the whole population should be retained. Integrating
these strategies, however, is non-trivial.

Arising as a result of collusion between over-specialized
individuals, mediocre stability is related to the problem of
overspecialization [17].

3) Disengagement: Consider coevolution as a coupled
dynamical system with populations evolving over a dynamic
fitness landscape fluctuating in response to perturbations from
the other (see discussion of NKC landscapes in [19]). Then,
it is this interactive dynamic that drives the selection pressure
between populations, continually eroding any adaptive advan-
tage (the Red Queen Effect [20]). If the system decouples,
populations no longer perturb each other and any means of
relative fitness assessment is eradicated. The result is evolu-
tionary drift. In this context, disengagement is synonymous
with system decoupling and occurs when one population easily
outperforms the other.

Let xi be the competitive score of individual i in population
P and x̄ be the mean population score, then populations
disengage when

∑

i∈P

(xi − x̄)2 = 0. (1)

If variance in fitness scores is zero it becomes impossible
to discriminate between individuals according to ability; the
selection gradient disappears and the coevolving populations
begin to stagnate. The result is a stymied system that is left
to flounder aimlessly.

Disengagement has several idiosyncratic distinctions. When
P1 reaches optimality before P2, asymmetric disengagement
occurs: P1 mutants are selectively punished, while P2 has no
gradient. In [8], symbiotic mutualism becomes commensalism
once P1 finds a complete solution: P1 becomes a near-perfect
host while P2 drifts toward smaller parasite-like individuals.

Effective disengagement occurs when noise (due to stochas-
tic selection or evaluation) is greater than the true fitness
signal. Although real valued competitions (e.g., [5]) enable
a fitness gradient to remain when P1 outperforms P2, there
is a threshold under which performance differences are over-
whelmed by noise.

Finally, when populations disengage along a subset of (mul-
tiobjective) dimensions, dimensionwise disengagement occurs.
This can produce focusing; hence, “disengagement will gen-
erally lead to overspecialization” [21].

Although the term “disengagement” has entered the lit-
erature relatively recently [22], [23], the phenomenon has
previously been recognized. Coevolutionary engagement has
been described as: “maintaining a gradient for selection” (or,
conversely, disengagement as “loss of gradient”) [14], “coe-
volving an ideal training set” [24], “maintaining learnability”
[16], and “providing pedagogical stepping stones” [25].

4) Cycling: Several factors cause cycling. By assessing
individuals against contemporaneous opponents, the selection
pressure for retaining adaptations acquired for historical com-
petitors may be removed, allowing previous adaptations to be
lost. The resulting lack of momentum can lead to repeated cy-
cles of discovery, loss, and rediscovery [12], [25]. Intransitive
superiority relationships between competitors, where A > B,
B > C, and C > A can naturally lead to cycling [14],
[22]. Random walks through strategy space may also lead
to repetition, or cycling, though one that is aperiodic and
unpredictable in nature [26]. Repeated arms-races and crashes,
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such as those caused by disengagement, can trap a system in
repetitive cycles [27]. Finally, populations may overspecialize
to occupy a subspace which is optimal against contempo-
rary competitors, but brittle to attack from other regions of
space. Thus, the system may oscillate between low fitness
solutions, resulting in a form of system level mediocre stability
[16], [28].

In practice, it may be impossible to neatly disentangle CGA
pathologies into discrete subsets. Nevertheless, categorization
can aid in the development of a systematic methodology for
designing effective remedies. The reader should note, however,
that while effort has been made to make this category list
exhaustive, it is entirely possible that other pathologies may
exist.

B. Remedies

Techniques for combating CGA pathologies are summarized
here. This is not intended as an exhaustive compilation,
but rather an overview of the predominant methods and the
challenges they are designed to overcome.

1) Diversity Maintenance (DM): DM is a technique
primarily used to combat overspecialization. The literature
is littered with DM (or niching) techniques (for a review,
see [29]). Approaches include standard [30] and deterministic
[31] crowding (restrict competition to genetically similar in-
dividuals), spatial embedding (restrict competition by spatial
locality, first used in CGAs by [3]), and islands models (split
populations into multiple demes that only interact through
migration, originally [32]).

Fitness sharing (first proposed by [33], extended by [34]) is
perhaps the most ubiquitous DM technique. In CGAs, fitness
sharing comes in the forms of “competitive fitness sharing”
[25], “implicit sharing” [35], and “resource sharing” [24]. The
details of each are similar.

Resource sharing encourages niching; individuals are re-
warded for beating opponents that few others can. Opponents
are treated as a commodity or resource. Rather than gain
a fitness point for each victory (simple fitness), one fitness
point is shared among all competitors that beat a particular
individual. Thus, competitors are rewarded less for how many
opponents they beat and more for whom they beat.

2) Archiving: Used to encourage evolutionary momentum,
archiving techniques trace a direct lineage back to elitism
(originally [30]), where each generation’s best competitor is
preserved (first used in coevolution by [4] and [5]). Elitism was
extended to multiple generations, [36], before [25] introduced
the “Hall of Fame” (HoF), the first true coevolutionary archive.
Each generation, population elites are added to the HoF.
Individuals compete against a sample of competitors drawn
from both the contemporary opponent population and HoF.

Preserving an evolutionary memory, the HoF is designed to
stop cycling. Rapidly growing, however, the archive becomes
computationally expensive. For efficiency, one extension adds
only unbeatable individuals to the archive [37]. More recently,
an alternative technique was developed to combat disengage-
ment by storing individuals that outperform contemporaries
in a “test bank” for later use [38]. In this way, the level of

challenges is managed and genetic discoveries are efficiently
reused.

3) Pareto Coevolutionary Archive (PCA): An alternative
DM technique, PCAs preserve useful adaptations by explicitly
treating the performance against each opponent as a dimension
for optimization [6], [11]. Let a = (a1, . . . , an) denote the
scores of individual A against each of n ∈ n opponents
(objective dimensions) and b = (b1, . . . , bn) denote B’s scores
against the same n opponents; then A Pareto dominates B

on n if and only if A performs at least as well as B in all
dimensions and better than B in one

A
n� B ⇐⇒ ∀n ∈ n : an ≥ bn ∧

∃n ∈ n : an > bn.
(2)

Individuals compete against all others in a set of pairwise com-
petitions. Dominated individuals are destroyed, non-dominated
preserved.

PCAs have matured from the early “Pareto optimality”
algorithm [39] to the conservative DELPHI [21], the the-
oretically sound but impractical IPCA [40], and finally the
usable LAPCA, capable of reliable performance without over
sacrificing efficiency [41].

LAPCA uses a separate generator G(Pl, Pt) and archive
A(Al, At). G can take the form of any search process consist-
ing of two populations: “learners,” Pl, and “tests,” Pt . Each
generation, G, creates offspring which are submitted to A and
stored if useful. Learner l ∈ Pl is useful when compared
to the learner archive, Al, if non-dominated (2) and unique
(does not have identical outcomes) on the test archive, At . If
there is a current test t ∈ Pt that makes l non-dominated and
unique, then both l and t are added to Al and At , respectively.
To avoid Al and At bloating to an unmanageable size, once
useful offspring have been added, archives are updated subject
to the following process: 1) separate Al into N Pareto layers
such that all members of layer ni dominate members of layer
ni+1, then remove learners outside of the first N layers, and
2) preserve tests in At that distinguish learners (force a
different outcome for any two learners) within each layer, and
between contiguous layers, of Al. For details of this process,
refer to [41].

HoF and LAPCA were compared through the evolution
of neural network controllers of Pong players [42]. While
there was no significant difference in performance, LAPCA
maintained a smaller archive and so improved efficiency.

By maintaining an archive of non-dominated individuals,
PCAs ensure that potentially useful adaptations are not lost,
making it unlikely for the population to overspecialize along
one dimension. Further, with dominance hierarchies poten-
tially overcoming problems of instransitivity and the archive
maintaining evolutionary memory, LAPCA encourages mono-
tonic progress and reduces the possibility of cycling.

4) Simple Fitness Transformations (SFT): Several ap-
proaches using SFT have been proposed to alleviate dis-
engagement. SFT is considered here as simple non-linear
transformations of an individual’s competitive fitness. Unlike
PCAs or resource sharing, an SFT of individual i does not take
account of competitive assessments in which i does not take
part. Since SFT does not require additional assessments over
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and above those necessitated by the standard coevolutionary
framework, it is efficient.

Coevolutionary systems are often asymmetric, with pop-
ulations differing either genetically (in terms of encoding)
or behaviorally (in terms of goal strategy). Such asymmetry
may result in an inherent advantage for one population [37]:
“with many two population coevolutionary domains [there is]
an intrinsic asymmetry in the difficulties faced by the two
populations” [39]. It is easier to evade than pursue [43], to
be an input list than a sorting network [13], to be a maze
than a maze-navigator [44], and to be an initial condition
than a classifier [45]. These biases encourage and exacerbate
disengagement. However, they are not the exclusive cause.
In the absence of bias, stochastic fluctuations can result in
a (temporary) fitness advantage for one population [14].

To alleviate the problem of system bias leading to dis-
engagement in the density classification task, the “entropy
measure” [24], later adapted as the � function [45], was
introduced. Having an inherent advantage, initial conditions
(ICs) become increasingly difficult to classify as density,
�(IC) approaches 0.5. To encourage challenging but not
unclassifiable ICs, fitness is transformed such that

�(IC) =

{
0, if classified
|�(IC) − 1

2 |, otherwise
(3)

the � function performs well, but is domain specific and not
easily generalized.

The “phantom parasite” (PP) was the first domain general
SFT designed to counteract disengagement [25]. PP reduces
the fitness of unbeatable competitors. Fitness, f (x), of individ-
ual, x, winning all, N, competitions is transformed such that
f (x) = N

N−1 . Individuals that lose at least one competition are
unaffected.

More recently, the reduced virulence (RV) technique has
been introduced by the authors [13], [23]. RV endeavors to
rein in a population that inherits an advantageous bias: rather
than reward individuals that thrash a competitor, RV favors
individuals that are lenient. Perhaps counter-intuitively, RV
encourages accelerated progress by handicapping the most
successful solutions. Fitness, f (xi, v), of solution, i, in pop-
ulation, P, is calculated using i’s competitive score, xi, and
population virulence, v, according to the RV equation

∀i ∈ P : f (xi, v) =
2xi

v
− x2

i

v2
(4)

where 0.5 ≤ v ≤ 1.0 and 0 ≤ xi ≤ 1. Notice that when
xi = v, f (xi, v) is maximized. Also, when v = 1, f (xi, v)
is monotonically increasing and (4) reduces to the canonical
evaluation: reward all wins. Previous work has demonstrated
that RV can accelerate progress significantly when evolving
sorting networks [13].

Although inspired by virulence in biological host-parasite
systems, RV is a loose analogy of its natural counterpart.
Here, virulence is defined as the SFT formalized in (4). The
biological analogy holds such that when virulence is reduced,
individuals are rewarded for beating competitors less severely;

roughly approximating a biological reduction in “parasite-
mediated morbidity and mortality in infected hosts” [46].

Following the rationale of RV, the “soft parasites” (SP)
approach was proposed, where SP fitness is “the standard
deviation of the fitness foregone by the hosts encountering
it” [47]. In the game of Tartarus, host agents and parasite
board configurations were coevolved. “Young” agents—those
that had survived less than one evaluation—were often poor
quality and thus of little worth in assessing the ability of
boards to generate a fitness gradient for agents. This produced
a mediocre stable state with persistent low quality boards
and agents. Performance improved by computing board fitness
from encounters with “older” agents only. Thus, “age” was in-
troduced as a tunable parameter to overcome the vulnerability
of SP to low quality mutants [47].

In summary, RV is a domain independent technique that can
be tuned to combat specific biases. As such, RV has greater
versatility than PP, SP, and �. Additionally, by setting a high
value of v < 1.0, the RV transform approximates PP and so
is a generalization of this technique. In direct comparison, RV
was shown to significantly outperform PP in the domain of
sorting networks [13]. Further, by setting v = 0.5, the RV
transform approximates the � function, (3). Thus, RV covers
the previous SFTs designed to combat disengagement.

However, RV raises the question of what value of v to
choose. If challenges are too hard then nothing is learned, too
easy and there is no challenge [16]. Selecting an inappropriate
v will hinder performance [48]. To address this problem,
Section III develops a new technique capable of adapting
virulence autonomously.

III. Autonomous Virulence Adaptation

Section II discussed how intrinsic asymmetry within co-
evolutionary systems can lead to disengagement. To counter
this, the RV technique was introduced; utilizing a virulence
parameter, v, that should be set to a value that ideally counter-
balances asymmetric bias. However, since in real systems it is
difficult to know a priori what this bias will be, or whether it
will remain fixed, selecting an appropriate value of v is largely
a matter of guesswork. As such, it would be advantageous to
be able to automatically update v intelligently during runtime.

Previously, a method for human controlled steering of
virulence has been introduced [49], allowing users to manually
update virulence during runtime via a graphical interface.
However, such steering can be problematic, causing human
fatigue during long or repeated simulations. Here, we intro-
duce a novel technique for AVA that is domain general, simple
to implement, and versatile.

First presented in [50], AVA makes use of the Widrow-Hoff
“delta” rule [51] to update virulence. This general learning
procedure minimizes the error between an actual system output
and a target output. By defining a proxy for target virulence,
AVA updates v each generation by minimizing the error
between the current virulence and the target proxy.

A. Delta Rule

Popularized by [52], one of the simplest update rules in
machine learning is the delta rule. Originally developed as an
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TABLE I

Table of Symbols

Symbol Description
βi Mutation bias for population i: prob-

ability mutated bit = 1
RV(vi, vj) Reduced virulence: vi, vj fixed
vi Virulence value of population i

MAX Maximum virulence, RV(1, 1)
AVA(α, τ, µ, v0) Autonomous virulence adaptation: v

updated each generation
α Rate of change of virulence
τ Target mean relative score
µ Momentum coefficient
v0 Initial virulence value

error minimization rule for updating the weights of neurons in
simple feed forward networks with no hidden layers, the delta
rule was shown to guarantee learning [51]. This mechanism
was later extended to facilitate back-propagation learning in
feed forward networks with hidden layers: the “generalized
delta rule” [52].

The delta rule compares a network’s output with the desired
output for a given input. If there is no difference, then no
learning takes place. Otherwise, the weights of the network
are changed to reduce this difference. For linear units, the
square of the differences between the actual and desired output
values is minimized. To prevent oscillations, a momentum term
is used: a constant value that determines the effect of past
weight changes on the current direction of movement in weight
space.

Following [53], let At be the actual output at time t and
At+1 be the actual output on the following time step, then

At+1 = At + �t (5)

where �t is determined by the product of a learning rate, α,
and the difference between At and the target output, Tt

�t = α(Tt − At). (6)

If the target remains constant, (5) and (6) give asymptotic
convergence of At to Tt , at a speed determined by α. However,
if the target is not fixed, At may oscillate around Tt . To dampen
these oscillations, a momentum term µ can be added, such that
(6) becomes

�t = µ�t−1 + α(1 − µ)(Tt − At). (7)

Notice that when µ = 0, (7) reduces to (6); when µ = 1,
then ∀t : �t = �0.

B. Deriving the AVA Equations

To adapt virulence during run-time, an update rule based
on the delta rule is used. However, since the target output
(virulence) at each time step is unknown, we use an associated
variable: the target mean relative score of the population, τ.
Using the difference between τ and xt , the actual mean relative

score of the population at time t, substituting into (6), we
get

�t = α(τ − xt) (8)

where α is the rate of change of virulence, v. Adding a
momentum coefficient, µ and letting vt and vt+1 be the
virulence at time t and time t + 1 respectively, substituting
into (5) and (7) we get the AVA equations

vt+1 = vt + �t (9)

where

�t = µ�t−1 + α(1 − µ)(τ − xt) (10)

and �0 = 0. Notice that if µ = 0, then (10) reduces to (8), i.e.,
no momentum; if µ = 1, then ∀t : �t = �0, i.e., fixed v = v0.
AVA’s three parameter settings must fall in the range, 0 ≤
α, µ, τ ≤ 1. For a summary of symbols and their meanings,
refer to Table I.

In Section IV, the greater than (GT) game is used as an
experimental platform to test the performance of AVA in a con-
trolled environment. Robust parameter values are suggested
that enable AVA to be used off-the-shelf as a domain-general
technique. In Sections V and VI, these values are used to test
AVA in two complex domains.

IV. Greater Than Game

The AVA equations introduce three new parameters: rate of
change, α, momentum, µ, and target, τ (see Table I). Here, we
use the GT game to identify robust values for these parameters.
Using mutation bias, β, as a controllable proxy for asymmetry,
the GT game can simulate a broad spectrum of real world
coevolutionary domains with large or small, fixed or varying,
asymmetry. Evidence for a robust parameter set is gathered by
evolving AVA parameters across a variety of GT simulations.

The reader should be aware that GT has no natural asymme-
try since populations have identical genetic representations and
performance evaluation. To introduce asymmetry, mutation is
varied between populations. This mutational bias is used as
a surrogate for distinct representations that occur in more
realistic systems and offers the advantage of being easily
tuned. Mutation bias has been used as a proxy for genetic
representations elsewhere (e.g., [21], [41]).

A. GT Problem Definition

GT was initially developed to demonstrate how CGAs can
fail even in trivial domains [14]. The game is very simple: bit-
strings of length L compete in pairwise contests, comparing
which has the greater number of bits set to 1. Let |i| denote the
sum of bits in the bit-string of individual i. Then, i receives
a normalized score, x(i, S), against opponent sample, S, as
follows:

x(i, S) =
1

|S|
∑

j∈S

g(i, j) (11)
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where

g(i, j) =

⎧
⎨

⎩

1, if |i| > |j|
0.5, if |i| = |j|
0, otherwise

(12)

the goal of GT is to evolve a string with all bits set to 1;
i.e., when ∃i ∈ P : |i| = L. Disengagement occurs when all
individuals within a population either score 1 or 0, that is

x =
1

|P|
∑

i∈P

x(i, S) = 1 or 0. (13)

B. GT Coevolution

Two reproductively isolated populations (of size 25) coe-
volve for Ngen generations. Populations are labeled “hosts”
and “parasites.” Bit-strings (L = 100) are initialized to 0.
Each generation, individuals are assessed by playing a sample
of five opponents from the opposing population. Tourna-
ment selection is used (size 2); winner reproduces asexually.
Mutation occurs at each bit with probability m = 0.005.
For each mutation event, the current bit is replaced by a 1
or 0 with probability β and 1 − β, respectively. Each run,
βhost = 0.5. Bias is controlled by varying βpar. Thus, when
βpar > 0.5, there exists an asymmetry in favor of parasites.
All coevolutionary runs are repeated Nrun times.

C. Evolving AVA Parameters

1) Experimental Setup: A population of ten individuals
(each an AVA parameter set) evolve over 30 generations.
Each generation the fittest individual is copied unchanged into
the following generation (elitism). The remaining individuals
are sexually selected using single-point crossover; tournament
size 2. The probability of parameter mutation decreases lin-
early over time from 0.5 to 0. When it occurs, mutation
increments the chosen parameter by a uniformly distributed
value in the range ±ε, where ε decreases linearly over time
from 0.25 to 0. Parameter values are truncated at 0 and 1.

Individual parameter sets are evaluated using performance
over Ngen = 500 generations of GT coevolution (Section IV-B).
To encourage robustness, assessment consists of a set of
GT runs using a combination of bias and mutation settings.
During fixed bias assessment βpar remains constant. During
variable bias assessment βpar varies over time. The fitness, fp,
of each parameter set, p, over Nrun assessments is calculated
as follows:

fp =
Nrun∑

i=1

hi + gi − 100di (14)

where hi is the highest objective host score, gi is the number of
generations containing a host with maximum objective score of
L = 100, and di is the total number of disengaged generations
during each run, i. Equation (14) rewards parameters that
quickly find and maintain a host solution with an objective
score of 100, while disproportionately punishing parameters
that allow disengagement to occur.

Fixed bias assessment is used for two sets of experiments,
A (Nrun = 6) and B (Nrun = 3). GT settings

A: βpar = {0.5, 0.75, 0.95} , m = {0.01, 0.015}
B: βpar = {0.05, 0.5, 0.95} , m = {0.01} .

Variable bias assessment is used for three sets of experi-
ments C–E. Under each condition, Nrun = 4 and m = 0.01.
Let βx

g denote a change of bias to value x at generation g and
β

x−y

g−h denote a linear change in β between generations g and
h from value x to y. Then, bias profiles are

C:
{
β0.05

0 , β0.05−0.95
50−450 , β0.95−0.5

450−500

}

D:
{
β0.01

0 , β0.99
20 , β0.01

450

}

E:
{
β0.05

0 , β0.95
25 , β0.05

120 , β0.95
140 , β0.05

310 , β0.95
400

}
.

2) Results: Conditions A–B were repeated 30 times and
C–E 15 times. Table II displays the mean value (and 95%
confidence interval) of each parameter contained within the
fittest individual of the final generation of each run.

Across all conditions, target, τ, tends to a value in the region
of 0.6. When bias is fixed (A–B) τ tends to a significantly
higher value than when bias is varied through large discon-
tinuous jumps (D–E). When bias changes gradually over time
(C) τ tends to an intermediate value. This result is intuitive.
Since an increase in τ induces more aggressive increases in
population virulence,2 higher values of τ succeed when the
coevolutionary system is unlikely to be perturbed by a sudden
shift in advantage. Conversely, adopting lower values of τ

results in lower population virulence. This reduces the speed
of evolution and maintains greater engagement, enabling the
system to better endure sudden perturbation.

Reaction rate, α, follows a more pronounced trend. When
bias is fixed (A–B) α tends to significantly lower values than
when bias alters suddenly (D–E). Again, a gradual change
in bias (C) results in an intermediate value. This is to be
expected. Since α controls the speed at which virulence varies,
greater values of α allow the system to react more quickly
to sudden changes in bias. However, high values of α can
also induce rapid virulence fluctuations, potentially leading to
system instability. For this reason, when bias remains constant,
lower values of α prevail.

Finally, momentum, µ, tends to converge to a value in the
region of 0.3 under all conditions. There is no significant
difference between fixed and variable bias runs. This suggests
that µ is robust to changes in bias.

D. Selecting Robust AVA Parameters

Upon first consideration, it may appear that replacing two
RV parameters with three AVA parameters introduces some
extra work unnecessarily. However, this is not the case. First,
by adapting v, AVA is able to perform well in systems where
asymmetrical bias changes over time. This ability makes AVA
a more powerful technique than RV. Second, it will be shown

2As τ is increased, the virulence of both populations will tend to increase
also.
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TABLE II

Evolved AVA Parameters in the GT Game Using Fixed and

Variable Bias (Mean ± 95% CI)

Experiment α µ τ

A: βpar fix 0.10 ± 0.07 0.25 ± 0.08 0.63 ± 0.02
B: βpar fix 0.11 ± 0.06 0.34 ± 0.10 0.66 ± 0.04
C: βpar var 0.29 ± 0.15 0.35 ± 0.13 0.62 ± 0.03
D: βpar var 0.37 ± 0.18 0.20 ± 0.09 0.59 ± 0.02
E: βpar var 0.43 ± 0.19 0.26 ± 0.13 0.58 ± 0.02

that there are standard AVA values that perform well in a
variety of domains. Unlike RV, AVA settings can be used off-
the-shelf, assuming no prior domain knowledge.

Here, we select AVA settings suggested by the evidence
gathered in Section IV-C, where a variety of GT bias profiles
were used to simulate asymmetry across a broad spectrum
of real world coevolutionary problems. To demonstrate AVA’s
generality and robustness, these settings will be used through-
out this paper and tested in a variety of domains.

To encourage progress it is necessary to set τ > 0.5.
When τ = 0.5, an increase in the virulence of one population
causes an identical decrease in the virulence of the other, thus
removing the capacity to have two high-virulence populations.
When τ < 0.5, the virulence of both populations will tend
toward 0.5 and retard progress. Conversely, if τ is set too high
disengagement becomes more likely. From Table II, results
suggest that τ ≈ 0.6 is robust, performing well under many
bias conditions. Selecting a value slightly lower than this
exercises caution. Set τ = 0.56.

Reaction rate, α, controls the speed at which AVA is
able to update virulence. When system bias changes slowly
α should be set at a lower value than when bias changes
rapidly. Table II confirms this. Intuitively, it is likely that many
problem domains have a slowly changing bias, thus making
a low value of α preferable. Further, since erratic virulence
fluctuations can lead to system instability, a very low value of
α should be selected. Set α = 0.0125.

Finally, guided by Table II, set µ = 0.3.

E. Mapping the Virulence Sweet Spot

Here, we identify the virulence “sweet spot” for GT: values
of v that are the most productive given a particular system
bias. While this information is not useful in its own right—
given the contrived nature of the problem we cannot draw
general conclusions from this data—it does allow us to identify
a “target” value of v for a given system bias in this one domain.
This target is used in Section IV-F to evaluate AVA’s ability
to adapt virulence appropriately.

AVA offers a solution to the problem of setting virulence.
However, without understanding the virulence required for a
specific task, it is impossible to know whether or not a self-
adapting technique is following a desirable trajectory. The
target sweet spot identified in this section offers the possibility
of objective evaluation: can adaptation hit the target across
a range of biases? Armed with this information, we can be
confident whether or not virulence is being adapted in a

Fig. 1. Contour plots showing the RV sweet spot (successful runs with no
disengagement, identified by the black regions) in the GT game under varying
levels of bias. With no bias (βpar = 0.5, left) we see a symmetric plot, with
v values between 0.8 and 0.9 giving best performance. As βpar is increased
to 0.75 (center) and then 1.0 (right), we see that vhost must be increased and
vpar decreased.

suitable manner before testing the system in more practical
domains (Sections V and VI).

1) Experimental Setup: We follow the GT coevolution-
ary setup described in Section IV-B, with Nrun = 30 and
Ngen = 750. Coevolution is run using a range of fixed virulence
settings. Let RV(vhost, vpar) denote host virulence vhost and
parasite virulence vpar. Also, let MAX denote the canonical
setup of RV(1, 1).

2) Results: The contour plots of Fig. 1 show the number
of “successful” GT runs (0–5, . . . , 26–30, from light to dark).
Success implies that the GT goal has been reached: ∃i ∈ Phost :
|i| = 100. However, since we are interested here in avoiding
disengagement, runs that reach the GT goal temporarily, but
then disengage and fall away from this goal, are not counted
as successful. Thus, in this section we consider a successful
run as one in which the GT goal is reached and there are
no periods of disengagement (13). Settings with greater than
25/30 successful runs are shown in black.

As bias, βpar, increases in favor of parasites (left to right),
the ideal values for vhost and vpar increase and decrease,
respectively. This is an intuitive result: the greater the system
bias, the more the advantaged population should be reined in.
Interestingly, with no bias (left), the canonical setup, MAX,
is not optimal; inducing disengagement in more than half
of all runs. In comparison, RV(0.8, 0.8) produced no disen-
gagement. However, there is a tradeoff here: low v reduces
disengagement; high v accelerates evolution. Balancing these
antagonistic constraints is the key to success. To obtain swift
progress with minimum disengagement, ideal virulence pairs
are located at the top-right hand corner of each of the sweet
spots (black regions) shown in Fig. 1.

F. Autonomous Virulence Adaptation

Here, using AVA rather than RV, we repeat the experiment of
Section IV-E to see how AVA adapts virulence in the GT game
under different bias levels. To avoid immediate disengagement
when bias is high, for the initial I = 4 generations, virulence is
free to rapidly change by replacing (10) with �t = (0.5−xt/t).
AVA settings for each run are those selected in Section IV-D
α = 0.0125, τ = 0.56, µ = 0.3, v0 = 0.75.

Fig. 2 shows the adaptation of vhost and vpar over time
under differing bias conditions, βpar. Error bars show the 95%
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Fig. 2. Graph showing the 95% confidence of mean value of vhost and vpar

over 30 runs of coevolution in the GT game using AVA. With no bias (βpar =
0.5) the virulence of both populations steadily increases to near maximum.
As βpar is increased to 0.75 and then 1.0, vhost quickly approaches 1 while
vpar approaches much lower values, near 0.75 and 0.5.

confidence interval of the mean over 30 runs. We see that for
each bias condition, AVA initially adapts vhost , vpar toward
the ideal virulence pairing at the top right of the sweet-spots
shown in Fig. 1.

On each run, both populations discover successful individu-
als around generations 350–400, where success is determined
as follows:

∃i ∈ Phost, j ∈ Ppar : |i| = |j| = 100. (15)

At this point, the GT game is solved and there can be no more
progress. As a result, when βpar > 0.5, AVA decreases the
value of vpar, ensuring system engagement whilst maintaining
successful individuals.

These results demonstrate that AVA is capable of au-
tonomously adapting toward GT’s target virulence sweet spot.

G. AVA vs. RV

To evaluate the utility of AVA, a strict comparison is
performed against fixed RV values across bias levels, β =
{0.5, 0.6, . . . , 1.0}. Table III shows the mean number of
successful runs, (15), for each fixed value-pair of v. Each cell,
c(i, j), is calculated as follows:

c(i, j) =
s(i, j) + s(j, i)

2
(16)

where s(i, j) is the number of runs (of 180) that RV(vi, vj)
succeeds. Since bias may favor either population, we are
able to utilize the symmetry of results. The most successful
combination is RV(0.8, 0.8) with 166 successful runs and
6, 269 disengaged generations (DGs). The canonical setup,
MAX, produced 79 successful runs and 68 900 DGs; a degree
of magnitude worse. Thus, when system bias is unknown, it
is unwise to assume the canonical setup is best.

In contrast, AVA significantly outperforms all fixed RV
value pairs. Under the same conditions, AVA is successful in
every run (180) and induces only 7 DGs. Using χ2 to compare
the number of successes and failures of AVA and RV(0.8, 0.8),

TABLE III

Mean Number of Successful GT Runs (Max. 180) Across All

Bias Levels Using RV Value, v, and AVA

v 0.5 0.6 0.7 0.8 0.9 1.0 AVA
0.5 0 0 0 59 148 124.5
0.6 0 0 101.5 150 128.5
0.7 0 140 151 128.5
0.8 166 149 126.5
0.9 129 101
1.0 79
AVA 180

the null hypothesis, H0 : {proportion of successes of both bino-
mial distributions is equal}, is rejected with 99.9% confidence
(χ2

(1) = 14.56, giving a one-tailed p value of p < 0.0001). The
difference is primarily due to RV(0.8, 0.8) under-performing
when both bias levels are low (βpar, βhost = 0.5). Under these
conditions, v is not high enough to counter-act the rapid
insertion of deleterious mutations each generation. Although
the system remains engaged, it falls into a mediocre-stability
such that

� ∃i ∈ Phost, j ∈ Ppar : |i| = |j| = 100. (17)

Under these conditions, AVA is able to increase virulence
toward v = 1 in both populations, effectively overcoming the
low mutation rate.

In summary, AVA is capable of automatically updating vir-
ulence toward values known to be productive in the GT game.
As a result, AVA outperforms all fixed virulence pairings when
tested across all bias conditions. However, GT is a contrived
domain and therefore uninteresting in isolation. To address
this, in the following section we test AVA in a more practical
domain of sorting networks.

V. Sorting Networks

We test AVA in a complex domain of fixed length sorting
networks. The challenge is to discover a network of compar-
isons that is able to sort input lists of a fixed length. In [3],
coevolution was shown to outperform a standard evolutionary
approach, discovering a network of 61 comparisons for inputs
of length 16; only one comparison longer than the shortest
network is known. In [54], coevolution set a new record,
discovering a network of 45 comparisons to sort lists of length
13; one comparison less than the previous best. RV has been
shown to accelerate coevolution in this domain [13].

A. Network-List Coevolution

We use the following genetic representation.
1) Input List Sets: Input sets contain 40 lists of length 13.

Input lists consist of permutations of the natural numbers 1–13
and are encoded as an array of 13 integers. Each generation
integer is mutated with probability 0.01. When it occurs,
mutation swaps the integer with another integer in the list,
randomly selected from a uniform distribution. Thus, mutation
preserves lists as permutations of the first 13 integers. Each
generation input list is macro mutated with probability 0.02:



CARTLIDGE AND AIT-BOUDAOUD: AUTONOMOUS VIRULENCE ADAPTATION IMPROVES COEVOLUTIONARY OPTIMIZATION 223

Fig. 3. Mean performance (±95% C.I.) of best coevolved sorting networks
over 30 runs. Both AVA and RV significantly outperform MAX (the control).

lists are copied onto another list randomly selected (uniform
distribution) from the full list set. Input lists are initially
randomized.

2) Sorting Networks: Sorting networks contain 45 com-
parators. Comparators of the form (ia,ib) compare inputs ia
and ib at indexes a and b. If ia > ib and a < b then the
inputs are swapped. In this way networks aim to fully sort an
input list into ascending order. Networks of 45 comparators are
encoded as an array of 90 integers in the range [1, 13], each
representing the input list index to compare. Each generation
comparison integer is mutated with probability 0.02. A value
is selected at random from a uniform distribution in the range
[1, 13]. Sorting networks are initially randomized.

3) Evaluation: Networks score in proportion to the number
of lists that are fully sorted: score 1 if all 40 lists are sorted,
0 if no lists are sorted. List sets score 1 minus network score.

4) Coevolution: 25 networks and 25 list sets coevolve for
Ngen generations (asexual reproduction, tournament size 5).
Each generation network is evaluated against one list set (and
vice versa). All runs are repeated Nrun times. Let RV(vn,vi)
denote fixed network virulence, vn, and fixed input lists
virulence, vi. Also, set MAX = RV(1, 1) and AVA (α = 0.0125,
τ = 0.56, µ = 0.3, v0 = 0.75). Notice that these are the same
AVA parameter values established in Section IV-D for the GT
game. While it is unlikely that these values are optimal for
list sorting, the aim is to test the generality of AVA by using
the same settings across various domains.

B. AVA vs. RV

Compare the performance of AVA and RV.
1) Experimental Setup: We follow the coevolutionary

setup described in Section V-A, with Nrun = 30 and Ngen =
2500. Coevolution is run under three conditions: MAX,
RV(1, 0.75), and AVA.

2) Results: Fig. 3 displays the mean score (±95% C.I.) of
the best network so far over 30 runs. Score is calculated by
exhaustively evaluating the current fittest network against the
set of all possible input lists. It should be noted that networks
do not have exposure to this full set of input lists during their
evolutionary learning.

RV(1, 0.75), henceforth denoted RV, maintains engagement
and accelerates coevolution (outperforming MAX). In contrast,

Fig. 4. Mean virulence (±95% C.I.) of coevolved sorting networks and input
lists over 30 runs. Sorting networks initially have a high virulence of 1.0, with
input lists having low virulence of 0.5. Over time the virulence of input lists
gradually increases as the bias between populations falls.

MAX induces prolonged periods of disengagement, effectively
wasting evaluation cycles.

AVA performs similarly to RV and significantly outperforms
MAX. Fig. 4 shows mean population virulence across all
runs. Initially, AVA sets vn = 1.0 and vi = 0.5; correctly
adapting to the fact that it is initially much easier to be a
difficult list to sort than a successful sorting network. By
generation 750, networks can sort nearly 70% of all input lists
(Fig. 3). Reflecting this, AVA begins to increase vi (Fig. 4).
By generation 2000, vi ≈ 0.85 and vn ≈ 0.95. At this stage
networks can sort > 90% of lists. With bias shifting in favor
of sorters it is no longer necessary for lists to give networks
an “easy ride.”

C. AVA vs. LAPCA

We have demonstrated AVA outperforming MAX in the
sorting networks domain. However, this does not tell us how
AVA performs in relation to other techniques designed to
improve coevolutionary optimization. We test this here by
comparing AVA with LAPCA (Section II-B3), a PCA designed
to provide monotonic progress by overcoming focusing (Sec-
tion II-A1) and intransitivity (Section II-A4); and the mediocre
stability (Section II-A2) or cycling (Section II-A4) that may
result [41].

We test LAPCA using an archive size of N = 5 layers.
Consider networks to be “learners” and list sets to be “tests.”
Preliminary runs showed the learner archive grows to an
unmanageable size, |Al| > 600. To prevent this, Al was
constrained to a maximum size, |Al|max = 250. Learners were
rejected from Al using a “pruning” process, similar to that
developed by [11]. Al is initially separated into N dominance
layers. Starting with the highest dominance layer, n1, the
number of learners, |ni|, in each layer, i, is summed. If the
sum of learners in the current layer and all higher layers is
less than the maximum, then preserve the current layer. More
formally, preserve ni if

|Al|max <

i∑

j=1

|nj|. (18)
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Fig. 5. Mean performance (±95% C.I., 30 runs) against generational time of
coevolved sorting networks. Both LAPCA and AVA outperform the control
on a generational basis. The difference between LAPCA and AVA is not
significant at the 0.05 level.

Fig. 6. Mean performance (±95% C.I., 30 runs) against computational effort
(number of network evaluations, presented on a log-scale) of coevolved sorting
networks. AVA significantly outperforms the control. In contrast, LAPCA
requires an order of magnitude more effort to reach equivalent performance.

Following [11], for non-preserved layers find the closest rival
for all learners—the rival on which l dominates least, or has the
fewest winning dimensions—and store this number. Starting
with nN , while |Al| ≥ |Al|max: sequentially remove (in random
order) individuals that dominate their closest rival on only one
dimension, then two dimensions, and so on.

This process constrains archive size, while preserving the
most dominant learners. We use LAPCA (N = 5) pruned such
that |Al|max = 250. For direct comparison, the generator uses
MAX with the same setup as Section V-A. Parents are selected
from the archives with probability 0.05.

1) Experimental Setup: We follow the setup described in
Section V-A, with Nrun = 30 and Ngen = 1500. Coevolution is
run under three conditions: MAX, AVA, and LAPCA.

2) Results: Fig. 5 shows the mean (±95% C.I.) per-
formance of 30 runs of sorting network coevolution. For
comparison, the previous results of AVA and MAX are re-
produced from Fig. 3. It is clear that LAPCA outperforms
the control (MAX) when compared using generational time:
where confidence intervals do not overlap, the difference is
statistically significant (t-test) with p < 0.05. While Fig. 5
suggests LAPCA has a slightly higher performance than AVA,
results are not significant at the 0.95 level (t-test) at any
generation.

LAPCA improves performance over generational time by
maintaining an archive of useful learners and tests that prevent
prolonged disengagement in the generator. In general, by gen-
eration 1000, archive sizes stabilize with |Al| = |Al|max = 250
and |At| ≈ 35. Further runs were performed using AVA as a
generator in combination with LAPCA (results not shown).

Over generational time, LAPCA outperforms the control
(Fig. 5). However, this does not consider the computational
cost of each mechanism. While AVA requires no additional as-
sessments (over the control), the same is not true for LAPCA.
In order to calculate dominance relationships for the archive,
many additional assessments are required. If archive results
are cached, it is necessary (at minimum) to assess each new
learner against all contemporary tests and all archived tests;
and each new test against all archived learners. Therefore, the
number of additional LAPCA assessments, C, required each
generation is

C = |Pl|.|Pt| + |Pl|.|At| + |Al|.|Pt|. (19)

For the current experiments, |Pl| = |Pt| = 25 for all runs.
Under the control condition (and AVA), each generation
there are 25 assessments. For LAPCA Cmin = 625 and
Cmax = 625 + 6250 + 1250 = 8125 (with |Al|max = 250, and
assuming |At| ≤ 50). Thus, each generation, the computational
cost of LAPCA is 1 to 2 orders of magnitude greater than
AVA. This cost grows with |Pl,t| and |Al|max and becomes
increasingly problematic in domains where the assessment
process is complex.

Reconsidering results from the perspective of computa-
tional efficiency, Fig. 6 presents mean performance against
effort (number of assessments; see [55] for “equal effort
comparisons”). Using this metric, it is clear that LAPCA
requires significantly more effort. This is compelling evidence
to suggest that, in the sorting networks domain, at least, AVA
is a practical alternative to LAPCA with much lower compu-
tational cost (given the configuration settings used here).

VI. Maze Navigation

To test whether the results from the previous section are
representative, we assess AVA on another challenging prob-
lem: maze navigation. This domain offers more complexity
than sorting and includes stochastic assessment. In addition,
there is an asymmetric bias between populations (in both
representation and goal difficulty), making disengagement
likely to occur. As such, maze navigation is a problem domain
suitable to test the efficacy of AVA.

A. Background

Maze navigation is a simplification of the more general
problem of real-world navigation by autonomous robots. Sim-
ulated robots are placed in simple 2-D grid worlds (mazes)
containing a selection of walls and a target (see Fig. 7).
The perimeter of the world is walled, preventing robots from
leaving the maze. Robots can see the target from any location
(the target is much taller than the walls). To reach the target,
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Fig. 7. Evolved maze and robot using AVA. Robot (square, facing east) starts
in north-west corner and moves toward central target (circle) using evolved
rules. Visited cells are marked in the center by a small dot.

Fig. 8. Example robot rule. This can be read as: “if target is ahead and there
is no wall ahead and ahead has not previously been visited then move ahead
with probability 10/10.”

robots must navigate around walls they encounter. Unable to
plan ahead, robots react to the local state of the world (the
current grid cell that they are in). Robots possess a simple
memory of previously visited grid locations (consider dropping
a trail of bread crumbs). Robots aim to evolve decision rules
capable of navigating from a start position to the target in a
previously unseen maze. This is a nontrivial task.

It has been demonstrated that this domain causes difficulties
for CGAs [44]. The asymmetric bias favoring mazes allows
them to outperform robots very easily. We attempt to replicate
the work of [44] in order to test the efficacy of AVA in this
domain. As such, [44]’s problem definition and experimental
setup is closely followed.

B. Robot-Maze Coevolution

We use the following genetic representation.
1) The Problem: Robots are placed within a square maze

consisting of 15 × 15 cells. Robots aim to navigate from a
starting point located at the corner of a maze to a target at the
center.

2) Robots: Robot navigation is controlled by a classifier
system containing 20 mutable rules and one default rule. Each
rule has 12 inputs and 4 outputs, encoded as an integer array of
length 16 (see Fig. 8). Inputs are separated into three groups
representing isTarget?, isWall?, and isVisited?. Each group
contains four inputs Ahead (A), Right (R), Behind (B), and
Left (L). Each input takes one of three values: 0 (No), 1
(Yes), and ? (Don′tCare). Input bits set to ? always evaluate
true. Bits set to 0 or 1 will only evaluate true if the condition

is met. Rules fire if and only if all input bits evaluate true.
Hence, an input rule {0, ?, 1, ?} for the group isWall? is true
if there is a wall behind and no wall ahead. The default rule
has all input values set to ?. Default values cannot be altered
and ensure that the classifier will always fire at least one rule.
To evaluate isVisited? each robot keeps an internal record of
previously visited cells.

Robot rules are stored in an ordered list (default last) and
evaluated in turn. The first rule to fire determines robot action.
Each rule has four output integers, representing the probability
of moving A, R, B, or L. Outputs, Oi, take values in the
range [0, 10], where

∑4
i=1 Oi ≤ 10. When a rule fires an

output direction is selected with probability Oi/10. Note that
if

∑4
i=1 Oi < 10 there is a possibility that no direction will

be selected. If no legal direction is selected, the rule “drops
through”; remaining rules are evaluated in turn. Finally, the
default rule is repeatedly evaluated until a legal direction
is selected. To prevent an infinite loop, the default has an
additional output constraint: ∀i, Oi ≥ 1. When entering a new
cell, robots face in the direction of last movement.

Robots reproduce sexually (tournament 10) using uniform
crossover. Rules are copied (in entirety) from either parent
with equal probability. Each rule is mutated with probability
mbot = 0.01, moving the rule one place forward in the
classification order. Within each rule, bits are mutated with
probability mbot . For inputs, the value is randomized with
equal probability. For outputs, the current value is increased or
decreased by 1 (subject to constraints). Robots are initialized
with all inputs set to ?.

3) Mazes: Each maze consists of a bit string of length
420, where 1 represents “internal wall exists.” This encoding
describes all possible mazes in a 152 grid. Mazes reproduce
asexually (tournament 10); bits flipped with mutation proba-
bility mmaze = 0.005. After mutation, a breadth-first search is
used to check that the newly created maze is fully connected.
If not, the maze is rejected and a new offspring created. Mazes
are initialized empty.

4) Evaluation: Robots are evaluated in pair-wise competi-
tion with mazes. The robot’s journey length, ji, from starting
cell, i, to target, t, is used to calculate the robot’s score, si. For
each maze the minimum path length to target, pi, is calculated
using a breadth-first search. If ji ≥ 2pi then si = 0. If ji = pi

then si = 100. Otherwise, if pi < ji < 2pi then

si = 100

(
1 − ji − pi

pi

)
. (20)

Robots are assessed from each corner, giving a sum score of
S =

∑4
i=1 si. Conversely, the maze scores mscore = 400 − S.

5) Coevolution: 100 robots and 100 mazes coevolve for
Ngen generations. Each generation, competitors are evaluated
against six opponents. All runs are repeated Nrun times.
Let RV(vr,vm) denote fixed robot virulence, vr, and fixed
maze virulence, vm. Also, set MAX = RV(1, 1) and AVA
(α = 0.0125, τ = 0.56, µ = 0.3, v0 = 0.75). Once again,
the parameter settings for AVA are the same as those selected
in Section IV-D and used throughout this paper.
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Fig. 9. Mean performance (±95% C.I.) of best evolved robots over 30 runs.
The horizontal line shows the baseline performance of HDFS, a standard AI
technique. AVA significantly outperforms HDFS and all fixed RV conditions.

C. AVA vs. RV

Compare the performance of AVA and RV.
1) Experimental Setup: We follow the coevolutionary

setup described in Section VI-B, with Nrun = 30 and
Ngen = 1000. Coevolution is run under four conditions: MAX,
RV1(1.0, 0.5), RV2(0.5, 0.5), and AVA.

2) Results: Fig. 9 displays the result of coevolution.
The mean scores (30 runs, ±95% CI) of the current best
robot for each trial condition are graphed. Score is calculated
by evaluating robots against six evaluation mazes designed
to offer a range of difficulty levels. Since robot controllers
are non-deterministic, scores are averaged over five repeated
trials. Evaluation mazes are not exposed to robots during
evolutionary learning and thus test the robustness of evolved
rule sets. The horizontal line shows the performance of a stan-
dard heuristic depth-first search (HDFS) utilizing Hamming
distance to target to order branches. While this HDFS is not the
optimal algorithm for navigating mazes, it offers us the ability
to compare the efficacy of evolved robots with a standardized
technique.

MAX suffers from disengagement throughout. Although the
stochastic evaluation of non-deterministic robots often pre-
serves some fitness gradient (mean robot score each generation
is usually greater than 0), much of this is due to noise: robots
occasionally “get lucky.” Thus, the system exhibits effective
rather than full disengagement (Section II-A3).

It can be seen that RV1 outperforms MAX and RV2.
By generation 200 RV1 discovers robots that are capable
of navigating the evaluation mazes more successfully than
HDFS. However, as time continues, RV1 robots begin to
over-fit the mazes they are coevolving with. As a result,
robots become less successful at navigating the evaluation
mazes, with performance eventually dropping below the HDFS
baseline. Nevertheless, setting vm = 0.5 (RV1) offers a
significant improvement over MAX. However, when v of both
populations is reduced to 0.5 (RV2) progress is seriously
retarded. Lacking incentive to compete, the system falls into
a mediocre stable state.

In comparison, AVA outperforms the other conditions. By
generation 200, AVA displays similar performance to RV1 and
has discovered robots performing better than HDFS. Unlike

Fig. 10. Mean performance (±95% C.I.) of LAPCA over 30 runs (results
for AVA and the control are reproduced from Fig. 9). The horizontal line
shows the baseline performance of HDFS, a standard AI technique. AVA and
LAPCA significantly outperform the control. AVA accelerates optimization,
outperforming LAPCA for the first 800 generations, when both stabilize at a
similar performance level. This difference is significant up to and including
generation 400 (t-test, p < 0.05).

RV1, however, AVA robots continue to outperform HDFS
throughout the entire run and do not over-fit. Analysis of
virulence over time shows that AVA stabilizes maze virulence
at 0.54 and robot virulence at 1.0. Although this is only
slightly higher than the virulence of RV1, the additional
selection pressure on mazes generates enough novelty to keep
robots from over-fitting (Section II-A1).

D. AVA vs. LAPCA

Following Section V-C, the performances of AVA and
LAPCA are compared in this domain. However, since the
computational cost of assessing navigation is much greater
than assessing sorting, the setup of LAPCA has been mod-
ified. First, the robot archive is constrained using pruning
(Section V-C) to a maximum size of |Ar|max = 50. Second,
rather than submit the entire robot and maze population to the
archive each generation, a sample of Sa = 5 individuals from
each population are selected at random for archive submission.
This significantly cuts down on the archive overhead. Using
the notation of Section V-C2, with robot and maze sizes of
|Pr| = |Pm| = 100, the minimum archive cost each generation,
if all offspring are submitted is Cmin = 10 000. By submitting a
random sample of Sa = 5 offspring, this cost falls to Cmin = 25.
Without this “sample submission” routine, LAPCA becomes
effectively unusable for the maze navigation domain as set
up here. Preliminary runs showed that the archives quickly
approach and stabilize at |Ar| = 50 and |Ar| ≈ 10. At this
size, the archive requires 325 assessments each generation; an
increase of 50% over the 600 assessments performed by the
generator.

We use LAPCA (N = 5) pruned such that |Ar|max = 50. For
direct comparison, the generator uses MAX with the same
setup as Section VI-B. Parents are selected from the archive
with probability 0.1.

1) Experimental Setup: We follow the setup described in
Section VI-B, with Nrun = 30 and Ngen = 1000. Coevolution
is run under three conditions: MAX, AVA, and LAPCA.
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Fig. 11. Mean performance (±95% C.I., 30 runs) of best evolved robots
against computational effort. AVA accelerates optimization, significantly out-
performing LAPCA for the first 4×105 evaluations. While both stabilize at a
similar level, LAPCA requires nearly five times more evaluations than AVA
to reach this performance.

TABLE IV

Performance Ranking Summary

Problem Algorithm Performance Ranking
Generation Computation

Sorting AVA1 2 1∗
LAPCA2 1 3∗
RV(1, 1) 3∗ 2∗

Navigation AVA1 1 1∗
LAPCA3 2 2∗
RV(1, 1) 3∗ 3∗

1AVA (α = 0.0125, τ = 0.56, µ = 0.3, v0 = 0.75)
2LAPCA (layers = 5, max archive = 250)
3LAPCA (layers = 5, max archive = 50, sample = 5)
∗Statistically significant (95% confidence level)

2) Results: Figs. 10 and 11 show the results of LAPCA
maze-robot coevolution. For comparison, the results of AVA
and the control, MAX, are reproduced from Fig. 9. Perfor-
mance is plotted against generational time. LAPCA is shown
to outperform the control, producing a monotonic increase in
performance until settling at a level significantly better than
the HDFS baseline. We also see LAPCA underperform AVA
for the first 800 generations [this difference is only significant
(t-test) for generations ≤ 400 at the 0.05 level]. By generation
1000, LAPCA stabilizes at a level similar to that of AVA.
Fig. 11 plots performance against computational effort (num-
ber of evaluations). AVA is shown to accelerate optimization,
requiring less effort to achieve a similar performance level for
the initial 4 × 105 evaluations. While both achieve a similar
final performance, LAPCA requires nearly five times more
evaluations than AVA to first reach this level.

These results indicate that AVA is a preferable alternative
to LAPCA in this problem domain, achieving equivalent
performance with lower computational cost.

VII. Conclusion

AVA, a novel technique designed to combat disengagement
by adapting the virulence of coevolving populations during
runtime, has been shown to automatically find target viru-
lence values for the trivial GT game. By controlling bias,

the GT game can be used to simulate asymmetry in real
world coevolutionary problems. By solving GT across all bias
settings, results suggest that AVA can effectively counter the
asymmetrical bias that leads to disengagement in many real
world domains.

AVA parameter settings were evolved in the GT domain over
a selection of bias profiles to discover robust, domain general
values. Results suggested typical AVA settings (α = 0.0125,
τ = 0.56, µ = 0.3, v0 = 0.75), allowing AVA to be used
off-the-shelf as a domain independent technique. Using these
parameters, AVA was tested in the more complex domains of
sorting networks and maze navigation. Table IV summarizes
comparisons with LAPCA, a standard pareto archiving tech-
nique from the literature, and canonical coevolution, RV(1, 1).
We see that, on a generational basis, there is no significant
difference between the performance of AVA and LAPCA.
However, when comparing performance against computational
effort, AVA significantly outperforms LAPCA in both do-
mains, accelerating the discovery of quality solutions and
significantly reducing the computational overhead. This is
a positive result, suggesting that AVA is a domain general
technique that offers significant efficiency savings.

Given that AVA is specifically designed to combat dis-
engagement, results suggest that disengagement is a greater
problem in these domains than focusing or intransitivity and
that, under these conditions, AVA is probably a more useful
technique. Further, in domains that require lengthy assessment
routines, AVA is the only realistic choice of the two.

Considering [56]’s No Free Lunch theorem, it is dangerous
to suggest that AVA is better than LAPCA in general, since
it is likely that there are many domains in which AVA
fails to achieve the same performance. In domains where
disengagement is likely, the computational efficiency of AVA
suggests that it should be selected as first choice, before
resorting to intensive archiving procedures. However, if a
domain contains lots of intransitive superiority relationships,
pareto archiving techniques such as LAPCA are likely to
be a safer option. Having no evolutionary memory, AVA is
susceptible to intransitivity and the cycling that may result.

An interesting avenue for future research will be to see
how AVA can be best utilized on a per-dimension basis
in a multiobjective domain: that is, to use multiple AVA
routines, one for each dimension. Potentially, this will have the
capability to overcome intransitivity and stop dimensionwise
disengagement, which can lead to focusing, mediocre stability,
and cycling. Perhaps this approach could be integrated into a
pareto model, once the underlying problem dimensions have
been exposed.

Further extensions will aim to derive a set of heuristics for
fine-tuning the choice of AVA parameters in specific domains.
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