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ABSTRACT
Price discrimination offers sellers the possibility of increas-
ing revenue by capturing a market’s consumer surplus: aris-
ing from the low price elasticity segment of customers that
would have been prepared to pay more than the current
market price. First degree price discrimination requires a
seller to know the maximum (reserve) price that each con-
sumer is willing to pay. Discouragingly, this information is
often unavailable; making the theoretical ideal a practical
impossibility.

Electronic commerce offers a solution; with loyalty cards,
transaction statements and online accounts all providing
channels of customer monitoring. The vast amount of data
generated–eBay alone produces terabytes daily–creates an
invaluable repository of information that, if used intelli-
gently, enables consumer behaviour to be modelled and pre-
dicted. Thus, once behavioural models are calibrated, price
discrimination can be tailored to the level of the individual.

Here, we introduce a statistical method designed to model
the behaviour of bidders on eBay to estimate demand func-
tions for individual item classes. Using eBay’s temporal
bidding data–arrival times, price, user id–the model gener-
ates estimates of individual reserve prices for market par-
ticipants; including hidden, or censored, demand not di-
rectly contained within the underlying data. Market de-
mand is then estimated, enabling eBay power sellers–large
professional bulk-sellers–to optimize sales and increase rev-
enue. Proprietary software automates this process: ana-
lyzing data; modelling behaviour; estimating demand; and
generating sales strategy.

This work is a tentative first step of a wider, ongoing, re-
search program to discover a practical methodology for au-
tomatically calibrating models of consumers from large-scale
high-frequency data. Multi-agent systems and artificial in-
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telligence offer principled approaches to the modelling of
complex interactions between multiple individuals. The goal
is to dynamically model market interactions using realistic
models of individual consumers. Such models offer greater
flexibility and insight than static, historical, data analysis
alone.

Keywords
Consumer Modelling, High-Frequency Data, eBay

1. INTRODUCTION
An understanding of supply and demand is fundamental to
microeconomics, finance and marketing. However, histori-
cally the theoretical and statistical tools necessary for a de-
tailed empirical analysis of supply and demand in real-life
markets remained elusive [2]. More recently, techniques have
been developed to estimate the supply and demand curves
in financial markets [3] and in electronic auction markets
such as eBay [2, 4]. These models are able to recover sup-
ply and demand curves by analysing high-frequency trading
data1, thus allowing an analysis of the marketplace in suffi-
cient detail to be of use to not only to economists but also
to traders.

Although such quantitative tools have recently been applied
in financial markets, the availability of high-frequency data
in markets such as eBay opens up the possibility for algo-
rithmic trading in retail markets [6]. This paper outlines
the first steps in building a high-frequency algo-trader in
this domain. Previous studies by other authors have out-
lined the principles by which supply and demand could be
analysed in a retail electronic auction marketplace [6]. In
this paper we apply these principles and demonstrate that
supply and demand can be estimated from actual empiri-
cal trading data. We also validate the estimation model by
comparing its predictions against a Monte-Carlo simulation
of the underlying model. This provides us with framework
which can be extended allowing us to drop some of the more
unrealistic assumptions of the original model.

The outline of this paper is as follows. In Sections 1.1 and 1.2
we give an overview of online auction marketplaces and the
estimation problem. In Section 2 we describe our statistical
model. In Section 3 we give the results from applying this
model to real empirical data. In Section 4 we discuss how

1That is, data that are sampled at a frequency higher than
one day. For example, high-frequency financial data is avail-
able at sub-second time scales.
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this work can be taken forward and finally we conclude in
Section 5.

1.1 Online Auctions and Power Sellers
Over the past decade there has been a phenomenal rise in
the volume of trade executed in online auctions. Founded in
1995, eBay alone now has a global presence in 33 markets,
a global customer base of 181 million registered users and
worldwide trade of more than $1,511 worth of goods every
second. Online auction sites offer rich pickings for individ-
uals and corporations that can exploit the potential of the
global marketplace they encompass.

Although customer to customer (C-to-C) trade still accounts
for a large proportion of online auction volume, increasingly
there has been a rise in the number of businesses selling
to individual customers (business to customer, or B-to-C,
trade). Corporations whose business models incorporate the
sale of large quantities of stock in online auctions are known
as power sellers. Rather than offload individual items or one-
off shipments, power sellers regularly supply large quantities
of stock to online auctions as part of their ongoing sales’
strategy.

When selling, it is essential to understand the behaviour
of the consumers you are selling to. In order to estimate
the parameters (which market to drop items into, what vol-
ume to supply, what time to list and what listing format,
for example) that will maximise revenue, one needs working
knowledge of the dynamics of consumer demand. For ex-
ample, a seller that anticipates a large surge in demand in
a particular marketplace will have a better understanding
of how and when to increase supply in that market and at
what price they should expect to achieve. By accurately de-
termining a market’s underlying consumer demand, sellers
are able to significantly increase revenue and profit. Whilst
every seller participating in an online auction stands to ben-
efit from a better understanding of consumer demand, it is
power sellers - those that supply the greatest quantity per
time period - that have the most to gain (or lose).

1.2 Estimating Demand in the Marketplace
In order to optimise sales strategy it is important for sell-
ers to be aware of the nature of demand. In online auction
venues, power sellers not only have access to more traditional
methods of estimating demand (personal experience, market
research, trial and error, etc.), they may also make use of the
bid history of each auction (the time-stamped record of each
successive highest bid). This valuable resource enables sell-
ers to observe how often and at what price bids are posted
during the entire auction period. By observing the highest
bid registered by each user one can begin to estimate the
maximum or limit price of individuals in the market. Once
the limit price of each potential buyer is known it is then
an easy step to calculate the demand function - the volume
demanded at any given price. The historical record of bids
posted in online auctions offers an excellent method of esti-
mating demand.

Unfortunately, however, a problem exists. In order to make
an accurate estimation of demand, it is necessary to know
the limit price of every individual. Since an auction’s bid
history only records successively higher bids, it does not
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Figure 1: Simulation of bidder demand using normal
distribution of limit prices. Auction rules – new bids
must be greater than the current highest – lead to
censoring of bids. Thus, observed demand is much
lower than the true demand.

contain a full record of potential bidders. By observing bid
history alone, the estimation of demand is likely to be too
low.

Estimating market demand using bid history alone does not
consider those individuals that arrive at an auction once the
auction price has already exceeded their own limit price.
Such potential bidders are forced to leave an auction without
registering a bid and thus do not appear in an auction’s bid
history - their bids are censored. This leads to an under-
estimation of demand (see Fig 1). The problem is how to
recover these censored bids in order to form a more accurate
estimation of the underlying demand within a market? How
to best estimate demand using observed bid history alone?
To tackle this, the following section introduces a model to
recover censored bids.

2. RECOVERING CENSORED BIDS
This section outlines a statistical model for recovering bids
that are censored by the auction process - i.e., those bids
that would have been submitted had the auction price not
already exceeded the limit price of a newly arriving bidder.
The model is based on the work of [6] and utilises the fact
that an auction bid history displays the arrival time of each
submitted bid. The model uses observed arrival times to
formulate an estimation of the most likely arrival rate of
bids across different bid price levels. These arrival rates are
then mapped onto the observed bid history data to give a
refined estimation of demand in the marketplace that takes
into account not only observed bids, but also those bids that
are censored.

2.1 Model assumptions
In order to make it easier to work with observed bid history
data, let us first segment price into discrete intervals. Then,
across all auctions for which we can observe bid histories,
consider measuring the time until first arrival of a bid in each
price segment. We should expect that occasionally there will
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be long time-intervals before a first bid is registered but that
more often these intervals will be shorter. If we suppose
that bids are independent of each other and that all bids
are greater than zero, then we may assume that the time
until first arrival of a bid in each price segment follows an
exponential distribution.

The value we wish to estimate is the number of bids, λi,
likely to be posted in each price segment, i, during a given
time interval - this will allow us to evaluate the relative
proportion of bidders in each segment and thus the relative
proportion of limit prices.

We can model λi using a Poisson distribution by assuming
the following:

A Bids occur at random in continuous time.

B Bids occur singly. The probability of two bids arriving
simultaneously is zero.

C Bids occur uniformly, i.e., the expected number of bids
in a given interval is proportional to the size of the
interval. Arrival rates do not vary over time. 2

D Bids occur independently, i.e., the probability of an
arrival of a bid with price i in any small interval is
independent of the probability of an arrival of a bid
with price i occurring in any other small interval.

Let us make some further assumptions as to the strategic
behaviour of bidders:

E Bidders bid at exactly their limit price.

F Bidders attempt to post a bid upon arrival. They will
not strategically wait.

And finally, assume the following is true of the auction mech-
anism:

G Posted bids must be greater than the current auction
price.

2.2 Estimating Bid Arrival Rates
Let us segment prices into K equally sized bins and let Xi

denote the time of arrival of the first bid in price segment
i, where i = 1, 2, . . . K. Then, Xi is an exponentially dis-
tributed continuous random variable with probability distri-
bution function:

f(x) =

j
λie

−λix : x ≥ 0
0 : x < 0

(1)

Hence, Xi has mean time 1
λi

and expected arrival rate λi.

The probability of Xi occurring near time t = T is:

P [t < X ≤ δt] = f(t) · δt (2)
2In reality, arrival rates rapidly increase towards the end
of an auction period as bidders attempt to snipe. Prelimi-
nary analysis has shown that as many as 25% of all bidders
may appear in the final hour. Hence, the model is likely to
underestimate arrival rates.

The probability of X occurring after time T is:

P [X > T ] = 1 − P (X ≤ T )

= 1 −

Z T

0

λie
−λit

= 1 −
h
−e

λit
iT

0

= 1 + e
−λiT − e

0

= e
−λiT (3)

We demonstrate how to estimate arrival rates λ1, λ2, . . . , λK

by using an example that considers only n = 2 bidders in an
auction - the result may be generalised to n bidders.

Assume there are two potential bidders, each with limit
prices i and j such that i < j with corresponding arrival
times Xi and Xj . Then, when an auction is complete, it is
possible that the bid history may contain: (a) no bidders;
(b) one bidder of type i; (c) one bidder of type j; or (d)
two bidders. Let 〈xi, xj , . . . , xn : at〉 denote the recorded
bid history of auction a with end time t, then for an auction
AT , we can calculate the following likelihoods:

(a) Probability no bidders appear in bid history:

P [〈− : AT 〉] = P [(Xi > T ) ∩ (Xj > T )]

= e
−λiT · e−λjT

(b) Probability only bidder i appears in bid history:

P [〈xi : AT 〉] = P [(xi < Xi ≤ xi + δxi) ∩ (Xj > T )]

= λie
−λixiδxi · e

−λjT

(c) Probability only bidder j appears in bid history:

P [〈xj : AT 〉] = P [(Xi > Xj) ∩ (xj < Xj ≤ xj + δxj)]

= e
−λixj · λje

−λjxj δxj

(d) Probability both i and j appear in bid history:

P [〈xi, xj : AT 〉]

= P [(xi < Xi ≤ xi + δxi) ∩ (xj < Xj ≤ xj + δxj)]

= λie
−λixiδxi · λje

−λjxj δxj

Assume that we have observed three auctions with bid his-
tories as follows: two bids 〈xi, xj : AT 〉; no bids 〈− : AT 〉;
one bid 〈xj : AT 〉. Then the likelihood function is:

L (λi, λj) = λie
−λixiδxi · λje

−λjxj δxj · e
−λiT

· e−λjT · e−λixj · λje
−λjxj δxj

Taking natural logarithm gives log-likelihood function:

l (λi, λj) = ln λi + 2 ln λj + ln δxi + 2 ln δxj

− λixi + T + xj − λjxj + T + xj

Then, maximum likelihood values of arrival rates are:

∂l

∂λi

=
1

λi

− (xi + T + xj) = 0 ⇒ λ̂i =
1

xi + T + xj

∂l

∂λj

=
2

λj

− (xj + T + xj) = 0 ⇒ λ̂j =
2

xj + T + xj
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Thus, we see that the maximum likelihood arrival rate for
type i is the number of auctions in which we observe a bid
of type i (1 in example, above) divided by the sum of the
arrival times in each auction of either: the first bid to arrive
of type i; or in auctions where no bids of type i appear, the
first bid to arrive of the next highest type; or if no higher
bids arrive, the auction close time T .

Similarly, the arrival rate for type j is the number of auctions
in which we observe a bid of type j (2 in above example)
divided by the sum of the arrival times in each auction of
either: the first bid to arrive of type j; or in auctions where
no bids of type j appear, the first bid to arrive of the next
highest type; or if no higher bids arrive, the auction close
time T .

For brevity, let xn
i+

be the arrival time of bidder i in the

nth auction if bidder i is recorded in the nth auction, or the
arrival time of the next highest bidder, or the auction du-
ration if no higher bidder arrives. Then, we get the general
result:

λ̂i =
# auctions in which type i bid appears

x1
i+

+ x2
i+

+ . . . + xn
i+

Let us call the divisor in the above equation the effective
opening time for bidders of type i - that is, the total time
bidders of type i have available to place a bid across all
auctions. Once an auction price has surpassed a bidder’s
limit price, the auction is effectively closed to that bidder.
If limit price is never surpassed, then the effective auction
close equals actual auction close. Using this terminology,
the above equation can be rewritten in words:

λ̂i =
total number of bids from type i bidders

total effective opening time

This is an intuitive result: the average arrival rate of bidders
equals the number of bidders observed over the total time
available for bids to be placed. Finally, to effectively con-
sider parallel auctions, we must measure bid arrivals using
absolute time rather than auction time. Then, the arrival
rate of bidders of each bin is calculated as:

λ̂i =
total number of bids from type i bidders

total time that at least one auction is effectively open

2.3 Confidence Interval Estimation
The model developed in the previous section reduces to the
standard formula for calculating survival rates with Type I
censored data (see, for example, [1]). Under Type I censor-
ing, the maximum likelihood for survival rate, λ, is:

λ̂ =

Pn

i=1 xi

r
(3)

where xi is the ith data point (may be arrival or censoring
point), n is total number of data points, both censored and
uncensored and r is number of failures. Using this, we can
estimate the 100(1 − α)% confidence interval for λ as:

2n

λ̂i · χ2

(2n; α
2 )

<
1

λi

<
2n

λ̂i · χ2

(2n;1− α
2 )

Where λ̂i is maximum likelihood estimation, λi is true value,
and χ2

(v;x) is value of chi squared distribution with k degrees
of freedom that gives x cumulative probability.

2.4 Multiple Bids from Individual Bidders
Once a bidder has placed a proxy bid in an auction, there
is nothing to stop them from bidding in other auctions. In-
deed, it is likely that once an auction has effectively closed
the bidder will move to another auction and place a similar
bid. Some bidders have been observed strategically bidding
across multiple simultaneous auctions with very small bids,
in the hope that no other bidders join the auction. In many
cases, we see bidders bidding in multiple auctions. How-
ever, unless a bidder wins an auction and then subsequently
bids in another auction, we can suppose that each bidder de-
mands only one item. Thus, estimating demand by counting
the number of proxy bids alone will likely lead to an overes-
timation. It is necessary to take account of bidders bidding
across multiple auctions.

The model estimates demand by resolving multiple bids ac-
ross auctions in the following way:

A Simulate each auction using proxy bid data to calculate
the effective opening times of each price bin.

B Order all proxy bids across all auctions by time. Begin
with the earliest bid and move down the list in order of
time. For each bid, if the bidder ID has yet to appear,
i.e., if this is the bidder’s first proxy bid, add the bid
to the ”demand” list. If the bidder ID has already
placed a bid (if it appears on the demand list), then
replace the bid on the demand list with the following
pseudo-bid:

(a) Bid time: time of earliest bid (the time the bidder
first entered eBay).

(b) Bid price: price of highest bid (the limit price of
the bidder).

C For each bin, calculate the mean arrival rate of bidders
by dividing the number of pseudo-bids by the total
effective opening time.

2.5 Model Simulation
Fig 2 shows the true and observed demand of bidders in a
simulated eBay market. This data is the same as that shown
in Fig 1. The solid red line displays the demand estimated
by the model described above. There is clearly a good fit
between the estimated and true demand, suggesting that
the model works as anticipated; recovering the underlying
demand that is censored through the eBay auction process.

3. SOFTWARE APPLICATION
In this section, we demonstrate how the model is used on real
eBay data, to analyse supply and demand in the marketplace
and inform sales strategy. All data is taken from the German
eBay auction market of Lexmark X1155 printers, over a 6
month period between Nov 2005 and April 2006.
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Figure 2: Simulation of bidder demand using nor-
mal distribution of limit prices. Observed demand
(blue dash) is much lower than true demand (green
dot) due to censoring of data. The model estimation
of demand (red line) is a good fit of true market de-
mand.

Figure 3: Application Screenshot: Supply (red) and
Demand (blue dash) forecast for Lexmark X1155
over 6 month period in Germany.

3.1 Competitive Demand
In order to estimate the potential profits available to a seller
in the marketplace. We first compute the competitive de-
mand function. This is calculated as the difference between
demand and supply (or excess demand) at all prices below
the equilibrium price. The competitive demand curve shows
the demand available to a seller wanting to push more vol-
ume into the market. There is a conservative assumption
made here: that all the highest bidders will have already
been taken by a competitor. This is the reason for using
only the demand below the equilibrium. Having made this
assumption, we see that the effect of increasing sales volume
is to reduce price.

Fig 3 shows the demand and supply curves estimated by the
application for Lexmark X1155 in Germany. Fig 4 shows the
demand (red) and competitive demand (blue dash) curves.
Here, competitive demand is directly calculable from the
demand and supply curves of Fig 3. We see that competitive

Figure 4: Application Screenshot. Demand (red)
and competitive demand (blue dash) over same pe-
riod as Fig. 4.1. Competitive demand is equal to
the excess demand at a given price below the equi-
librium price.

demand tends to the demand curve as price tends to zero.
The competitive demand curve is used to estimate the price
a seller will attain for increasing sales by a given volume.

3.2 Revenue and Costs
The application has two revenue models. These are:

Differential pricing we assume that each item is sold at
the highest price it can attain. Prices will vary between
unit sales.

Fixed pricing we assume that all units will be sold at the
same fixed price.

The application also has two cost models. These are:

No reserve pricing the eBay costs associated with free
auction with no reserve listings.

Buy-it-now the eBay costs associated with Buy-it-now list-
ings.

Once a revenue and cost model is chosen, the application
is then able to calculate the anticipated revenue and costs
available to a seller in that market. Fig 5 shows the antici-
pated revenue and costs for X7170s using fixed price revenue
model. These costs include all eBay costs, labour and ship-
ping costs associated with each sale. Costs specific to a
seller (such as labour costs) are entered into the model as
customized variables for each individual seller. We see that
costs (blue dash) rise as volume sold increases.

The revenue curve is calculated using the competitive de-
mand curve (see Fig 4). Anticipated revenue is calculated
as the total revenue expected from a given quantity of sales.
In figure 4.3, we see anticipated revenue has a maximum at
around quantity 600, but then steeply falls. This is because
we are using a fixed revenue model. This implies that all
units are sold at the same price. Thus, as volume increases
and marginal price falls, the price of each unit also falls.
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Figure 5: Application screenshot. Revenue and
Costs of Lexmark X7170 in Germany with fixed pric-
ing revenue model. Anticipated revenue (red line)
quickly rises, then begins to fall around quantity
800. Costs (blue dash) steadily rise

Figure 6: Application screenshot. Revenue and
Costs of Lexmark X7170 in Germany with differ-
ential pricing revenue model. Anticipated revenue
(red line) quickly rises, then bottoms out once quan-
tity reaches approximately 1200. Costs (blue dash)
steadily rise.

Fig 6 plots the same data but uses a differential revenue
model. We see here that revenue rises steeply until roughly
1200 units but then bottoms out. Since this is a differential
revenue model, anticipated revenue never falls. That is be-
cause the marginal revenue of a new unit does not impact
the price of other sales. This is the major difference between
the fixed price and differential revenue models. As such, the
fixed revenue model is a much more conservative estimator
of revenue.

3.3 Profit
From our calculations of revenue and costs, we can plot esti-
mated profits. Profits = revenue - costs. However, the cost
curves shown in Fig 6 do not include all the costs that a seller
may incur. Other costs may include OEM commission, for
example, which are a percentage of sales. These costs are
factored in on an individual seller basis. Using these addi-
tional costs and the revenue-cost curves shown in Fig 6, the
anticipated profit curve can be calculated. Fig 7 shows antic-
ipated profit as a function of quantity. This profit curve uses
the same data as Fig 5 and includes a fixed revenue model.
It can be seen that maximum profit is approximately 10, 000

Figure 7: Application screenshot. Potential profits
for Lexmark X7170 in Germany. The profits curve
has a maximum at quantity 600 and profit 10, 000.
Profits fall as volume is increased beyond 600 and
become a loss one more than 1000 items are sold.

and will be achieved with approximately 600 sales.

Since costs will always rise as volume increases, there will
always be a turning point in the profit curve. This turning
point is the maximum possible anticipated profit available
to a seller for a given product. The maximum profit and
volume can then be used to produce summary estimates of
current production efficiency.

4. FUTURE WORK
We have described the first stages of a research program
for automatically calibrating models of consumers from the
increasing amounts of large-scale high-frequency data avail-
able on consumer transactions and preferences. In this paper
we have focussed on calibrating consumers’ demand func-
tions for a single commodity. In future work we will apply
similar estimation methods to calibrate a more general be-

havioural model of the consumer based on their transaction
history.

A key part of this research will be the development of rig-
orous methods for estimating simulation models. One of
the weaknesses of our existing model is that it makes sev-
eral simplifying assumptions in order to obtain a closed-form
likelihood function. In future work we will modify our sim-
ulation model so that incorporates more realistic behaviour,
such as sniping, and use heuristic methods such as [5] to
calibrate this model against empirical data.

5. SUMMARY AND CONCLUSIONS
We have described a statistical model which can estimate the
demand for a given product by utilising the bid information
that is available from online auction sites such as eBay, and
we have applied this model to estimate supply and demand
for a real marketplace using actual empirical data. To fore-
cast future revenue accurately, sellers must have an accurate
understanding of consumer demand. The more accurately
a seller understands demand, the better they are able to
maximise profit. Whilst the experience of sellers, trial and
error, and market research reports each lend some insight
into the behaviour of customers, each is a very poor alter-
native to the quantitative estimates produced by our model.
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By producing a full demand curve, our model allows sellers
to maximise profit by predicting sales volume and average
price ahead of time. This accurate forecasting ability allows
sellers to optimise their strategy ahead of time, rendering
costly (and risky) trial and error strategies obsolete.

The model is entirely general. As long as there is bid data
available (which is true of all online auction venues, not just
eBay), the model is able to build a representation of de-
mand, whatever the product or where ever it is sold. By
understanding demand, sellers are able to better optimise
their sales strategy and reduce risk. As such, the model is
of value to any company or individual that wants to sell, of-
fering significant positive impact on the revenue-generating
potential of all auction sellers.
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