

CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 1 of 9

CReST User Guide

John Cartlidge & Alex Sheppard

University of Bristol

Last Modified: September 2012

This document is being periodically updated and is not complete.

Documentation on the following is required:

 Detailed outline of how each module behaves

CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 2 of 9

Introduction

Fig 1. CReST architecture diagram. As input, CReST requires an XML
configuration file describing each data centre. XML configuration files contain a
full specification of all hardware and can be large and difficult to write manually.
The CReST builder offers a graphical interface for users to generate and edit
these files. In conjunction, CReST is able to read simulation parameters from a
simple text parameters file. Parameters in this file overwrite those duplicated in
the XML file and offer an easy way for users to edit a simulation configuration, or
to run multiple simulations with varying configuration parameters. CReST can be
run with or without a graphical interface. When using the GUI, users are
presented with run-time visual feedback. All simulation data is logged to a CSV
file.

CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 3 of 9

Running CReST

Building
Build CReST by running ant build:

$ ant -buildfile build-CReST.xml

This creates a distribution directory dist/ containing three folders:
1. CReST-app: containing executable CReST jar and start scripts
2. CReST-code: containing a copy of CReST source code
3. Javadocs: containing CReST javadocs documentation

Running CReST
To run CReST, move to the dist/CReST-app directory and run the example start
script:

$./example-start-crest.sh

This script contains the following command:

$ java -Xmx1000m -Xdock:name="CReST" -jar CReST.jar -c
resources/config/example_1dc_1.xml.gz -p
resources/config/prop/example_params_1.properties

This command will start an instance of CReST in graphical interactive mode. For
non-graphical batch mode, use the command line flag '-nogui' or '-ng'. The
required '-c' flag indicates the datacentre configuration file to run and the
optional (but recommended) '-p' flag indicates the CReST simulation properties
file to run.

The CReST GUI will open when the script is run. The configuration file can be
changed by using the file > open dialog box. To start CReST, do Run > Run
Simulator (or the short-cut F5). This starts the simulation running. To stop the
simulation, do Run > Stop Simulator (or the short-cut q).

CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 4 of 9

CReST Simulation Properties Files

Simulation properties can be input into CReST using simple text files that must
have extension '.properties'. See file: docs/user-guide-properties-file.txt for a list
of properties that can be altered for the different modules.
Some example '.properties' files can be found in the folder:
resources/config/prop/. Simulation properties files override parameter values in
CReST configuration files, providing an easy way for users to vary parameter
values across runs, without creating many different datacentre configuration
files.

Running CReST Builder

In order to run, CReST requires a datacentre configuration file. These files
contain an XML description of the physical properties of the datacentre,
including the location and description of all servers. Configuration files can be
generated and edited using the CReST Builder GUI application. To create a new
configuration file, run CReSTBuilder using the shell script:

$ startCReSTBuilder.sh

Select 'New Configuration' and give it a name, e.g., 'my_dc_config', or select one of
the example configuration files to open and edit. When the configuration is
complete, it will be saved with extension .xml.gz

CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 5 of 9

Module Descriptions

Simulation Module
If this is off the model does not generate its own events.

Events Module
The events module drives the simulation, generating events.

The event queue for the simulator is implemented as a single, ordered queue. It
holds each event in ascending order of start-time, popping each event in turn
from the front of the queue. Additional events can be added to the queue, which
is sorted each time a new event is added.

User Events Module
Users can directly input events into CReST via a user events file. This file is read
when CReST is started and events added to the event queue. This allows a
mechanism for shocking the system with, for example, a large group of server
failures. The user events file has the following format:
#demo user events file: Failure of aircon and servers
#[event_type],[object_type],[time_unit],[start_time],[object_id],[fail_type]
failure aircon second 45 12 soft
failure aircon second 45 13 soft
failure server second 45 2 hard
failure server second 45 3 hard
failure server minute 1 4 hard

To enable user events, it is necessary to switch on the User Events module and
point to the appropriate user events file. This file can then be edited (using the
framework above) to generate events.

Failures Module
The servers and air conditioning units with a datacentre can fail in one of two
ways: a soft failure and a hard failure.

A soft failure only requires a reboot since no hardware has been damaged or
needs replacing. Whereas a hard failure requires hardware replacements due to
a physical fault.

A soft failure could arise from an overheat, so the server shuts down until the
temperature reduces, at which point the server can start up again.
Each server has a mean soft and hard fail time and a standard deviation,
modelled on the Poisson distribution, so that during the simulation servers will
randomly fail over time.

Once the failed server or aircon unit has been fixed, a fix event is observed by
other modules so that they can act upon it and update the datacentre map, for
example.

CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 6 of 9

Replacements Module
Servers or air conditioning units that undergo a hard failure need replacing. This
is carried out by the replacements module.

Servers can be replaced individually or in blocks, a block being a container of
racks and air conditioning units that are replaced in one go, once the proportion
of failed hardware within it is too high.

When a server replacement takes place, the simulator can replace the server by
either a preset list of available servers (as specified in the builder), or using a
replacement function. The function determines the server specifications based
on time since the start of the simulation so that the servers created should be
realistic to current specifications.

Subscriptions Module
The subscriptions module describes a communications network between
individual servers. Servers connect to a subset of other servers that they
periodically query to see if they are “alive”. This enables servers to have a view of
which other hardware is available to communicate.

However, within this framework it is possible for servers to have an
“inconsistent” view of other servers, e.g., when Server A believes Server B is
“alive” when Server B is, in fact, “dead”, or conversely, when Server A believes
Server B is “dead” when Server B is, in fact, “alive”. Inconsistencies occur within
the subscriptions network after server hardware “failure” or server hardware
“fix” events.

Depending on the topology of the communications network, the number of
servers with an inconsistent view will vary. Also, different “protocols” will enable
these inconsistencies to percolate across the network in different ways.

The subscriptions module is designed to test the efficacy of different
communications network topologies and communications protocols by plotting
the proportion of inconsistent server nodes and the network communications
load of each protocol over time.

The Subscriptions module pre-defines the following communications protocols
and network topologies. Topologies use 3 parameter value inputs: (1)
Max_Subscriptions K, (2) Miu, (3) Rewire. Some parameter values are only used
by a subset of topologies.

Topologies:

 Random: server nodes are connected at random, with each node
randomly connected to exactly K other nodes.

 Nearest Neighbours: nodes are arranged in a 1D circular array, with
each attached to the K nearest neighbours to the left and right.

 Regular Grid-Lattice: nodes are arranged on a toroidal grid/lattice
network structure and then subscribed to their K nearest neighbours.

CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 7 of 9

 Barabasi-Albert (Scale Free): nodes are connected using an
implementation of the Barabasi-Albert algorithm that generates a “Scale
Free” network. Refer to:

 Watts-Strogatz (Small World): nodes are connected using an
implementation of the Watts-Strogatz algorithm that generates a “Small
World” network.

 Klem Eguiluz (Scale Free – Small World): nodes are connected using
an implementation of the Klem-Eguiluz algorithm that utilises a
parameter Miu to generate a “Scale Free” network with “Small World”
properties. Refer to: http://arxiv.org/abs/cond-mat/017607

Protocols:
 Simple peer-to-peer: nodes communicate with each other directly using

a peer-to-peer protocol, requesting the status (“alive”/”dead”) of
connected nodes.

 Transitive peer-to-peer: nodes communicate with each other directly
using a peer-to-peer protocol in a similar fashion to the simple peer-to-
peer protocol. However, nodes also pass information about the status of
other nodes that are mutually connected. This protocol generates fewer
status requests than simple p2p, but has the side effect that “stale”
information may percolate across the network (if node A receives
information from node B about the status of node C that is “out of date”).

 Centralised: a central node periodically requests status information from
all other nodes in the network. Individual nodes then query the central
node for status information of other nodes, rather than querying those
nodes directly.

When activated, the subscriptions module generates a communications network
across a data centre, with each node corresponding to an individual server.
[Note: This should ideally be extended to be across individual VMs running
on the servers] The SubscriptionsModuleEventThread generates subscription
update events that cause nodes to query the status of other nodes. When a server
fail or fix event is popped from the event queue, the SubscriptionsModuleRunner
observes the fail/fix event and updates the status of the corresponding network
node to “dead”/”alive”. The proportion of inconsistent nodes are plotted on the
inconsistencies time series graph of the GUI and also logged to the subscriptions
log. Other event types observed by the SubscriptionsModuleRunner are ignored.

Thermal Module
The temperature module simulates heat generation, propagation and extraction
within the datacentre. Servers produce heat which then distributes across the
datacentre, with air conditioning units extracting heat from the building.
Temperature extraction is non-linear and dependent on the temperature local to
each air conditioning unit.

Each server has a failure temperature, the temperature at which it will shut
down due to an overheat.

CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 8 of 9

Services Module
Demand on the datacentre. Start and stop.

Broker Module
Brokerage agents reserving instances and reselling to demand.

CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 9 of 9

Logs
Each module logs the events that it observes for each datacentre to CSV format
so that they can be analysed in the post run application or in another application
by importing the CSV data.

As an example, a Thermal Log Event occurs every second, to match how often a
thermal update occurs. The simulation time, average datacentre temperature,
percentage of servers working and percentage server utilisation are logged.

The following list is what each module logs:

Broker Module
Time
Contracts
Executed
Scheduled Units
On-demand
Cash

Failure Module
Simulation Time
Servers Working (%)

Service Module
Simulation Time
Services (Running)
Services (Failed)
Services (Queued)
Services (Completed)
Services (Total)
Server Utilisation (%)
Servers Working (%)

Subscription Module
Simulation Time
Servers Working (%)
Inconsistency (%)
Network Load (Hops)

Thermal Module
Simulation Time
Temperature
Servers Working (%)
Server Utilisation (%)

	CReST User Guide
	John Cartlidge & Alex Sheppard
	University of Bristol
	Last Modified: September 2012

	Introduction
	Running CReST
	Building
	Running CReST
	CReST Simulation Properties Files

	Running CReST Builder

	Module Descriptions
	Simulation Module
	Events Module
	User Events Module
	Failures Module
	Replacements Module
	Subscriptions Module
	Thermal Module
	Services Module
	Broker Module

	Logs
	Broker Module
	Failure Module
	Service Module
	Subscription Module
	Thermal Module

