
CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 1 of 13

CReST Developers’ Guide

John Cartlidge & Alex Sheppard

University of Bristol

Last Modified: September 2012

This document is being periodically updated and is not complete.

Documentation on the extending the code is required, including:

 Adding a module
 Adding a new Event
 Adding a new Subscription Type (Subscriptions module example)

 Factory classes and Singletons

CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 2 of 13

Fig 1. CReST architecture diagram. As input, CReST requires an XML
configuration file describing each data centre. XML configuration files contain a
full specification of all hardware and can be large and difficult to write manually.
The CReST builder offers a graphical interface for users to generate and edit
these files. In conjunction, CReST is able to read simulation parameters from a
simple text parameters file. Parameters in this file overwrite those duplicated in
the XML file and offer an easy way for users to edit a simulation configuration, or
to run multiple simulations with varying configuration parameters. Finally, users
can generate their own events via a User Events File, a simple text file defining
event type and time of event. CReST can be run with or without a graphical
interface. When using the GUI, users are presented with run-time visual
feedback. All simulation data is logged to a CSV file.

CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 3 of 13

Fig 2. CReST is run from the main entry point CReSTApp.main(), which reads in
configuration parameters including: the name of the XML file containing the data
centre configuration, an optional parameters text file containing simulation
parameters (these overwrite the XML file) and an option to specify whether to
run the GUI or not (-ng). If a GUI is required, it is created using the
SimGUIMainWindow class. The GUI enables users to edit the name of the XML
configuration file before a simulation is started. The SimulationRunner object is
created and all simulation ModuleRunners are added as listeners using the
SimulationRunner.addWorldListeners(L) method. If a GUI object has been
created, it also adds itself as a WorldListener. If there is no GUI, the simulation
automatically begins with a call to SimulationRunner.run(), else the GUI calls this
method when the user selects “run”. The SimulationRunner sets all
ModuleRunner objects to observe Events in the EventQueue by calling
EventQueue.addObserver(ModuleRunner). Initial events are then added to the
EventQueue by calling EventQueue.reset(), which generates a new
EventSpawner. The SimulationRunner then enters the simulation “event loop”
until an “Exit” signal is received from a StopSimEvent (either generated by the
GUI or internally by the simulation). An event is popped from the EventQueue via
a call to SimulationRunner.handleEvent(). Every event contains two methods
that are called in sequence from the Event.perform() method. Firstly,

CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 4 of 13

Event.performEvent() is called to perform the event logic, for example a Server
failure. Secondly, Event.generateEvents() is called to add new Events to the
EventQueue that are generated as a consequence of the Event logic, for example
a new server FixEvent. EventQueue observers are then notified of the event via a
call to EventQueue.notifyObservers(Event e). All ModuleRunners (which
implement the Observer interface) then receive the Event e via an internal call to
Observer.update(e) and act accordingly, potentially adding new Events to the
EventQueue based on their logic. If the Event is not a StopSimEvent a new Event
is popped from the EventQueue via SimulationRunner.handleEvent(), else the
simulation exits.

CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 5 of 13

Fig 3. Process control and objects timeline for the SimulationRunner and
EventQueue. When the SimulationRunner.run() method is called, the
EventQueue is created via a call to EventQueue.reset(). An initial
EventSpawnerEvent is then created via a call to EventSpawnerEvent.create(). A
new EventSpawnerEvent is returned and added to the EventQueue and control is
passed back to the SimulationRunner. A call to EventQueue.pop() pops the next
Event off the EventQueue stack and calls Event.perform(). Event.perform() calls
two protected sub-methods: Event.performEvent() and Event.generateEvents().
The first Event to be popped from the EventQueue is always an
EventSpawnerEvent. The internal call to EventSpawnerEvent.performEvent()
instantiates new Event objects and adds them to the EventQueue by passing
them to EventQueue.add(Event e). The internal call to
EventSpawnerEvent.generateEvents() creates a new EventSpawnerEvent and
again adds this to the EventQueue using EventQueue.add. The first
EventSpawnerEvent is now complete and is released from memory as control is
returned to the SimulationRunner. While inside the event loop, the
SimulationRunner continues to pop events from the EventQueue, each time
calling Event.perform(). The Event then performs its own logic via an internal
call to Event.performEvent() before generating new events via the method
Event.generateEvents(). Finally, when a StopSimEvent is popped from the
EventQueue, the method StopSimEvent.performEvent() returns a stop signal via
a call to SimulationRunner.stop() and the simulation exits.

CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 6 of 13

Fig 4. The Observable/Observer interface is used to keep a strict separation
between Model (the SimulationRunner, EventQueue and World objects) and
View (in this case, the Graphical User Interface). In the GUI view, every time
series graph extends the AbstractTimeSeriesGraph that implements the
Observer interface. Likewise, the DataCentreMap also implements the Observer
interface. In the model, the EventQueue extends the Observable class. When the
SimulationRunner pops a new Event from the EventQueue, the
Observable.setChanged(Event) method is called. This calls the Observer.update()
method in all objects implementing the Observer interface in the view. The
DataCEntreMap contains a MapRenderer that updates based on the new Event
that they receive. Concrete implementations of the AbstractTimeSeriesGraph get
the latest model data to plot via a call to SimulationRunner.getWorldData().

CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 7 of 13

Fig 5. Each module has a ConcreteModuleRunner object that extends the
AbstractModuleRunner class. The AbstractModuleRunner implements the
Observer interface which is used to pass new Events popped from the
EventQueue via the Observer.update() method. Using a similar architecture to
the GUI shown in Fig 4., ModuleRunners act as a view on the EventQueue model,
using the Observer/Observable interface to observe new simulation Events. Each
ModuleRunner acts on the Events that are observed, potentially adding new
Events to the EventQueue as a consequence.

CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 8 of 13

Fig 6. Class hierarchy for objects representing physical hardware in the model.
Each simulation contains a World object that contains one or more Datacentre
objects. Each datacentre contains a List of (at least one) abstract Block objects.
Blocks are extended by 4 concrete types: Aisle, Container, AirConditioner and
Rack. Aisles and Container objects contain a List of (at least one) Rack objects. In
turn, Rack objects contain a List of (at least one) Server object. Both Server and
AirConditioner objects implement the Failable interface, since they represent
hardware that can fail. Server objects contain HardDisk, RAM and Software
objects and a List of (at least one) CPU objects. Servers can run Service and
VirtualMachine objects, which are started and stopped via methods stop() and
start().

CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 9 of 13

ViewEditDatacentre
This view is a simpler version of the PhysicalView. It could be seen as a ‘basic’
setup, whereas the PhysicaView is ‘advanced’. It allows the user to create a filled
datacentre by just entering either the datacentre dimensions, or the number of
servers and room dimension ratio. Therefore you can very quickly build a
datacentre to run a simulation on, without having to worry about individual rack
or server configurations.

The view is closely linked to the PhysicalView so that the 2 views remain
consistent when the user is configuring a datacentre. The PhysicalView contains
the Working World object. There are 4 methods New, Update, Delete and a list
selection, which execute the same code in both views.

Note:
As a forewarning, if you set an item in a JList, it will fire the corresponding
ListSelectionListener for that JList. This proved a bit of an issue when trying to
keep the 2 JLists in each view consistent.
For example, if you change the selected item in the ViewEditDatacentre view, you
will need to update the selected item in the list on the PhysicalView. In setting
the item, this list event listener will fire as if you have selected the item, and now
this will update the selected item in the ViewEditDatacentre view. This loop will
continue.

The solution is to have 2 types of selection for the listener. Whether it was the
user that selected the list item (normal selection) or whether it has happened as
a result of being set by the other view (background selection).
In short, the background selection does not set the selected list item in the other
view and therefore stops the loop.

Interactions between the 2 views:
ViewEdit (VE) SimplePhysical (SP)
Init()-
Disable all fields

-

New()-
SP new ConfigWorld
SP set selected index

List selection (background)
Populate fields
Draw map

-

List selection (normal)
SP set selected index

List selection (normal)
populateDatacentre
VE set list items & selected index
(background)

Update()-
Save datacentre
SP set selected index

Generate()-
Same as SP New()

Delete()-
Remove working datacentre

populateWorld

CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 10 of 13

Some forum threads on this issue:
http://stackoverflow.com/questions/3092834/can-i-set-the-selected-item-for-
a-jlist-without-having-an-event-thrown-to-the-li
http://stackoverflow.com/questions/3318824/jlist-clearselection-issue

Although not problematic, but worth being aware of, is that the listener is fired
twice, on mouse click and mouse release. The e.getValueIsAdjusting() solution
stops the second listener event and thus reduces code execution time.
http://forums.devshed.com/java-help-9/listselectionlistener-registers-two-
events-on-one-mouse-click-285809.html

http://stackoverflow.com/questions/3092834/can-i-set-the-selected-item-for-a-jlist-without-having-an-event-thrown-to-the-li
http://stackoverflow.com/questions/3092834/can-i-set-the-selected-item-for-a-jlist-without-having-an-event-thrown-to-the-li
http://stackoverflow.com/questions/3318824/jlist-clearselection-issue
http://forums.devshed.com/java-help-9/listselectionlistener-registers-two-events-on-one-mouse-click-285809.html
http://forums.devshed.com/java-help-9/listselectionlistener-registers-two-events-on-one-mouse-click-285809.html

CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 11 of 13

Datacentre Generation
The ViewEditDatacentre view can generate a datacentre directly by entering the
dimensions, or indirectly by the number of servers required and a DC size ratio.

Using the dimensions fits in with the existing datacentre generator class. Using
the number of servers and ratio requires some calculation to transform this into
the dimensions, before calling the generator.

The Maths
There are code comments in package config.DatacentreGenerator based on the
following logic:

- Calculate the number of servers that fit in a rack
- How many racks are needed for the required number of servers?
- Use quadratic forumula to find the datacentre length (num aisles)
- Find the positive root and round up
- If the shorter dimension is an even number, there will be 2 empty rows at

the end. Remove extra row.
- Make sure there is space for at least 1 aisle with gap either side
- Make sure that there are not more aisles than racks required!
- Number of aisles that fit in the shorter dimension
- With this many aisles, how long does each aisle need to be to fit the number

of racks
- Set datacentre dimensions now we know what they should be.

Once the dimensions have been determined the generator class makes use of the
new Layout Pattern factory methods in package builder.datacentre.layout. There
are 3 new patterns, Long Aisles, Split Aisles and Random. The existing method
(Old Method) is used as default and each has a method generateLayout().

The generateLayout method sets the positioning of the aisles, racks, servers and
aircon within the datacentre and returns a ConfigDatacentre object as before.
Each server object has as direction value (North, South, East, West) which is the
direction the front of the server faces. In the PhysicalView there is an option to
set the direction of all the servers within the current rack.

CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 12 of 13

Replacements
The replacements module runner observes failure events of type fix and acts
upon four possible situations that can occur on both servers and aircon units.
In the builder, there is an option to specify how you want replacements to occur,
either in block replacements or individually. Block replacements won’t occur
until the block threshold (the proportion of dead servers/aircon in the block)
has been reached, again set in the builder.

 Block Individual
Soft Set alive Set alive

Hard
Block.performFixes
- Set alive
- Replace

Set alive
Replace

The module also differentiates between soft and hard failure events. A failure of
type soft only needs to be set alive / working again, however this code should
never be reached as it is dealt within the server/aircon class and is only left in as
a safeguard. This is due to the fact that soft fixes should occur regardless of
whether the replacements module is active or not.

In the case of a hard failure, the server/aircon needs to be physically replaced.
Replacement servers are available in the XML config file or by a function which
determines the specifications based on time. Again, the method to use is set in
the builder.
In the case of a block replacement, there is an additional step. The block that the
current server/aircon is contained within needs to be checked to see if the
threshold has been reached. If it hasn’t, then the server/aircon isn’t replaced. If it
has, then each server/aircon is looped through in turn and replaced, using the
same method as an individual replacement.

If soft
 Set alive
Else
 If individual
 Set alive
 Replace
 If block
 Block.performFixes
 call

CReST: The Cloud Research Simulation Toolkit
University of Bristol, United Kingdom

 Page 13 of 13

Age
There is a basic ageing function within the builder to allow you to build a
datacentre with different hardware representing failures that have happened
over time.
When the replace button is pressed, the ReplacementServers update() method is
called and follows the following logic:
- for each rack, calculate mean fail time by looping through each server
- move to point in time
- find racks with fail time less than current
- replace rack and fill with replacement servers.

The time that it jumps forward to is specified at the top of the class, by default
200 days.

Ideally this should be replaced by using a simulation with only the failures and
replacements modules on. The challenge here is getting the Datacentre object
from the simulation back into the builder, which uses a ConfigDatacentre object,
in real time so that the datacentre map can be updated.

1. ConfigDatacentre object in Builder
Save XML
Run simulator

2. Datacentre object in Simulator

(via World.getInstance.getDC()) While updating builder map.

3. ConfigDatacentre object in Builder

	CReST Developers’ Guide
	John Cartlidge & Alex Sheppard
	University of Bristol
	Last Modified: September 2012
	ViewEditDatacentre
	Datacentre Generation
	The Maths

	Replacements
	Age

