Dr John Cartlidge, University of Bristol, UK

BriCS

University of Bristol Cloud Service
Simulation Runner

User & Developer Guide

1 October 2013

John Cartlidge & M. Amir Chohan

BriCS: User & Developer Guide -1-

Dr John Cartlidge, University of Bristol, UK

BriCS Architecture

Amazon AWS
AMI

Sim Model Image) Generate from Image

Launch Sim Model

= @

User Read / Write

Sim Model

Fig. 1: Architecture design for the BriCS simulation model running on Amazon Web Services
(AWS). An EC2 BitNami instance assigned an elastic IP (EIP) address hosts a Ul web service,
enabling users to configure simulation parameters, launch the simulation and observe simulation
progress and results. Simulation data (configuration settings and results) are stored in an RDS
instance running a MySQL DB. The Ul has read/write access to the database, through which user-
inputted configuration settings are written and simulation results are read. An Amazon Machine
Image (AMI) stores an image of the simulation model. When a launch signal is received from the
U, the AMI generates multiple parallel EC2 simulation instances (SIs). SIs have read/write access
to the DB, reading in configuration parameters and writing progress updates and results. Upon
completion, the ephemeral EC2 simulation instances terminate.

Simulation models are run in parallel “in the cloud” using Amazon Web Services
(AWS). An architecture diagram is shown in Fig. 1, above, containing the
following components:

1. The User Interface (UI): Users interact with the simulation model through
a web browser connected to the user interface of the model - a graphical
web service running on a BitNami EC2 instance. Users are able to
configure model settings, view results and stop/start a simulation run.

2. The Database (DB): All simulation data, including configuration settings
and simulation results, is stored in an RDS instance configured to run a
MySQL database. The database enables read/write access from the User
Interface (to write configuration settings and to read simulation results)
and the Simulation Instances (to read configuration settings and write
results).

3. The Model Image (MI): The simulation code is stored as an image on an
Amazon Machine Image (AMI) component. When the AMI receives a
“launch” command from the User Interface, it generates a set of EC2
instances, each executing a copy of the simulation code.

4. The Simulation Instances (SIs): Simulation code is executed on a set of
EC2 instances running in parallel. Simulations read configuration data
from the database and write results to the database. On completion,
instances self-terminate.

BriCS: User & Developer Guide -2-

Dr John Cartlidge, University of Bristol, UK

Component Design:

1. The User Interface (Ul)

The UI web service will be written in Python using the Django framework using
the BitNami AMI. An elastic [P (EIP) address will be attached to the EC2 instance
hosting the U], enabling a fixed I[P / domain address. The Ul communicates with
the DB using Python’s MySQLdb library. Configuration data input by the user is
written to the database; results data is read from the database and presented to
the user graphically. When a user starts a simulation, the Ul communicates the
command with the MI to launch simulation instances. Communication with the
MI is performed using Python’s AWS Boto interface.

2. The Database (DB)

The DB uses MySQL hosted on an RDS instance. Any MySQL API can be used to
communicate with the database, e.g., MySQLdb for Python, or]DBC for Java. The
database stores configuration data and results data for all simulation runs.

3. The Model Image (MI)

The MI contains an image of the executable simulation code, stored on an AMI.
The AMI is used to launch SIs, when necessary. This can be performed manually
via the AWS console, or automatically using Python’s Boto framework.

4. The Simulation Instances (Sls)

Each SI runs executable simulation code. This code can be written in any
language, but Python is preferred for architecture homogeneity. The simulation
is launched with an id that is used to query the relevant DB data. Configuration
parameters are read from the database and results data are written to the
database.

BriCS: User & Developer Guide -3-

Dr John Cartlidge, University of Bristol, UK

Developer’s Guide: Setting up AWS components

1. Database EC2 Instance:
From AWS EC2 console, under NETWORKS & SECURITY, go to Key Pairs and create a new Key
Pair BoEkey. Save the download.

Go to instances and launch a Linux instance using BoEkey. Set instance to “terminate on close”.

Note the Security group being used by this instance. Go to Security Groups under NETWORK &
SECURITY, select the Security group, select Inbound and make sure there is a to allow SSH and
MYSQL connection.

Under NETWORK & SECURITY, go to Elastic IPs. Allocate a New address and then associate it
with this instance. This Elastic IP is referred to as the database instance address in this guide.

Create a folder BoE in your home directory and copy all the project files in there.

#secure the BoEkey, copy the setup script and connect to the database instance:
~/BoE/connect_db.sh <BoEkey> <database instance address>

#from the database instance, run set up script [select your own rootpassword for mysql root user]
./setup_db.sh rootpassword

This script installs everything necessary to set up the database. It will take some time to
complete.

Edit the script if you want to change the default passwords, usernames and database names.
By default, the script creates a database with the following user privileges:

mysql —uroot —p<rootpassword>

CREATE USER 'boeuser'@'localhost' IDENTIFIED BY 'boepassword’;
GRANT ALL PRIVILEGES ON *.* TO '<boeuser>'@'localhost' WITH GRANT
OPTION;

CREATE USER '<boeuser>'@'%' IDENTIFIED BY '<boepassword>";

GRANT ALL PRIVILEGES ON *.%x TO '<boeuser>'@'%' WITH GRANT OPTION;
exit

mysql -u<boeuser> —p<boepassword>

CREATE DATABASE boedatabase;

exit

Answer the MySQL configuration questions when prompted. The script will request you to
reenter root password. Select:

Change root password: '"n"

Remove anonymous users: "Y"

Disallow root login remotely: "Y"

Remove test database and access: "Y"

Reload privileges tables now? "Y"
When the script completes, the Database Server is complete.

Using the AWS EC2 console, save the instance as an image so that it can be restored at a later
date, without having to reinstall. From the EC2 console, right click on instance, then: Create
Image (EBS AMI). Give the image an easily identifiable name, such as: "BriCS DB Server".

Troubleshooting: It is possible for the script to fail if, for instance, it is stopped before
completing and then re-started. The most likely reason for it to fail is if mysqld is already
running. If this is the case, you will see an error of the kind:

ERROR 2002: Can’t connect to local mysql server through socket

BriCS: User & Developer Guide -4 -

Dr John Cartlidge, University of Bristol, UK

‘/var/lib/mysql/mysql.sock’.

To correct this, you need to stop the running mysql server:
Sudo /etc/init.d/mysqld stop

Then, re-run the set-up script. It should now succeed:
./setup_db.sh rootpassword

2. Bitnami Django EC2 Instance:

For the web server, we use a third party instance from BitNami that comes pre-configured with Django.
Go to

http://bitnami.org/stack/djangostack#cloudImage

Select “Cloud Server: Django Stack on Amazon”, then select the link to “Amazon EC2”.

Set the region to Europe (Ireland). Then, from the table choose a free ubuntu AMI from EBS. This
guide is known to work on DjangoStack 1.4.8-0 (64 bit) with python version 2.7.

Note that the username = bitnami. If this changes, then the scripts will need to be edited accordingly.
You will now be re-directed back to AWS instance wizard. Launch an instance using the BoEkey. This
instance will be used as the webserver. Give it a name such as: “BriCS WebServer”. You will now see
your instance launching in the AWS EC2 dashboard.

Note the Public DNS (referred to as the bitnami instance address in this guide).
Recommended: Associate an Elastic IP address, this will then be the bitnami instance address

Note the Security group being used by this instance. Go to Security Groups under NETWORK &
SECURITY, select the Security group, select Inbound and make sure there is a rule to allow SSH
connection and HTTP connection.

Then go to Security Credentials [accessed via your username drop down menu on top
navigation bar]

Note the following details:

+ Access keys: access key id and secret access key

+ Account identifiers: AWS account 1D

WARNING: The account credentials provide unlimited access to your AWS resources. Keep
them secret and safe.

From your local BoE folder open boto.cfg and update the keys:
aws_access_key_id = access key id
aws_secret_access_ key = secret access key

Then open webserver settings.py and update your owner_id variable.
owner_id = AWS account ID

Note: your account ID should contain digits only, do not include hyphens, i.e, enter 123412341234; not
1234-1234-1234

#From your local machine run ‘create_project.sh’ script to create a new project on the bitnami instance:
~/BoE/create project.sh <BoEkey> <bitnami instance address>

Press ‘Y’ when prompted to remove unwanted packages. The script will leave you remote logged in to
the bitnami instance.

#From the remote bitnami instance, run the web server:
sudo python apps/django/django projects/BoE/manage.py runserver
0.0.0.0:8000

#open a new terminal, connect to the instance and set BoE settings:

BriCS: User & Developer Guide -5-

Dr John Cartlidge, University of Bristol, UK

ssh -i <BoEkey> bitnami@<bitnami instance address>
sudo nano apps/django/django projects/BoE/BoE/settings.py

In the tuple DATABASES change the settings to:

ENGINE: django.db.backends.mysql

NAME: <boedatabase>

USER: <boeuser>

PASSWORD: <boepassword>

HOST: <database instance address>

TIMEZONE = 'Europe/London’
LANGUAGE_CODE = 'en-GB'

Save file.

#run script to install the simulations application webserver:
./install app.sh

Update the settings to tell the system where to find files and activate the app and the admin
site:

#open settings.py:
cd apps/django/django projects/BoE/
sudo nano BoE/settings.py

#set MEDIA_ROOT to ' /opt/bitnami/apps/django/django projects/BoE/media’
#set MEDIA_URL to ' /media/"’

#set STATIC_ROOT to '<django source files
directory>/contrib/admin/static’

where <django source files directory> is
/opt/bitnami/apps/django/lib/python2.7/site-packages/django
#under STATICFILES_DIRS tuple, add

'/opt/bitnami/apps/django/django projects/BoE/static’,

#under TEMPLATE_DIRS

add,' /opt/bitnami/apps/django/django projects/BoE/templates’,
#under INSTALLED_APPS tuple, uncomment 'django.contrib.admin' and add
'simulations’',

Save the file. Finally, we need to deploy files and settings. From the same directory, do:
#add the tables in the database. You will be requested for a username and password.
#Remember these credentials; they are later required to login to the web server.

sudo python manage.py syncdb

#get django to collect all the static files. Select 'yes' to overwrite.
sudo python manage.py collectstatic

From the AWS EC2 console reboot the instance (select instance, then actions: reboot)
The Web Server is now complete.
Save the instance as an image so that it can be restored at a later date, without having to

reinstall. From the EC2 console, right click on instance: Action: Create Image (EBS AMI).
Give the image an easily identifiable name, such as: "BriCS Web Server".

BriCS: User & Developer Guide -6-

Dr John Cartlidge, University of Bristol, UK

3. SMI (Simulation Model Image) Amazon Machine Image:

As explained below, we first create an Amazon Linux EC2 instance with the simulation model
installed. We then create an Amazon Machine Image (AMI) for this simulation model. The resulting
AMI will be the Simulation Model Image (SMI), which will be used to launch instances (Simulation
Instances) from the web server when required.

From AWS EC2 console, go to instances and launch an Amazon Linux instance using BoEkey.

Note the Security group being used by this instance. Go to Security Groups under NETWORK &
SECURITY, select the Security group, select Inbound and make sure there is a to allow SSH
connection.

Note the Public DNS (referred to as the smi instance address in this guide).

From your local BoE folder, open smi_settings.py and update all the variables.
Note: The Sim Model will not work if these settings are not correct. In particular, edit the:
db_endpoint = "<database instance address>"

webserver_public_dns = "<bitnami instance address>"

#run script to secure the BoEkey, copy sim model files and connect to the simulation model instance:
~/BoE/connect sm.sh <BoEkey> <smi instance address>

#from the remote simulation model instance, run the setup script to install and configure.
./setup sm.sh

Select 'y’ when prompted by the script.

Note: the above install script will delete itself after it has run. Your simulation model instance
is now complete.

Exit the instance from the command line.

Save the instance as an image:
Go to EC2 Amazon console, right-click on this instance and select “Create Image (EBS AMI)”.
Give the image an easily identifiable name, such as: "BriCS Sim Model".

The simulation model is now complete. BriCS is now ready to use. See User Guide for operating
BriCS.

About the Simulation Model:

The SMI contains a placeholder simulation model "boesimmodel.py" that multiplies two
numbers together. It uses a sleep loop to simulate a long-running process.

The simulation model reads in a parameters file containing two numbers in the form:
a=5b=6

The simulation then multiplies these two numbers together. The result is written to a results
file. The model iterates through a looped sleep cycle and reports an update status (% complete)
to the webserver.

When the SMI is launched, the simulation model is automatically started when the instance
boots. On boot, the file \etc\rc.local automatically runs the script "launchboe.py". This launcher
queries the Database Server to see if there are any simulations to run. If not, the instance will
shutdown. Otherwise, while there are still simulations to run, the launcher will continue to get
the next parameters file and pass it to "boesimmodel". The simulation model then runs.

The simulation model in file "boesimmodel.py" is simply a placeholder. You can replace this file

BriCS: User & Developer Guide -7-

Dr John Cartlidge, University of Bristol, UK

with another simulation model of your choice. To change the model, it will be necessary to
launch a new instance, configure the SMI and then create an image.

How to:

Update webserver instance address:

If the webserver instance address has been changed then this would need to be updated in the
simulation model image.

To do this, launch an instance of the simulation model image, ssh into it and edit the

smi settings.py file by setting the webserver public dns variable to the new address.
Create an Image of this and use the newly created AMI to launch simulation model instances in
future.

Update database instance address:
If the database ip address has been changed then this would need to be updated in the
simulation model image and the bitnami django webserver.

To update the address in the simulation model image, follow the 'update webserver instance
address' and change the rds_endpoint variable instead of webserver public dns
variable.

Then to update the address in the bitnami django webserver, ssh into it and edit the settings
file:

sudo apps/django/django projects/BoE/BoE/settings.py

Under the DATABASES tuple, update the HOST address.

Use a different AMI to launch database instance:

SSH into the bitnami django webserver and edit the db_ami.id file:
sudo apps/django/django projects/BoE/db _ami.id

Change the max number of instances:

There are two places where the restriction has been applied. First change the max instances
variable in launch_instances. js. To edit this file use the following commads after
connecting to the bitnami webserver:

sudo nano

apps/django/django _projects/BoE/static/js/launch instances.js

sudo python apps/django/django projects/BoE/manage.py collectstatic

Then edit webserver settings.py and changemax instances there as well:
sudo nano
apps/django/django_projects/BoE/simulations/webserver settings.py

BriCS: User & Developer Guide -8-

Dr John Cartlidge, University of Bristol, UK

User Guide
Getting started

Logging in:

+ Access the website using URL http://<Elastic IP>/BoE/admin/ (see developer's
guide).

+ Login credentials will be the ones that were created at the first database syncronisation i.e.
when the command sudo python manage.py syncdb was executed for the first
time.

* After successful login the admin page will open.

Simulation page

+ To access this page goto http://<Elastic IP>/BoE/simulations/
+ This page will display all the available simulations models.

+ To download a the results or the parameters, simply click on it.

+ To modify a simulation or launch instances, go to simulation admin page.

BoE administration T T G e r'

Home > Simulations > Simulations

Select simulation to change [_Add simulation [+]

T %) (Go| 0 of 3 selected

Parameters Executed? Progress Results display Owner B): Executed?
All

sim2.params o completed - 2012-11-14 18:02:30.232037 simulation3.results ip-10-226-85-199 :

siml.params 9 completed - 2012-11-14 18:01:55.800383 simulation2.results ip-10-226-5-222

0000

parametersFilel.txt 9 completed - 2012-11-14 18:01:55.154415 simulation1.results ip-10-226-85-199

3 simulations

Launch Instances!

Figure: Simulation Page

Simulation admin page

+ Once logged in, simulations page can be directly accessed by going to
/BoE/admin/simulations/simulation.
¢ Alternatively from admin page under Simulation tab, click on simulation.

Actions:

+ These are located in a drop down list near the top left corner of the page. There are 4 actions.
To carry out an action first mark the simulations; from the drop down list select the
action and then hit 'Go' button next to the drop down list.

¢ Delete action will simply delete the selected simulations from the database.

+ To not execute some simulations when the instances are launched select Mark selected
as executed. This will change the status field of the selected simulationsto '0"
in the database.

+ In contrast, the “Mark selected as not executed” action will change the status of
selected simulations to ' 0' in the database, so they can be executed again. This will

BriCS: User & Developer Guide -9-

Dr John Cartlidge, University of Bristol, UK

also delete the owner, results and progress parameters of the selected
simulations.

Add a simulation:

* Click the grey 'Add Simulation' button near the top right corner.

+ Upload the parameters file. [For an example parameters file, use:
example_sim_params.txt]

 Hit save. This will add a new simulation in the database.

Launch instances:

* Click the 'Launch instances' button at the bottom of the page.

+ Enter the number of instances. Notice you won't be able to add more than 3 digits. To get rid
of'this, see developer's guide. Also the number of instances entered must be less than
the maximum number of instances (see developer's guide).

+ Optionally, enter the Amazon Machine Image Id to launch instances from. If no Id is
provided then the instances will be launched from the first available AMI.

+ Hit launch.

* Once all the instances have their status as 'running' an alert dialog will be display
notifying of the success.

+ The log file can be found in the log_files directory of the BoE project.

* You must manually refresh the page to see the status updates of running simulations

By Executed?
All

x
Lauch Simulation Model Instances

Number of Instances: ||

ami ID: ami-2b77715f

Launch!

Figure: Launch instances pop-up

Select Amazon Machine Image:

* When launch instances form is open, click 'Select' in front of ami-id field.

¢ In the new popup window, select the ami you wish to launch instances from.

* Alternatively, near the top left, enter the owner id of the ami. Hit Go and wait.

+ Ifyou wish to change the default owner id, change the owner id variable in
webserver settings.py.

BriCS: User & Developer Guide -10 -

Dr John Cartlidge, University of Bristol, UK

By Executed?

0 176.34.255.51 ok /avall;

Select the Amazon Machine Instance

Owner: | 273116070938
Name Description AMI-ID Status select
SMI Simulation Model Image ami-2b77715f available ©
SMI2 Simulation Model Image 2 ami-d57771al available ¢

SMI3 Simulation Model Image 3 ami-d77771a3 pending @

Figure: Select AMI pop-up

Database

Starting database:

+ To start the database go to http://<Elastic IP>/BoE/start database.

« This will check whether the current database is live or not, if not it'll launch an instance of a
previously saved database ami from db_ami.id in the BoE project folder.

+ The log file can be found in the log_files directory of the BoE project by the name of
db_start.log

Shutting database:

* To shutdown the database go to http://<Elastic IP>/BoE/admin.

At the bottom of the page there is a 'Shutdown Database' button which redirects to
http://<Elastic IP>/BoE/shut database. Only an admin can go this page.

+ This will create an AMI of the existing database instance, deregister the previous database
AMI (if any) and shutdown this existing database instance.

+ The log file can be found in the log_files directory of the BoE project by the name of
db_shut.log

BriCS: User & Developer Guide -11-

