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1 Introduction

In the past few years lattices have received considerable attention in cryp-
tography. There are different reasons for this attention:

– The discovery of polynomial-time algorithms in the quantum comput-
ing complexity model for integer factorization and discrete logarithms
[31] poses a security threat to the current public key infrastructure
that relies on the hardness of these problems. Although efficient quan-
tum computers are not currently known to exist, they might exist in
the future, and information on their development might even have
been withdrawn; and in any case the confidentiality of information
and integrity of digital signatures should be guaranteed in view of the
future technological developments. Lattice hard problems are believed
to resist quantum computing attacks.

– Some hard lattice problems have been proved to allow worst-case to
average case reduction. These results started with the breakthrough
result of Ajtai [1], and has lead to the first of a series of proofs of
security of cryptographic primitives.

– The consolidation of extremely efficient cryptographic primitives like
the NTRU cryptosystem and the NTRUSign signature scheme [18,16,17],
that recently have also seen the appearance of variants with proofs of
security [33]. These proofs do not apply to the original NTRU sys-
tem, but give an indication that the whole family is probably secure,
beyond what has been currently proved.

– Lattice-based cryptography is very versatile and can be used in a va-
riety of applications, from hash functions to cryptographic multilinear
maps, from attribute-based encryption to fully homomorphic encryp-
tion, and many more ([13,10,14,29,12]).



1. INTRODUCTION

Lattice-based cryptography is not the unique alternative to classic
public-key systems. Another suitable candidate is the so called code-based
cryptography. Error correcting codes are usually used to reliably transmit
information over a noisy channel, but they have shown their versatility
in complexity theory, and cryptography as well. We mention for example
the McEliece’s cryptosystem [24], based on the intractability of decoding
random linear codes.

Lattices and codes have similarities and differences. They are discrete
linear structures, with a nonlinear problem (discrete optimization through
a distance function) that accounts for their complexity. The distance def-
inition is where they are differentiated, and leads to different practical
applications.

Where the two interact it is expected that the complexity increases.
And while high complexity is bad where one aims at solving problems, it is
good where designing unsolvable problems is the aim, like cryptography.

We hence define Hybrid Lattices, that mix Euclidean and Hamming
distance. We show that these lattices model naturally a problem of poly-
nomial algebra, that was designed to provide a “hidden ideal” cryptosys-
tem. And our analysis shows that indeed such a cryptosystem has efficient
encryption and provable security (with inefficient proof up to now, but we
hope to improve it) but unfortunately the decryption is still not efficient
enough to be practical.

This abstract outlines the similarities and differences between lattices
(as used in cryptography) and codes, with a case study of the NTRU cryp-
tosystem. Then we define hybrid lattices, mixing Euclidean and Hamming
distance, prove how approximate optimization on them can be reduced
to lattice optimization in increased dimension, and show that the cryp-
tosystem GB-NTRU defined in [5] can be interpreted in this context, and
modified in a way that might give provable security.

We show that NTWO, a modification of GB-NTRU, can resist an
attack of [11] and is suitable to extend proofs of security for variants of
NTRU. Its security relies on the security of a hybrid lattice. It is not
efficient enough in decryption to be proposed as a realistic alternative to
NTRU, but is an interesting proof-of-concept as an application of hybrid
lattices.

We conclude discussing some open problems and directions for future
research.
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2. Q-LATTICES VS. Q-CODES, LEE VS HAMMING

Notations

Here we collect a set of basic notations and conventions used in the paper.

– Z denotes the integers, Zq denotes Z/(q).
– Tacit maps Zq → Z, mapping a class to a minimal weight represen-

tative. These are of course not homomorphisms, but are compatible
with sum in a restricted range.

– A q-weight w on Z is a map w : Z → R that is non-negative, sym-
metrical, subadditive, (i.e. w(x + y) ≤ w(x) + w(y)), and w(x) = 0
implies x ∈ qZn.

– Lattices are integer lattices, i.e. subgroups of Zn. A q-lattice is a lattice
that contains qZn.
A q-weight defines a (q)-pseudo-distance on Zn, (the distance is the
weight of the difference). The weight may be a norm (e.g. Euclidean)
or not (e.g. Hamming). The weights are not necessarily uniform for
every coordinate (this is the key to consider hybrid lattices).

– Vectors are denoted by bold lower-case letters, e.g. v,w. A polynomial
f , when used as vector of coefficients, is denoted with f without further
mention.
Concatenation of vectors is denoted v ? w; if a, b are the weights of
v,w the weight of v?w is denoted by a?b (this operation depends on
the context; for example, if the context of the merge is the Euclidean
norm, then a?b =

√
a2 + b2). The vector ei denotes the ith coordinate

vector, (0, . . . , 0, 1, 0, . . . , 0).
– Lattices are represented as matrices, the lines being a set of generators

(mostly a basis). Lattices can be composed, and are shown as block
matrices, blocks being lattices.

2 q-Lattices vs. q-Codes, Lee vs Hamming

Lattices used in cryptography are almost always q-lattices. Notice that a
q-lattice is always of full rank, and a full-rank integer lattice is always a
q-lattice, with detL = q, but usually q is taken much smaller than detL.

A q-code is a submodule of Zn
q , and there is an obvious 1-1 corre-

spondence between q-codes and q-lattices (see e.g. [27]). The difference
between the two mainly consists in the metric used: Euclidean vs. Lee or
Hamming ([20]). To unify the viewpoints, a submodule of Zn

q is seen as a
submodule of Zn, and a weigh on a q-code is a q-weight on a q-lattice.

The most important problems in the algorithmic study of lattices are
the Shortest Vector Problem, SVP, i.e. given a lattice L we are asked to
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3. FOUR VIEWPOINTS ON NTRU

find the shortest nonzero vector of L and the Closest Vector Problem,
CVP, i.e. given a lattice L and a target vector v ∈ Zn we are asked to
find the lattice element with a minimal distance to v. We can rephrase
the CVP as the Smallest Residue Problem (SRP): given a lattice L and
a target vector v ∈ Zn, we have to find the smallest vector v′ ∈ Zn such
that v − v′ ∈ L.

In the code setting, the corresponding problems are the Minimal
Weight Codeword problem (MWC), and the Nearest Codeword Problem
(NCP). With the Lee weight these are substantially the SVP and the CVP,
except that the SVP for q-lattices might be a trivial solution, i.e. a qei. In
that case, it is tacitly assumed that the SVP means finding the shortest
non-trivial solution. The CVP instead does not have exceptions.

Another small difference is that usually the Lee and Hamming dis-
tances are defined using the l1 distance instead of the Euclidean l2 dis-
tance (the difference is a

√
n factor). This means that any algorithm for

approximate CVP or SVP gives an approximate NCP or MWC, since
√
n

factor is usually considered small enough.
Lee and Hamming distances are instead quite different objects for

distance algorithms, and using directly lattice algorithms to solve an ap-
proximate NCP in Hamming distance in a q-code is not simple. Only if it
is already known that the expected solution of a Hamming MWC or NCP
has very small coefficients one can use a lattice algorithm.

Note also that in Hamming MWC or NCP using l1 or l2 does not
matter: for vectors with {0, 1} coefficients, l1 and l2 norms are different,
but the comparison is the same. This is however not true for Lee.

3 Four Viewpoints on NTRU

The NTRU cryptosystem ([18,16,15,17,33,22]) has become the leading
candidate for a replacement of the standard cryptographic public key in-
frastructures based on factorization and discrete logarithm, in view of
possible future technological advances that might make quantum com-
puting at large scale realistic, and hence polynomial attacks through Shor
algorithm [31] possible.

We refer to [28] for the exact definitions, and give here only an outline.
NTRU can be seen in four different ways, giving a nice illustration of

the analogy between lattices and codes.

1. As a ring cryptosystem; let G = Z/(n) be a cyclic group, A = Zq[G] =
Z[X]/(q, xn − 1) f , g elements of A, invertible, sparse (with a prede-
termined number of monomials), with “small” coefficients (see the
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4. HYBRID Q-LATTICES

details in the quoted references, but “small” mostly means in {0, 1}
or {0, 1,−1}), p a small element invertible in A (usually p = 2, 3 or
x − 1); f should be chosen to be invertible mod p (here we use our
“tacit” modular conversions).
Then h = pgf−1 is the public key; a message m ∈ A is a sparse
polynomial with “small” coefficients; to encrypt m one chooses a ran-
dom sparse polynomial r ∈ A with small coefficients, and transmits
c = hr+m. With a suitable choice of the smallness parameters, m can
be recovered from c with high probability, using the fact that hf = pg
and reducing cf (interpreted as integer) mod p [18,17].

2. NTRU can be seen as a q-lattice cryptosystem [6]; consider the q-
lattice CS(h) ⊆ A ⊕ A, i.e. the submodule generated by (h, 1) (the
Coppersmith-Shamir lattice, also called the NTRU lattice). It contains
(g, f) as short vector (as shortest vector, under randomness assump-
tions). Moreover (m,−r) is (with extremely high probability) the SRP
solution for (c, 1). Hence both the private key and the message are pro-
tected by hard lattice problems. The lattice protecting the key and
the message is the same.
This is the approach that allows most of the current cracking ap-
proaches, through standard lattice problems, hence it is the most
common one ([6,11,19,9]).

3. The close similarity between q-lattices and q-codes allows to see NTRU
as Lee-metric q-code. It is even the most sensible approach, except
that one relies on q-lattices for attacks to q-codes anyway.

4. NTRU can also be seen as (Hamming distance) q-code cryptosystem:
the minimality of (g, f) and (m,−r) is true not only in the Euclidean
distance, but also in the Hamming distance. (Note that this minimal-
ity of (g, f) and (m,−r) is only statistically true, very special cases
can be constructed in which this does not hold, even in the Euclidean
distance.)

We have never seen these two last approaches mentioned, but they are
both straightforward and completely useless, since they are usable neither
for decryption nor for attacks, as for codes there is no tool as powerful as
LLL lattice reduction and its variants. But they illustrate a point, that
we use for generalizations.

4 Hybrid q-lattices

Bringing q-lattices and q-codes into a common framework allows the def-
inition of a mixed structure, Hybrid Lattices.
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4. HYBRID Q-LATTICES

A hybrid q-lattice is a q-lattice that uses different q-weights in different
components, for example Euclidean, lp, l∞, Lee and Hamming (Euclidean
and Hamming being the core examples); this allows a unified frame for
q-lattices and q-codes.

More formally, a hybrid q-lattice is a q-lattice in Zn in which is defined
a q-weight as follows:

– A weight vector W = (wi) is defined; each wi is a q-weight in the
ith component. If x is (x1, . . . , xn) then W(x) is (w1(x1), . . . , wn(xn).
Euclidean, Lee or Hamming are the usual choices.

– A global norm ‖ ‖ is defined (usually the Euclidean norm) .

– Given v ∈ Zn, a (global) q-weight is defined as ‖W(v)‖

This definition allows to handle structures that mix q-lattices and q-
codes. Remark that if every component is Hamming, the global distance
is the square root of the usual Hamming distance. The Lee distance does
not have such a simple expression, the usual Lee and Hamming distance
are recovered using the l1 norm as global norm.

We use this concept to study a cryptosystem that was first sketched
in [5] as a generalization of NTRU using a private quotient of a group
ring, and that can be analysed with a mix of a lattice and a (Hamming)
q-code.

Roughly speaking, the private kernel is used as a source of “errors” in
the key generation, and, consequently, it produces “errors” in the encryp-
tion, located in the same place. Hence the holder of the private key knows
both the error locator and the short vector in the unperturbed lattice,
while the attacker only knows the perturbed lattice. Details will be given
later.

Approximate SVP and CVP for Hybrid Lattices. If a hybrid q-
lattice has only Euclidean and Lee distance components, lattice reduction
algorithms can be used to solve approximate SVP,CVP and SRP; one has
just to discard, in the SVP, the possibly shorter vectors in qZn, that may
have weight zero.

We show here a reduction of the approximate SVP for hybrid lattices
L ⊆ Zr+s when the first r components are Euclidean and the last s are
Hamming, and the projection Zr+s → Zs maps surjectively L to Zs. CVP
and SRP are similar.

Generalizing a similar reduction when the projection is not surjective
is a work in progress.
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5. VARIANTS OF NTRU

In this case, L can be represented as[
A 0
B I

]
with the first column block Euclidean and the second Hamming.

We expand the lattice, depending on q, by choosing an expansion
factor m and a set of q-interpolators (q1, . . . , qm). Let q′i be the inverse of
qi (mod q).

The q-lattice L of dimension r + s will be replaced by a Euclidean
lattice L+ of dimension r + ms, in which the Hamming part is repeated
m times 

A 0 0 . . . 0
B q′1I 0 . . . 0
B 0 q′2I . . . 0
...

...
...

. . .
...

B 0 0 . . . q′mI


and we have a projection map Zr+ms → Zr+s sending the concatenated
vector (w,v1, . . . ,vm) (w of length r, every vi of length s) to (w,

∑
qivi).

This map sends L+ onto L.

We prove, with an explicit construction, that every vector c = b?h ∈
L (b of Euclidean weight wb and h of Hamming weight wh) has an inverse
image c̄ in L+ of Euclidean weight wc such that wc ≤ wb ? (ξwh), with ξ
that can be computed from the qi and is independent of the dimensions
r and s. (The proof is omitted in this abstract).

Given the qis the value of ξ can be computed for (r, s) = (0, 1), and
also the expected average value ξ′ can be easily computed (at least for
small q and very small m, as they are usually). Hence given q one can
either find an optimal qi or check the quality of a heuristic choice (q1 can
always be put equal to 1). This allows to evaluate the tradeoff between
increased lattice expansion and increased weight expansion.

5 Variants of NTRU

In this section we describe different variants of NTRU that are easy to
design using a different ring A. In the commutative case, V (A) will denote
Spec(A), the associated algebraic variety. We will use freely the algebraic
geometry language (points, support, etc.).
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5. VARIANTS OF NTRU

Group variant. One can use a different group, for example a product
of cyclic groups (A in this case is a quotient of a multivariate polynomial
ring). This approach is not convenient, since in this way some weaknesses
are introduced, see the Gentry attack below. Other (non-commutative)
groups have been proposed, without much success up to now.

These more general NTRU variants, have a dimension (as free Zq

module) and an order (the maximum order of the elements of the group).

NTRU+ and NTRUs. The NTRU cyclic group ring algebra is just
Zq[X]/(xn − 1). One might consider other quotients of Zq[X]/(f), but
to generalize NTRU it is necessary that multiplication by x is an isome-
try. The only other possible choice is hence xn + 1. We call this variant
NTRU+.

If n is odd, Zq[X]/(xn+1) may be mapped isomorphically to Zq[X]/(xn−
1) sending x to −x; if n is the product of an odd number and a power of 2
it might be decomposed in two parts, one corresponding to the odd part
and the other corresponding to the power of 2, so it is really something dif-
ferent only for n power of 2. Notice that since x2

r+1−1 = (x2
r−1)(x2

r
+1),

the NTRU ring for n = 2r+1 can be split as direct sum of two rings: one is
an NTRU ring, the other is an NTRU+ ring, both for n = 2r. Considering
this, NTRU+ in dimension 2r has order n = 2r+1.

This variant has been used by Stehlé and Steinfeld in [33]. They
slightly modify parameters, key generation and encryption to obtain a
version that allows a proof of security through reduction of worst-case to
average-case complexity. More precisely

– Use NTRU+ in dimension n = 2r, with q such that 2n divides q − 1.
– The encryption is made as c = m+pe+hr instead of c = m+hr, with
e, r random (from appropriate distributions). The additional term e
is required to achieve IND-CPA security.

– Special sampling rules are used to satisfy the results concerning worst-
case to average-case reduction (this is a moving target, and new results
seem to imply that these rules might be relaxed).

The decryption through the private key remains unchanged. We call
this version NTRUs.

Parameters determined using the performance of the current state of
the art of lattice reduction and CVP algorithms has allowed an implemen-
tation that is reasonably efficient, although not enough to be considered
practical [4]. Recent results however might allow to improve some param-
eters, resulting in increased efficiency.
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6. NTWO, A HYBRID LATTICE CRYPTOSYSTEM

6 NTWO, a Hybrid Lattice Cryptosystem

The cryptosystem that we now call NTWO has been first sketched in
[5] with the name GB-NTRU, and defined as a ring cryptosystem. It
has been later reformulated as a hybrid lattice cryptosystem, based on
bivariate polynomial NTRU, and renamed NTWO, but never published
(it has been exposed at some poster sessions).

We reformulate it now, changing the encryption adding an extra pseudo-
random term, considering as basis the univariate or bivariate NTRU rings,
or NTRU+ rings. To simplify the discussion, we suppose p = 2. We will
use GB-NTRU to refer to the version of [5] and reserve NTWO for the
current, modified formulation.

Originally, the NTWO name was adopted since we mainly regarded
the bivariate version, (the main reason is to allow smaller q with respect
to the dimension). We keep it also for the univariate case, that in the
current discussion is important too. In the bivariate case, we suppose
for simplicity that both variables have the same minimal polynomial,
although the general case has been tested too.

NTWO as ring cryptosystem

The basic idea, in the ring setting, is to have two rings, the public one, A,
being the NTRU ring (univariate or bivariate, the NTRU or the NTRU+
ring) and the private one, Ā = A/I being a quotient of A modulo a
small private ideal I, “small” being its dimension as Zq-vector space, or
equivalently its “support”, i.e. the complementary of the zero locus (on
the algebraic closure).

The modulus q is a prime number (it is possible to generalize to q
composite, but this will just complicate the geometry and obscure the
ideas) and we further assume that all the points of V (A) are Zq rational.
This means that the order of A should divide q − 1.

The ideal I may be any ideal, but it is empirically necessary that
the support does not contain any point whose coordinates are in the set
{1,−1}. This condition is a technical need, because the monic univariate
polynomials with support in {1,−1} have coefficients in {1,−1}, and this
makes decryption harder and key attacks easier.

The private ring is used to prepare the public key and to decrypt; the
public ring is used for encryption.

As we did for NTRU, we do not specify here what is “small”, but of
course exact specifications are needed, how f , g, r, I, e, etc. are chosen
randomly, once A and p are fixed.
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6. NTWO, A HYBRID LATTICE CRYPTOSYSTEM

Key generation. The public key is generated as in NTRU as h̄ = pg/f ∈
Ā, and is lifted to h ∈ A adding to h̄ a random element α ∈ I (but with
the condition that neither h nor α has a zero. The secret key consists of
(f, g, α). Note that α can be deduced from f , g and the public key h, and
I is generated by α.

Encryption. To encrypt, we use a modified form of NTRU+ encryption.
More precisely, given a message m ∈M, we compute a random r ∈ A and
a pseudo-random e (it should be computed via a secure hash of m, so that
it can be recovered knowing m but not conversely). Then the cryptogram
will be hr +m+ pe (remark that this is similar, but not identical to the
e used in NTRUs. Smallness conditions similar to NTRU (or NTRUs)
should hold, to allow decryption. We don’t define them here, but are of
course essential.

Decryption. Decryption of a cryptogram c is done in two steps. The first
step, computes cf . The result of the first step is not fm+pgr as in NTRU,
but it is fm + pgr + pfe + α′, where α′ = frα is a (random) element
of the private ideal I (a random “error” whose location is known). This
“error” is removed through a solution of an approximate CVP (see [3]) in
the private q-lattice I (it is assumed that the key creation parameters are
such that fm + pgr + pfe is statistically short). Then m is recovered as
in NTRU, through removal of multiples of p hoping (i.e. proving that the
opposite event is extremely unlikely) that no carry has messed with them.
Recovering m allows to find e (re-hashing m) and r. Checking that c has
been produced conforming to the specifications allows to detect possible
attacks based on a CCA.

Decryption may fail for two reasons: either the approximate CVP algo-
rithm fails to find a sufficiently small vector, or the vector found is smaller
than fm+ pgr + pfe. This for example would be the case if the support
of I contained (±1,±1), a possibility that we have excluded. Moreover
the decryption may fail for the same reasons why NTRU may fail, i.e. the
heuristics extracting fm mod p from fm+ pgr + pfe ∈ A fails.

NTWO as (Hybrid) Lattice Cryptosystem

Having two different rings, we have two different lattices, both public.
One describes the message encryption, and the other describes the key
generation. NTRU has just one, that is used for both, and this is a kind
of weakness: making a key that is at the same time robust for key attacks
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6. NTWO, A HYBRID LATTICE CRYPTOSYSTEM

and message attacks, and still allowing decryption, is a difficult balance
for NTRU.

The public key h can be used to build a Coppersmith-Shamir lat-
tice, like the NTRU lattice, and this can be used for message attacks. A
different one has to be used for key attacks.

Message attack Encryption is more or less equivalent to NTRU encryp-
tion. The addition of the extra e has as only consequence that computing
a SRP for the cryptogram m + pe + hr with respect to the public CS
lattice is expected to give (m + pe, r). From this m is easily recovered.
The task is however harder than the key attack for NTRU, since m+ pe
is larger than m.

Key Attacks A SVP for the public NTRU lattice does not give any-
thing usable to recover the private key, consisting of f, g, α. Recall, α is
a polynomial whose support is the support of the private ideal, and the
attacker only knows that its support is small. This means that, denot-
ing by λP the polynomial whose value is 1 in a point P of V (A) and 0
elsewhere, we have α =

∑
P aPλP and the Hamming weight of the vector

a = (aP ) is the cardinality of the support of I. The λp are called Lagrange
Interpolators, and they form a Zq-basis of the ring A.

Hence to recover the private key, one has to recover (f, g, α), that
we represent as a vector f ? g ? a; so we need an extension of the CS
lattice, the LCS lattice (the Lagrange-Coppersmith-Shamir lattice) that
we define here. It is a hybrid lattice in A⊕A⊕A, in which the first two
components have Euclidean weight and the third has Hamming weight;
it is defined with blocks as follows:qI 0 0

H I 0
L 0 I


in which H represents the monomial multiples of h, and L has the rows
representing the λP as sum of monomials. This is not only 50% larger
than the CS lattice, but being a hybrid lattice with a Hamming block
special algorithms should be used.

Key Attacks from Partial or Special Information. We omit the
proof of the following results, that are relatively simple:

– Knowing f and g allows to find α computing h− h̄, and I as the locus
where gf−1 differs from h.
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– Knowing I, recovering f and g still requires to solve a SVP in a
(standard) q-lattice, obtained from the LCS lattice preserving just
the rows corresponding to λP where P is in the support of the ideal;
hence a problem harder than an NTRU key recovery problem.

– Knowing I and f (or g) still requires a SVP on a q-lattice with halved
dimension with respect to the CS lattice.

– In the case that α has been created as
∑
apλp and the ap are small,

recovering the private key means solving a SRP in LCS with Euclidean
norm.

Chosen Ciphertext Attacks. The decryption procedure requires that
after finding m one recovers e (hashing m) and r (by difference and divi-
sion by the public key ph). If r does not conform to the specifications of
the protocol, this means that extra errors have been introduced, and the
message is probably part of a side-channel attck. Hence the decryption
should be considered a failure.

If the final recovery of e and r is skipped, an easy CCA can be suc-
cessful and decides if a point is in the private ideal: adding cλP to a
valid cryptogram, produces another cryptogram whose decryption gives
the same message if and only if the interpolator is in the private ideal (if
not, the result will be almost surely a decrypting failure); however, in this
case the random element r′, deduced from the manipulated cryptogram,
also has a multiple of λP added, hence cannot be small (the only inter-
polator with almost constant coefficients is the interpolator of one of the
points that we have excluded from the private ideal).

This is the main reason why e in the encryption protocol has to be
deduced from the message m, instead of being determined randomly.

7 The Gentry Attack

NTRU can be subject to a class of homomorphism attacks, whose proto-
type is discussed in [11]. We discuss the Gentry attack for NTRU, NTRU+
and NTWO in the same context, just using the fact that they are based
on a quotient ring A of a group ring, that identifies a lattice L.

The attack can be mounted whenever there is a surjective homomor-
phism from an NTRU-like ring to an NTRU-like ring, that is “locally”
an isometry, i.e. whenever the image of an element of weight one is an
element of weight one. These homomorphisms should not be injective,
since in that case it will be an isomorphism and an isometry with the
image. In the case of “classic” NTRU such homomorphisms exist when
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the dimension n is composite, since if n = cd then xc − 1 divides xn − 1;
and this is the case considered in [11]. This falls into two subcases, the
first one is n = cd with c, d coprime, and the second one is n power of
a prime number – notably 2 being the only reasonable option. In either
case, if a factor is small, (either d or 2) one can attack both the key and
the message through a direct attack to the quotient, that is of smaller
dimension, and then lifting the result to the full lattice using different
techniques, as sketched in [11].

The attack may fail either by failing the SVP (for the key attack) or
the CVP (for the message attack) in the quotient, or because the result
is not the image of the result of the corresponding original problem. The
first issue can be solved using stronger algorithms (recall the dimension
of the quotient lattice is sufficiently small), but the second is much harder
to deal with. The paper reports a high rate of total success, i.e. recovering
either the key or the message, for n up to 256.

In the case of NTRU+, if n is odd, nothing changes, since the map
x → −x maps the NTRU+ ring to the NTRU ring. If the dimension is
2n there is no suitable homomorphism.

In the bivariate case, the attacker has more powerful weapons, since
there are many suitable homomorphisms from the bivariate NTRU ring
Z[x, y]/(xn − 1, yn − 1) (this is the only case that is worth considering)
to a univariate NTRU ring Z[t]/(tn − 1); the suitable maps are all the
maps φr,s : x→ tr, y → ts but the pairs (r, s) and (ar, as) have the same
kernel, hence we have n + 1 homomorphisms. Although even a success
with one image (not considering the lifting) proves the setting insecure,
detecting correctly every one of the different n+1 images allows a recovery
of the information through linear algebra (the resulting system is even
overdeterminate).

We tested several cases with p = 2 and n = 13, 17, 19, 23, that are the
reasonable parameters to test (giving global dimension of the NTRU ring
169, 289, 361, 529), and we had a high rate of complete success (correct
identification of all the quotients), just with LLL reduction for SVP and
the algorithms of [3] for CVP, and almost no example of complete failure.
So bivariate NTRU has to be considered completely insecure.

The scenario changes with GB-NTRU, (and much more with NTWO).
Now the key attack and the message attacks require to consider different
lattices.

We first analyse the message attack, with the CS lattice. Here ex-
perimentally the attack mostly succeeds for GB-NTRU, that is similar
to NTRU in the encryption: we have large rate of full successes, and a
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general recovery of at least one, but often several, images of the message.
So GB-NTRU has to be considered broken. Moreover (with p = 2) it is
very easy to deduce that the attack succeeded, since in this case the im-
age of the message is a vector with non-negative coordinates (this being
invariably the sign of success).

This is radically different for NTWO: the addition of e in the en-
cryption makes the possible successes unrecognizable, but with a suitable
choice of the parameters for the variability of e one always has failure
because the image of the message is not the shortest residue with respect
to the quotient lattice.

For the key attack, there is no difference between GB-NTRU and
NTWO; we have to map the LCS lattice, from bivariate to univariate.
Now the problem is more difficult, since the CS part can pass to the
quotient, but this is not true for the Lagrange part. A λP mapped to uni-
variate is not a univariate interpolator, but is a product of two univariate
interpolators. Hence, while the CS part can be reduced from dimension
n2 to dimension n, the L part is reduced from n2 to approximately n2/2,
hence it remains too hard.

We can hence conjecture that (bivariate) NTWO is practically secure:
it is harder than bivariate NTRU. Extrapolating, we may guess that uni-
variate NTWO is more secure that NTRU. We give further hints in the
next section.

8 Lattices and Security

The security of a cryptosystem relies on two aspects. The theoretical
aspect is a proof of a theorem (often based just on a conjecture) that
some problem is (asymtoptically) hard in the average case of a suitably
chosen subset of problems. The practical aspect relies on the current state
of the art, algorithmic and technical, that may give an estimate of the
hidden constants of the asymptotic formulas, in terms of time needed to
solve a hard problem. Looking at the theoretical aspect more in detail,
one wants to design systems that are “provable secure”, i.e. that admit
a reduction to some “assumed hard” problems. In particular this means
that even a provable secure system could be insecure, for example if the
underlying hardness assumption turns out to be false.
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Lattice cryptosystems are especially prized since they have been proved
secure, i.e. hard to break on the average, based on the assumption that
the underlying lattice problems are hard in the worst-case.1

These reduction theorems mostly rely on two hard problems: the SIS
problem [1] and the LWE problem [29]. The former one is the problem
of finding short (nonzero) vectors in random lattices; the latter asks to
recover a secret s from a sequence of noisy random linear equations in
s. Both of them admit generalizations for (cyclotomic) rings [23,25] and,
more generally, for large enough abelian group rings ([8]).

To deduce that an explicitly chosen parameter set gives rise to a prac-
tically secure cryptosystem is however necessary to have heuristic esti-
mates of the difficulty of solving a worst case problem in a given finite
set of problems. This difficulty can only be estimated by an analysis of
the performance of the state-of-the-art algorithms, extrapolating their be-
haviour from the feasible problems to the unfeasible ones. The reduction
of worst-case to average-case complexity guarantees the likelihood that a
computational experiment (performed on a random choice) gives results
applicable to any other random choice.

The weak point is that it is impossible to prove that the performance
of an algorithm is optimal, since it is always possible that an algorithmic
or a technological advancement or a new theorem allows an unsuspected
improvement. This happened for example with the introduction of the
LLL algorithm of [21] and related variants [30] and optimized implemen-
tation [32], and might happen with quantum computing [31].

9 Security of NTWO

While a proof of security of NTWO (univariate and bivariate, mainstream
variant or NTRU+ variant) should rely on a formal reduction of worst
case to average case, and on a practical analysis of the known algorithms
and their efficiency, this is still a work in progress. We list here a few facts
that show that some specially selected keys coupled with the disclosure of
some information provides security greater than the corresponding NTRU
or NTRU+ key. This is not satisfactory since in this way we obtain results
much weaker than what we expect to obtain in a near future, but it is all
that we have now.

1 Hardness results in cryptology are often called “Assumptions”; a proof of reduction
is a theorem, but the conclusion that a problem is hard is just an assumption, based
on the (widely shared) assumption that another problem is hard. And at best this
is reduced to the basic assumption, P 6= NP .
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– The security of NTRUs relies on two assumptions, namely the Ring
Learning With Errors, RLWE, and the Decisional Small Polynomial
Ratio, DSPR [33], [22]. The main difference with NTRU is in the key
generation, in that f and g are sampled from a discrete Guassian
distribution with a large enough standard deviation. In this way the
DSPR ensures that the public key h is statistically close to uniform.
The encryption is identical of that of NTWO, except that e is again
sampled from a Gaussian distribution, and the indistinguishability of
the ciphertext from a random element in A is deduced from RLWE.

– At a high level, we would like to formally prove the security of NTWO
relying on two assumptions. We can call the first one noisy-DSPR.
More precisely we relax the hypothesis of DSPR and consider f, g as
random small polynomials in A, instead of being generated from a
Gaussian distribution, as in the “classic” NTRU, and then we add
to h̄ = g/f a small (in the Hamming distance) error α . Although
there is not a formal proof that h̄ generated as the quotient g/f is
indistinguishable from random in A, this problem remains unsettled
(in both of its versions, search and decision) after almost twenty years
of cryptoanalysis. So even disclosing the private ideal, we still need to
solve the original NTRU assumption. The second assumption should
be a variant of RLWE, that states that the distribution (h, hr+ pe) is
indistinguishable from uniform, where h is uniform in A and r, e are
small polynomials in A. For details about the right choice of e and r
see [2,26,7].

– Disclosing the private ideal, one still has to identify the coefficients of
α =

∑
aPλP , with P in the support of the ideal. This is a SV P in a

sublattice of the LCS lattice (limited to the rows with the λP in use).
The metric is Euclidean, with the columns corresponding to the 1 in
the λP rows, with weight very small (for example, 1/q)

Implementation, Experiments and Practical Security of NTWO

We have an experimental implementation of NTWO, that we used for
tests. The weak point of the cryptosystem is that decryption is slow, and
some ideals fail with non-negligeable probability to allow decryption. This
may happen for certain choices of parameters, but often with the same
choice of parameters it seems that some ideals perform well, and other
perform badly. We have been unable up to now to disclose a pattern. It
seems that the choice of f , g and α once the ideal points are fixed do not
have a similar influence.
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We plan to produce a technical report on the experiments, but up to
now they have been useful mainly to explore; for example, the addition of
a pseudo-randomization in encryption has been suggested by experiments
with the bivariate Gentry attack, and formalized in a way similar to
NTWOs just to try to match a provable security proof.

We also have an implementation of hybrid lattices SVP, that works
very well to crack the NTRU key in very small cases (5 × 5 being our
record for now).

If the ideal is too small doing an exhaustive search of the ideal (at-
tempting to crack the key considering every possible ideal of the expected
size) might be possible, and for very low dimension (up to 11 × 11 and
13 × 13) tuning the cardinality of the support of I to allow decryption
and at the same time discourage an exhaustive search for the ideal might
be challenging, but with 17 × 17 there is usually no problem. But the
choice of q too has a rôle.

Direct message attacks seem to be very hard (as expected) in these
cases.

Univariate NTWO+ is very promising too. Dimension 128 and q = 257
deserves to be explored well.

We have not yet experimented the bivariate NTWO+ in even di-
mension. Interesting cases to explore would be 16 × 16 (possible val-
ues of q = 97, 193, 257, 353, 449, 577, 641, . . . ) or 32 × 32, (q =
193, 257, 449, 577, 641, 769, 1153, 1217 . . . . One might also explore the
mixed cases 16×32, 16×64 and 32×64 (q = (257, 641, 769, 1153, 1409).
The case 64 × 64 is probably too large to be significant, the smaller the
dimension the easier is to see the problems). The advantage of bivariate
here too is the larger choice of q with respect to the same dimension in
univariate.

10 Work in Progress and Open Problems

Worst-Case to Generic Reduction for Hybrid Lattices

This would be the ideal completion of the proposal of hybrid lattices; the
analysis of injected errors seems to fit very well in the LWE setting, and
the analysis of NTRUs relies on a RLWE. He4nce extending it should be
possible.

Randomize m in Encryption

In the NTWO encryption m + pe + hr e is taken pseudo-random being
obtained as a hash of m. This is unsatisfactory, since the same message
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will always use the same e. Even if using a cryptographic hash might
ensure pseudo-randomicity, and the randomization given by r might be
enough, a proof of security might become more difficult.

A possible modification might be to randomize the message, using
random errors and an error-correcting code. So one migh have a public
ECC, encode the message m, add a fixed number of correctable random
errors obtaining m′, compute e from the modified message. Although
probably this might either not be necessary, or be insufficient, it is a
possibility to consider, and exhibits another mixed feature between lattice
cryptography and codes.

Reduction of q-codes

To decrypt NTWO the hard part is the SRP on the private lattice. This
currently is done reducing the corresponding lattice. This means reducing
a lattice of high dimension associated to a code of low dimension. This is
usually fast enough, but an algorithm performing a reduction directly on
the low-dimensional code should be much better.

Being able to work in a low-dimensional setting (the code, not the
space in which it is embedded) should allow to use ad hoc algorithms for
the CV P .

Impact of Private Ideals on Decryption

The interpolator of (1, 1) is the polynomial
∑
xiyj and its presence in the

ideal support usually makes the heuristics for decryption fail. This has
been already remarked, and taken into account.

The existence of a point (1, a) or (b, 1) in the support seems to produce
harder private lattices; especially if there are several ones. It might be
useful to avoid these points too. This deserves to be further investigated;
for now we don’t have collected any statistical evidence. Collecting a
large set of examples of ideals, and discovering relations between the
ideal quality and its geometric properties could be interesting.

NTWO signature

NTRU has a companion NTRUSign signature algorithm. NTRUs too has
a signature algorithm. A NTWOSign algorithm seems to be harder, but
the issue has not been investigated sufficiently, partly due the the several
signature variants that have been proposed.

We would like also to investigate other cryptographic applications of
hybrid lattices.
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Conclusions

We have defined hybrid lattices, mixing different weights, and shown that
their use might give new hard problems and might be used to modify
existing lattice cryptograpic protocols improving their security without
too much penalizing the performance, especially in encryption. This is
opens a new research area in an already trendy topic.
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26. D. Micciancio and C. Peikert. Hardness of SIS and LWE with small parameters.
In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, pages 21–39,
2013.

20



10. WORK IN PROGRESS AND OPEN PROBLEMS

27. D. Micciancio and O. Regev. Lattice-based cryptography. In D. J. Bernstein and
J. Buchmann, editors, Post-quantum Cryptography. Springer, 2008.

28. P1363.1-2008. Standard specification for public key cryptographic techniques based
on hard problems over lattices. IEEE, 2009.

29. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, May 22-24, 2005, pages 84–93, 2005.

30. C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algo-
rithms and solving subset sum problems. In Math. Programming, pages 181–191,
1993.

31. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

32. V. Shoup. Ntl: A library for doing number theory.
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