
Yang-Mills theory

Modern particle theories, such as the Standard model, are quantum Yang-
Mills theories. In a quantum field theory, space-time fields with relativistic
field equations are quantized and, in many calculations, the quanta of the
fields are interpreted as particles. In a Yang-Mills theory these fields have
an internal symmetry: they are acted on by a space-time dependant non-
Abelian group transformations in a way that leaves physical quantities, such
as the action, invariant. These transformations are known as local gauge
transformations and Yang-Mills theories are also known as non-Abelian gauge
theories.

Yang-Mills theories, and especially quantum Yang-Mills theories, have
many subtle and surprising properties and are still not fully understood,
either in terms of their mathematically foundation or in terms of their phys-
ical predictions. However, the importance of Yang-Mills theory is clear, the
Standard Model has produced calculations of amazing accuracy in particle
physics and, in mathematics, ideas arising from Yang-Mills theory and from
quantum field theory, are increasingly important in geometry, algebra and
analysis.

Consider a complex doublet scalar field φa; a scalar field is one that has
no Lorentz index, but, as a doublet, φa transforms under a representation of
SU(2), the group represented by special unitary 2 × 2 matrices:

φa(x) → gabφbx (1)

where g ∈SU(2) and the repeated index is summed over. If this is a global
transformation, that is, if g is independent of x, then derivative of φa have
the same transformation property as φa itself:

∂φa

∂xµ

→
∂gabφb

∂xµ

= gab

∂φb

∂xµ

(2)

However, this is not true for a local, or space-time dependant, transforma-
tions where

∂φa

∂xµ

→
∂gabφb

∂xµ

= gab

∂φb

∂xµ

+
∂gab

∂xµ

φb (3)

In order to construct an action which includes derivatives and which is invari-
ant under local transformations, a new derivative is defined which transforms
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the same way as φa:

Dµφa =
∂φa

∂xµ

+ (Aµ)abφb (4)

where Aµ is a new two-indexed space-time field, called a gauge field or gauge
potential, defined to have the transformation property

(Aµ)ab → gac(Aµ)cdg
−1

db −
∂gac

∂xµ

g−1

cb (5)

Now, under a local transformation

Dµφa → gabDµφb (6)

and so, Dµφa transforms in the same way as φa. This derivative is called a
covariant derivative.

A physical theory which includes the gauge field Aµ should treat Aµ as
a dynamical field and so the action should have a kinetic term for Aµ. In
other words, the action should include derivative terms for Aµ. These terms
are found in the field strength

Fµν =
∂Aν

∂xµ
−

∂Aµ

∂xν
+ [Aµ, Aν] (7)

which has the covariant transformation property

(Fµν)ab → gac(Fµν)cdg
−1

db (8)

where [Aµ, Aµ] is the normal matrix commutator. In fact, the simplest Yang-
Mills theory is pure Yang-Mills theory with action

S[A] = −
1

2

∫
d4x trace FµνF

µν . (9)

and corresponding field equation

∂Fµν

∂xµ

= 0 (10)

Solutions to this equation are known as instantons.
More generally, Yang-Mills theories contain gauge fields and matter fields

like φ and fields with both group and Lorentz or spinor indices. Also, the

2



group action described here can be generalized to other groups and to other
representations. In the case of the Standard Model of particle physics, the
gauge group is SU(3)×SU(2)×U(1) and the group representation structure
is quite intricate.

Yang-Mills theory was first discovered in the 1950s, at this time, Quan-
tum Electrodynamics was known to describe electromagnetism. Quantum
Electrodynamics is a local gauge theory, but with an abelian gauge group.
It was also known that there is a approximate global non-Abelian symmetry
called isospin symmetry which acts on the proton and neutron fields as a
doublet and on the pion fields as a triplet. This suggested that a local ver-
sion of the isospin symmetry might give a quantum field theory for the strong
force with the pions fields as gauge fields [O’Raifeartaigh, 1997]. This did
not work because pion fields are massive whereas gauge fields are massless
and the main thrust of theoretical effort in the 1950s and 1960s was directed
at other models of particle physics.

However, it is now known that the proton, neutron and pion are not
fundamental particles, but are composed of quarks and that there is, in
fact, a quantum Yang-Mills theory of the strong force with quark fields and
gauge particles called gluons. Furthermore, it is now known that it is possi-
ble to introduce a particle, called a Higgs boson, to break the non-Abelian
gauge symmetry in the physics of a symmetric action and give mass terms
for gauge fields. This mechanism is part of the Weinberg-Salam model, a
quantum Yang-Mills theory of the electroweak force which is a component
of the Standard Model and which includes both massive and massless gauge
particles.

These theories were only discovered after several key experimental and
theoretical breakthroughs in the late 1960s and early 1970s. After it be-
came clear from collider experiments that proton have a substructure, the-
oretical study of the distance dependant properties of quantum Yang-Mills
theory lead to the discovery that Yang-Mills fields are asymptotically free
[Gross, 1999]. This means that the high-energy behaviour of Yang-Mills fields
includes the particle like properties seen in experiments, but the low-energy
behaviour may be quite different and, in fact, the quantum behaviour might
not be easily deduced from the classical action. Confinement and the mass
gap are examples of this. The strong force is a local gauge theory with quark
fields. The quark structure of particles is observed in collider experiments,
but free quarks are never detected, instead, at low-energies, they appear to
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bind together to form composite particles, such as neutrons, protons and
pions. This is called confinement. It is possible to observe this behaviour in
simulations of the quantum gauge theory of the strong force, but it has not
been possible to prove mathematically that confinement is a consequence
of the theory. The same is true of the mass gap, it is known that parti-
cles have non-zero mass, and this is observed in simulations, but, there is no
known way of deriving the mass gap mathematically from the original theory
[Clay, 2002].

The symmetries of Yang-Mills theory can be extended to include a global
symmetry between the bosonic and fermionic fields called supersymmetry.
While there is no direct evidence for supersymmetry in physics, the indirect
case is very persuasive and it is commonly believed that direct evidence will
be found in the future. Often, supersymmetric theories are more tractable,
for example, Seiberg and Witten have found exact formula for many quantum
properties in N = 2 super-Yang-Mills theory [Seiberg & Witten 1994]. It is
also commonly believed by theoretical physicists that the quantum Yang-
Mills theories in particle physics are in fact a limit of a more fundamental
string theory.

Conor Houghton

Cross reference to entries on Instantons; Quantum Field theory; Matter,
theory of; Higgs boson.
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