
Instantons

A remarkable feature of the Yang-Mills action is that there are finite-action
topological soliton solutions to the classical field equations. These solitons
are known as instantons or, in early papers, as pseudoparticles. The Yang-
Mills action is important in particle physics; in particular, it describes the
behaviour of gluons, the particles which carry the strong nuclear force. Before
instanton solutions where discovered in 1975 by Belavin, Polyakov, Schwarz
and Tyupkin [Belavin et al. 1975], the Yang-Mills theory of the strong force
appeared to have a symmetry not found in nature. This was known as
the axial U(1) problem and was solved by ’t Hooft who realised that one
effect of the instanton solutions was to breaking this unwanted symmetry.
This was the first example of a extended classical solution having a physical
consequence in a field theory of particle physics.

In four euclidean dimensions the pure SU(2) Yang-Mills action is

S[A] = −
1

2

∫
d4x trace FµνFµν (1)

where µ and ν are space indices running from 1 to 4 and repeated indices are
summed. Fµν is a field strength tensor, a skewhermetian 2 × 2 matrix field
in four-dimensional space, related to a gauge potential Aµ by

Fµν =
∂

∂xµ

Aν −
∂

∂xν

Aµ + [Aµ, Aν] (2)

The action is invariant under local gauge transformations

Aµ → A′

µ = gAµg
−1 −

∂g

∂xµ

g−1 (3)

where g is a special unitary matrix function in four dimensions. Under this
transformation Fµν → F ′

µν = gFµνg
−1. One key consequence of this is that

Fµν not only vanishes when Aµ = 0, but also, whenever Aµ is a gauge trans-
formation of zero. This means that the asymptotic condition required for
finiteness of the action is that Aµ approaches a gauge transformation of zero:

Aµ → −
∂g

∂xµ

g−1 (4)
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for r =
√

xµxµ → ∞. Now, the group of special unitary 2 × 2 matrices is
topologically a three-sphere and so the gauge potential on the large three-
sphere at infinity gives a map from that three-sphere to the three-sphere
of values of g. Maps between three-sphere are classified topologically by a
single integer: the winding number. This integer, therefore, classifies finite-
action field configurations; in fact, it is the only gauge-invariant information
determined by the asymptotic field behaviour. The topologically nontrivial
stationary points of the action S[A] are instantons.

Since they are stationary points of the action, instantons obey the Euler-
Lagrange equation for the action:

∂

∂xµ

Fµν = 0. (5)

This is known as the Yang-Mills equation. It can be shown that minimal
action solutions obey a first order equation called the self-dual equation:

Fµν =
1

2
εµνλσFλσ (6)

where εµνλσ is totally skewsymmetric in its indices with ε1234 = 1. Solutions
to this equation obey the second order Yang-Mills equation. A solution with
winding number one is given by

Aµ = −
r2

r2 + R2

∂g

∂xµ

g−1 (7)

where R is an arbitrary scale and g has the hedgehog form

g =
x4

r
I2 +

i

r
(x1σ1 + x2σ2 + x3σ3) (8)

where I2 is the 2 × 2 identity matrix and the σis are the Pauli matrices. Al-
lowing for gauge equivalence, there is an eight-dimensional space of winding
number one instantons, four of these dimensions correspond to the choice of
position in space, one to the choice of scale and three to an overall group ori-
entation. These results are particular to SU(2), other groups can be studied;
the main difference is in the number of overall group orientation parameters.

The self-dual equations are integrable. In fact, many of the integrable
equations of mathematical physics can be derived from the self-dual equa-
tions by demanding that the solution has some translational or rotational
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symmetry. Because of this integrability, solutions to the self-dual equations
with winding numbers greater than one may be constructed, in principal, by
twistor theory and by algebraic methods [Christ et al. 1978]. There is also a
simple ansatz [Jackiw et al. 1976] but this does not give a general solution.

In the 1980s the self-dual equations revolutionised the study of smooth
four-dimensional manifolds: by studying the space of solutions to the self-
dual equations over different manifolds, it is possible to derive invariants,
known as the Donaldson invariants [Donaldson & Kronheimer 1990]. This
approach has since been largely superceded by Seiberg-Witten theory.

In the path integral approach to quantum field theory, physical values are
derived by certain weighted integrations over all possible field configurations.
These path integrals are often intractable and it is common to expand the in-
tegration about the stationary points of the action. This works because of the
way the action appears in the integrand of the path integral. Calculations of
this type are known as semi-classical calculations because they are effectively
an expansion in Planck’s constant, ~. This expansion must include a sum
over all possible stationary points and so, in Yang-Mills theory, it includes a
sum over instanton configurations. By studying the symmetry properties of
the measure in Quantum Chromodynamics, the Yang-Mills theory describ-
ing the strong nuclear force, it can shown that terms in this expansion break
the axial U(1) symmetry. This symmetry is unbroken if the instanton terms
are omitted. The symmetry breaking allows processes that violate baryon
and lepton conservation, however, the amplitudes for these effects are highly
suppressed. One useful approach is to consider these processes as tunnelling
events between different vacua, in fact, instanton calculations in quantum
field theory are very similar to WKB calculations in quantum mechanics.

While instantons provide a qualitative explanation for a host of phenom-
ena in Quantum Chromodynamics, useful quantitative results are not avail-
able within the semi-classical approach and, even qualitatively, instanton
calculations are not rigorous since they relate only to the semi-classical ap-
proximation; a truncation of the full quantum theory. The modern approach
to Quantum Chromodynamics is lattice QCD. It is possible within lattice
QCD to verify the original ideas about the role of instantons in the physics
of the strong force, however, there are limits to the precision with which the
lattice and semi-classical approaches can be compared [Negele 1998].

Finite action soliton solutions in other equation systems are sometimes
referred to as instantons. Examples include the finite action solutions to
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the forced Burger equation which arises in the study of turbulence and the
vortex-like solutions in the Abelian Higgs model which is related to condensed
matter physics. Instantons have many similarities to the lump solitons found
in certain sigma models.

Conor Houghton

Cross reference to entries on Solitons, Yang-Mills theory, Quantum Field
theory, Integrable models.
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