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First published December 5, 2012; doi:10.1152/jn.00873.2012.—Re-
cently, the SPIKE-distance has been proposed as a parameter-free and
timescale-independent measure of spike train synchrony. This mea-
sure is time resolved since it relies on instantaneous estimates of spike
train dissimilarity. However, its original definition led to spuriously
high instantaneous values for eventlike firing patterns. Here we
present a substantial improvement of this measure that eliminates this
shortcoming. The reliability gained allows us to track changes in
instantaneous clustering, i.e., time-localized patterns of (dis)similarity
among multiple spike trains. Additional new features include selective
and triggered temporal averaging as well as the instantaneous com-
parison of spike train groups. In a second step, a causal SPIKE-
distance is defined such that the instantaneous values of dissimilarity
rely on past information only so that time-resolved spike train syn-
chrony can be estimated in real time. We demonstrate that these
methods are capable of extracting valuable information from field data
by monitoring the synchrony between neuronal spike trains during an
epileptic seizure. Finally, the applicability of both the regular and the
real-time SPIKE-distance to continuous data is illustrated on model
electroencephalographic (EEG) recordings.

data analysis; synchronization; spike trains; clustering; SPIKE-
distance

MEASURES THAT ESTIMATE the degree of synchrony between two
or more simultaneously recorded spike trains are important
tools in many different areas of neuroscientific research (Kreuz
2011). Among many potential applications they can be used to
evaluate the role of synchronous neuronal firing in signal
propagation (Reyes 2003), to estimate the pairwise correlation
within a neuronal population (Pillow et al. 2008), or to quantify
the role of spike synchronization in feature binding (Singer
2009).

Some of the most widely used measures of spike train
dissimilarity depend on a parameter that determines the tem-
poral scale in the spike trains to which the measure is sensitive.
Examples include the Victor-Purpura spike train distance (Vic-
tor and Purpura 1996) and the van Rossum distance (van
Rossum 2001). Recently, the ISI-distance (Kreuz et al. 2007,
2009) and the SPIKE-distance (Kreuz et al. 2011) have been
proposed as parameter-free and timescale-adaptive alterna-
tives. These two measures are complementary to each other:
While the ISI-distance quantifies local dissimilarities based on
the neurons’ firing rate profiles, the SPIKE-distance tracks
dyssynchrony mediated by differences in spike timing. The

latter kind of sensitivity can be very relevant since coincident
spiking is found in many different neuronal circuits, e.g., in the
visual cortex (Priebe and Ferster 2008; Usrey and Reid 1999)
and in the retina (Meister and Berry 1995; Shlens et al. 2008).

In some situations it is sufficient to evaluate spike train
synchrony at a rather low temporal resolution, e.g., by means
of a moving-window analysis where the level of synchroniza-
tion within a certain interval is compressed into a single value
and then compared for successive intervals. On the other hand,
many applications require a high temporal resolution, e.g., in
order to detect replay of precisely timed sequential patterns of
neural activity (Ji and Wilson 2007), to track spike train
response variability within a neuronal population (Kreuz et al.
2009; Mitchell et al. 2007), or to understand the role of
synchronous firing in the neuronal coding of time-dependent
stimuli (Miller and Wilson 2008). In epilepsy research, a high
temporal resolution could help to gain a deeper understanding
of the neuronal spiking patterns involved in the different
phases of seizure generation, propagation, and termination
(Bower et al. 2012; Truccolo et al. 2011).

Previously, the Victor-Purpura and van Rossum distances
(as well as some other spike train distances) were compared
against the ISI-distance (Kreuz et al. 2007, 2009) and the
SPIKE-distance (Kreuz et al. 2011) regarding their capability
to evaluate the overall similarity of two or more spike trains.
However, the maximum possible temporal resolution is
achieved when one value of dissimilarity is calculated for each
time instant and a continuous time profile is obtained. In
contrast to the Victor-Purpura and van Rossum distances, the
ISI-distance and the SPIKE-distance can be calculated and
visualized in such a time-resolved manner. Yet, as already
noted by Kreuz et al. (2011), while the original definition of the
SPIKE-distance yields the expected results after temporal av-
eraging and also correctly reflects long-term trends by means
of a moving average, slightly unreliable spiking events lead to
spurious high instantaneous values. In the first part of this
study, we remedy this problem by considering spike time
differences between nearest spikes instead of separating dif-
ferences between preceding spikes and differences between
following spikes.

After improving the SPIKE-distance, we extend its applica-
bility to situations in which the degree of synchrony between
two or more simultaneously recorded spike trains is monitored
in real time. In the field of brain-machine interfaces this may be
a promising approach to the rapid online decoding of neural
signals needed to control prosthetics (Hochberg et al. 2006;
Sanchez et al. 2008). In epileptic patients who are refractory to
medical treatment, the method could be applied to large en-
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sembles of single neurons close to or within the epileptic focus
and then be integrated into a prospective algorithm aimed, e.g.,
at early seizure detection (Jouny et al. 2011).

Most spike train distances calculate one value of overall
spike train synchrony for a time interval once this time interval
has passed. There is a lack of measures that can estimate
synchrony in a time-resolved way and, even more striking, in
a causal way. The SPIKE-distance, similar to the ISI-distance,
is calculated from instantaneous values of spike train dissimi-
larity for which at each time moment not only preceding spikes
but also following spikes are taken into account. This non-
causal dependence on future spiking does not allow for a
real-time calculation. In the second part of this study we
modify the SPIKE-distance such that the instantaneous value
of dissimilarity for two or more spike trains relies on past
information only and can be calculated in real time and in a
causal manner.

We illustrate the new methods on three different applica-
tions. First we validate the improved definition of the SPIKE-
distance and its real-time variant on artificially generated spike
trains. We show that these measures are able not only to track the
overall synchronization within a group of two or more spike trains
but also, because of the reliability added by the revised definition
of the distance, to track and visualize changes in instantaneous
clustering, that is, to follow the evolution of (dis)similarity
patterns within multiple spike trains. Furthermore, we demon-
strate additional features such as selective and (internally and
externally) triggered temporal averaging as well as the com-
parison of spike train groups. Subsequently, we present an
application to real spike train data in which we analyze single-
unit and multiunit activity in an epilepsy patient recorded in a
time interval that includes the occurrence of an epileptic
seizure. We can show that the new spike train distances are
suitable measures to characterize the neuronal firing patterns
involved in seizure generation, propagation, and termination.

Finally, as for spike trains, there is a lack of measures that
are capable of monitoring time-resolved synchrony in contin-
uous data. This issue is addressed in the third and last appli-
cation, in which both variants of the SPIKE-distance are used
to measure the time-resolved dissimilarity in continuous data
that, in a preprocessing step, are first transformed into discrete
data. We illustrate this approach on electroencephalogram
(EEG) time series whose level of synchronization was modi-
fied post hoc in a controlled manner by means of linear mixing.

METHODS

The different variants of the SPIKE-distance and the ISI-distance
(see APPENDIX A) are defined in terms of a function of time, a time
profile for each pair of spike trains that gives an instantaneous
measure of the (dis)similarity between the two spike trains. The
distances are then defined as the temporal average of these dissimi-
larity profiles, e.g., for the bivariate SPIKE-distance,

DS �
1

T �
t�0

T

S(t)dt (1)

where T denotes the overall length of the spike trains, e.g., the
duration of the recording in an experiment. In the following this
equation is always omitted, and we restrict ourselves to showing how
to derive the respective dissimilarity profiles, e.g., S(t).

Furthermore, for all distances there exists a straightforward exten-
sion to the case of more than two spike trains (number of spike trains

N � 2), the averaged bivariate distance. This average over all pairs of
neurons commutes with the average over time, so it is possible to
achieve the same kind of time-resolved visualization as in the bivari-
ate case by first calculating the instantaneous average, e.g., Sa(t) over
all pairwise instantaneous values Smn(t),

Sa(t) �
1

N(N � 1) ⁄ 2 �
n�1

N�1

�
m�n�1

N

Smn(t) (2)

and only then averaging the resulting dissimilarity profile with Eq. 1.
All bivariate and averaged bivariate dissimilarity profiles and thus all
distances are bounded in the interval [0,1]. The value 0 is only
obtained for identical spike trains.

Original definition of the SPIKE-distance. We first review the
original definition of the time-resolved profile for the bivariate
SPIKE-distance (Kreuz et al. 2011). This profile is denoted as So(t)
with the subscript “o” standing for original. We then compare it
against the improved profile, denoted as S(t), by which it will hence-
forth be replaced. The derivation consists of three steps: calculating
the instantaneous time differences between spikes, taking the locally
weighted average, and normalizing the result.

After labeling the times of the spikes in the spike trains n � 1,2 by
ti
(n), i � 1, . . . , Mn (with Mn denoting the number of spikes of the nth

spike train), we assign to each time instant between 0 and T (see Fig. 1A)
the time of the preceding spikes

tP
(n) (t) � max

i
�ti

(n)�ti
(n) � t� , (3)

the time of the following spikes

tF
(n) (t) � min

i
(ti

(n)�ti
(n) � t), (4)

as well as the instantaneous interspike interval

xISI
(n) (t) � tF

(n) (t) � tP
(n) (t). (5)

The ambiguity regarding the definition of the very first and the very
last interspike intervals as well as the initial distance to the preceding
spike and the final distance to the following spike is resolved by
adding auxiliary leading spikes at time t � 0 and auxiliary trailing
spikes at time t � T to each spike train.

We then denote the instantaneous absolute differences of preceding
and following spike times as

�tP (t) � �tP
(1) (t) � tP

(2) (t)� (6)

and

�tF (t) � �tF
(1) (t) � tF

(2) (t)� (7)

respectively. An instantaneous spike time-based measure of spike
train distance is given by the average of these two absolute differences
of preceding and following spike times. Dividing this average spike
time difference by the average of the two instantaneous interspike
intervals achieves proper normalization as well as timescale invari-
ance (i.e., stretching or compressing spike trains does not change the
result):

S ' (t) �
�tP (t) � �tF (t)

2�xISI
(n) (t)�n

. (8)

To be more local in time, a weighted average of the two differences
�ti(t) with j � P,F is employed such that the difference of the spikes
that are closer dominates. To this aim, we denote with

xP
(n) (t) � t � tP

(n)(t) (9)

and
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xF
(n)(t) � tF

(n)(t) � t (10)

the intervals to the previous and the following spikes for each neuron
n � 1,2.

Inserting the inverse of the mean intervals as weights in the locally
weighted average

��tj(t)� j�P,F �

� j�P,F �tj(t)
1

�xj
(n) (t)�n

� j�P,F

1

�xj
(n) (t)�n

(11)

and making use of

xP
(n) (t) � xF

(n) (t) � xISI
(n) (t) (12)

yields the dissimilarity profile

So (t) �
�tP (t)�xF

(n) (t)�n � �tF (t)�xP
(n) (t)�n

�xISI
(n) (t)�n

2 . (13)

For multiple spike trains the averaged bivariate variant is defined via
Eq. 2.

Improved definition of the SPIKE-distance. In its original definition
in Kreuz et al. (2011), the SPIKE-distance proved to be a reliable
indicator of the overall level of multineuron synchrony for both
simulated and real data. Appropriate moving averaging also allowed us

to correctly reflect long-term changes in spike train synchrony. However,
as already noted in Kreuz et al. (2011), each individual instantaneous
value in itself is less reliable since spuriously high values are obtained
during slightly unreliable spiking events. This can be seen in the bivariate
example of Fig. 2A, where we use a frequency mismatch to construct two
spike trains with gradually varying spike matches. In the first half the
spikes in the second spike train exhibit increasing distances to the
preceding spikes of the first spike train, while in the second half they
move closer and closer to its following spikes. Thus we expect a
monotonic increase of the instantaneous values followed by a monotonic
decrease. These two trends can indeed be recognized. However, they are
interrupted by short intervals of spurious high values.

The same kind of spurious high values can be seen in Fig. 2B for
the averaged bivariate variant So

a(t) in a multivariate example. Here in
the first half we generated four spiking events with increasing jitter
within a noisy background, whereas the second half consists of evenly
spaced firing events with increasing precision, this time without any
background noise. In both cases the spurious high values appear in
small intervals during which some of the spikes are still following
spikes while others are already preceding spikes. In these intervals the
small differences between the spikes within the event are not taken
into account. Instead, because of the separation of preceding and
following spikes, the “wrong” spikes are compared to each other.
Some of the differences among the preceding spikes as well as among
the following spikes are very large, and this, according to Eq. 13,
leads to the high instantaneous values.
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Fig. 1. Illustration of the bivariate SPIKE-distance.
A: local quantities in relation to time instant t needed
to define the original dissimilarity profile (Eq. 13) of
the SPIKE-distance. B: additional definitions used for
the improved dissimilarity profile (Eqs. 17 and 19)
and its real-time variant (Eq. 21).
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A straightforward remedy for this mismatch is to compare the
correct spikes to each other, in this case, to compare each spike to the
nearest spike in the other spike train. To do so we first rewrite So(t).
For the sake of brevity we now omit time dependencies. Using
2�xj

�n��n � xj
�1� � xj

�2� with j � P,F gives

So (t) �
�tP � xF

(n)�n � �tF �xP
(n)�n

�xISI
(n)�n

2 .

�
�tPxF

(1) � �tPxF
(2) � �tFxP

(1) � �tFxP
(2)

2�xISI
(n)�n

2

(14)

and expanding the definition of �tP and �tF (Eqs. 6 and 7) yields

So (t) �

�tP
(1) � tP

(2)�xF
(1) � �tP

(2) � tP
(1)�xF

(2) � �tF
(1) � tF

(2)�xP
(1) � �tF

(2) � tF
(1)�xP

(2)

2�xISI
�n��n

2

(15)

In this formulation So(t) can be interpreted as the normalized sum of
four weighted differences, one each for the preceding spike from the
first spike train tP

(1), the following spike from the first spike train tF
(1), the

preceding spike from the second spike train tP
(2), and, finally, the follow-

ing spike from the second spike train tF
(2). However, as we have estab-

lished above, in some instances these four corner spikes are compared
against the “wrong” spikes. This happens because we always restrict the
spikes of comparison to the respective other preceding and to the
respective other following spike.

A way to resolve this restriction is to allow more flexibility and
compare each of these four corner spikes to its most appropriate spike,
i.e., the closest counterpart in the other spike train. To this aim, we define

�tP
(1) � min

i
(�tP

(1) � ti
(2)�) (16)

and analogously for tF
(1), tP

(2), and tF
(2) (see Fig. 1B). In the improved

dissimilarity profile these four terms replace the twofold contributions of
|�tP| and |�tF|. Furthermore, instead of one local weighted average of the
two differences between previous and following spikes with the mean
intervals to the previous and the following spikes as weights (Eq. 11), the
weighting is now carried out for each spike train separately. The local
weighting for the spike time differences of the first spike train reads

S1 (t) �

�tP
(1)

xP
(1) �

�tF
(1)

xF
(1)

1

xP
(1) �

1

xF
(1)

�
�tP

(1)xF
(1) � �tF

(1)xP
(1)

xF
(1) � xP

(1)

�
�tP

(1)xF
(1) � �tF

(1)xP
(1)

xISI
(1)

(17)

and analogously S2(t) is obtained for the second spike train. Averaging
over the two spike train contributions and normalizing by the mean
interspike interval yields

S � (t) �
S1(t) � S2(t)

2�xISI
(n) (t)�n

. (18)

This quantity weights the spike time differences for each spike train
according to the relative distance of the corner spike from the time
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Fig. 2. Comparison of the original and improved defini-
tions of the dissimilarity profile of the SPIKE-distance on
constructed spike trains. While So(t) shows spurious high
values for eventlike firing patterns, S(t) reflects the level
of spike train synchrony faithfully. A: bivariate example:
varying spike matches. B: multivariate example with 50
spike trains. In the first half within the noisy background
there are 4 regularly spaced spiking events with increas-
ing jitter. The second half consists of 10 spiking events
with decreasing jitter but now without any noisy back-
ground. Note that both dissimilarity profiles start at 0
because of the auxiliary spikes at time t � 0.
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instant under investigation. In this way, relative distances within each
spike train are taken care of, while relative distances between spike
trains are not. To get these ratios straight and to account for differ-
ences in firing rate, in a last step the two contributions from the two
spike trains are locally weighted by their instantaneous interspike
intervals. This leads to the improved definition of the dissimilarity
profile:

S (t) �
S1 (t)xISI

�2�(t) � S2 (t)xISI
�1�(t)

2�xISI
(n) (t)�n

2 . (19)

For many time instants the closest spike to the preceding spike of one
spike train is the preceding spike in the other spike train and the same
holds for the following spikes, so often the same spikes are still
compared to each other. However, for the time instants that led to the
spurious high values for So(t) now the two preceding and the two
following spikes are no longer compared to each other. Instead, if a
following spike in one spike train is the closest spike to a preceding
spike of the other spike train (or vice versa) these will now be
compared to each other, which leads to lower instantaneous values in
the dissimilarity profile.

This modification resolves the problem of spurious high values and,
as can be seen in Fig. 2, the desired dissimilarity profiles are obtained.
In Fig. 2A the observed monotonic increase of the instantaneous
values followed by a monotonic decrease mirrors exactly the actual
change in the match between the spike times of the two spike trains.
For the multivariate example of Fig. 2B and the averaged bivariate
variant (calculated according to Eq. 2) we find in the first half high
instantaneous values that reflect the background noise. The presence
of four spiking events with increasing jitter within this noisy back-
ground is indicated by less and less pronounced drops in the dissim-
ilarity profile. In the second half, where there is no background noise,
the evenly spaced firing events with increasing precision are correctly
reflected by a rather monotonic decrease of the instantaneous syn-
chrony level that reaches 0 at the perfectly synchronous event at
3,900 ms. Such perfect events for which the value 0 is obtained are
marked by vertical dashed lines in the dissimilarity profile.

The firing rate correction introduced between Eqs. 18 and 19 has
the important and desirable consequence that the SPIKE-distance
between Poisson spike trains increases with the difference in firing
rate (results not shown).

Real-time SPIKE-distance. Here we introduce the real-time SPIKE-
distance DSr

. This is a modification of the SPIKE-distance with the
key difference that the corresponding time profile Sr(t) can be calcu-
lated online because it relies on past information only. From the
perspective of an online measure, the information provided by the
following spikes, both their position and the length of the interspike
interval, is not yet available. Like the regular (improved) SPIKE-
distance DS, this causal variant is also based on local spike time
differences, but now only two corner spikes are available and the
spikes of comparison are restricted to past spikes, e.g., for the
preceding spike of the first spike train

�tP
(1) � min

i
(�tP

(1) � ti
(2)�), ti � t (20)

Since there are no following spikes available, there is no local
weighting, and since there is no interspike interval, the normalization
is achieved by dividing the average corner spike difference by twice
the average time interval to the preceding spikes (Eq. 9; see also Fig.
1B). This yields a causal indicator of local spike train dissimilarity:

Sr (t) �
�tP

(1) � �tP
(2)

4�xP
(n)�n

. (21)

In Fig. 3 we show the results of the real-time SPIKE-distance for
the two cases already used in Fig. 2. As can be seen for the example
of two spike trains with gradually varying spike mismatches (Fig. 3A),
any spike time difference is considered most relevant right at the later

of two spikes when Sr(t) goes back to a local maximum value. In the
case where the two preceding spikes are closest to each other, it goes
back to its maximum value of 1. At these points the mean time interval
to the two preceding spikes is exactly half their difference. Any
successive period of common nonspiking leads to a decrease of the
instantaneous distance values. This is a desired property since com-
mon nonspiking is as much a sign of synchrony as common spiking.
The decrease is hyperbolic, and its slope depends on the preceding
spike time difference.

In addition to the regular trace we also show here a moving average
that, in line with the real-time calculation, is causal. While the regular
dissimilarity profile exhibits certain fluctuations, this moving average
shows that the real-time SPIKE-distance in fact reflects the increasing
spike shifts in the center of the interval and the better match of the
spike times at the edges.

During irregular spiking in the multivariate example of Fig. 3B, the
time intervals to the preceding spikes in different spike trains are very
variable, and this leads to large fluctuating values of Sr

a(t). Within this
irregularity, the perfect spiking event at 400 ms results in an abrupt
drop to 0, which reflects the delta distribution of the time intervals to
the preceding spikes. The successively more jittered events that follow
are indicated by a very pronounced short-term increase, followed by
a decrease. Here the distribution of time intervals to preceding spikes
starts to develop a peak at very small intervals and thus becomes
bimodal, which causes the increase. Then, after spikes have appeared
in quick succession in all spike trains, the distribution becomes very
narrow, which is reflected by the decrease. In the second half, when
there is no background noise and the spiking events become less and
less noisy, the succession of peaks denoting the events is becoming
more and more prominent, with increasing amplitude range but
narrower base. Just as in the bivariate case, the short timescale
fluctuations in this multivariate example can be eliminated by an
appropriate (causal) moving average. Here this moving average ex-
hibits a gradual decrease, which reflects the consistent increase of the
spike event reliability.

It is important to note that, in contrast to the noncausal SPIKE-
distance (see Fig. 2), the observed peaks are not spurious. They occur
at time instants when it is not yet known whether there will in fact be
a reliable spiking event or not. This is illustrated in Fig. 4 with two
spiking events that are identical (1 spike per spike train) except for the
omitted second half of the second event. While for both events the
instantaneous values in the first part necessarily have to be identical
(and very high since only some of the neurons have recently spiked),
the differences in the second part become evident as more and more
information becomes available. For the first event, once all neurons
have fired, a rapid decrease of Sr

a(t) can be observed, while the lower
firing reliability in the second event leads to a slow decrease.

Practical considerations. The improved dissimilarity profile S(t) of
the SPIKE-distance is piecewise linear (with each linear interval
running from one spike of the pooled spike train to the next) rather
than piecewise constant as is the case for the ISI-distance. Therefore,
when the localized visualization is desired, a new value has to be
calculated for each sampling point and not just once per each interval
in the pooled spike train. In cases where the distance value itself is
sufficient, the short computation time can be even further decreased
by representing each interval by the value of its center and weighting
it by its length. Not only is this faster, but it actually gives the exact
result, whereas the time-resolved calculation is a very good approxi-
mation only for sufficiently small sampling intervals dt (imagine the
example of a rectangular function: at some point any sampled repre-
sentation has to cut the right angle). The dissimilarity profile Sr(t) of
the real-time SPIKE-distance is hyperbolic and not linear, but here
also the exact result can be obtained by piecewise integration over all
intervals of the pooled spike train.

The calculation of the SPIKE-distance consists of three steps: In a
precalculation step, for each spike the distance to the nearest spike in
all the other spike trains is calculated. Successively, for each time
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instant and each pair of spike trains, the distances of the four corner
spikes are first locally weighted and then normalized. These latter
steps involve matrices of the order “number of time instants” �
“number of spike train pairs,” which for very long data sets with many
spike trains can lead to memory problems. The solution to these

problems is to make the calculation sequential, i.e., to cut the record-
ing interval into smaller segments and to perform the averaging over
all pairs of spike trains for each segment separately (no additional
auxiliary spikes are needed except for very huge data sets, for which
even the calculation of the first matrix is too memory demanding). In
the end, the dissimilarity profiles for the different segments (already
averaged over pairs of spike trains) are concatenated, and its temporal
average yields the distance value for the whole recording interval.

The computational load scales with the number of spike trains N as
N2. With MATLAB on a notebook with a 2.53 GHz Intel Core 2 Duo
processor the calculation of most of the examples in this article took
just a few seconds, while the slowest example (the single-unit record-
ings analyzed in Fig. 9) took �5 min.

More information on the implementation as well as the MATLAB
source code for calculating and visualizing both the ISI-distance and
the SPIKE-distance (including the real-time variant) can be found at
www.fi.isc.cnr.it/users/thomas.kreuz/sourcecode.html.

RESULTS

Application to artificially generated data: instantaneous
clustering. By eliminating the spurious high values in So

a(t), we
have gained reliability of Sa(t) for each time instant. This
allows us to use the instantaneous matrices of pairwise spike
train dissimilarities to divide the spike trains into clusters, i.e.,
groups of spike trains with low intragroup and high intergroup
dissimilarity. There are no limits to the temporal resolution;
such a clustering can, in principle, be obtained for each time
instant.
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Fig. 3. Time profile of the real-time SPIKE-distance for
the two examples used in Fig. 2. In both subplots regular
traces are depicted by thin lines, while the causal moving
averages are shown by thick lines. A: bivariate example.
While the regular dissimilarity profile Sr(t) attains a local
maximum for each spike, its subsequent decay still cap-
tures the relative spiking behavior. This can be seen best
with the moving average, which reflects the correct long-
term trends. B: multivariate example. The averaged bi-
variate dissimilarity profile Sr

a(t) exhibits periods of high
values in certain intervals, but in contrast to the original
noncausal case So

a(t), these are not spurious (see Fig. 4).
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Fig. 4. Real-time SPIKE-distance: peaks during reliable spiking events are not
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while others have been silent for some time, and for both events this large
variability is correctly reflected by high values of the averaged bivariate dissimi-
larity profile Sr
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information that is not yet available. Here for the first event the initial spiking in
some of the spike trains turns into a reliable spiking event (1 spike for each spike
train), which is reflected by a rapid decrease to very low values. For the second
event this does not happen, and accordingly the decrease is less pronounced.
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In Fig. 5 we show examples of instantaneous clustering for both
the regular and the real-time SPIKE-distance. Both examples
depict artificially generated spike trains that fall into different
clusters. However, in contrast to the overall level of spike train
synchrony, which remains rather constant (results not shown), the
cluster affiliation of the different spike trains changes every 500
ms. The spike trains in Fig. 5A contain four different compositions
of two clusters, whereas in Fig. 6 the number of clusters increases
until a state of random spiking is reached where each spike train
forms its own cluster. As exemplified by four different time
instants in each figure, this varying clustering structure is correctly
reflected in the pairwise dissimilarity matrices of both the regular
and the real-time SPIKE-distance, although the latter only uses
information from past spiking.

Both methods not only can distinguish different clusters
instantaneously but also are sensitive to the detailed structure
within the clusters. An example can be seen in Fig. 5A for the
fourth spike train within the second 500-ms interval (see
arrows). The two methods are quite similar in the first two

columns, but they differ considerably in the third and fourth
columns. In the third column, while for the regular SPIKE-
distance it does not matter whether the time instant is right
within a spiking event or in between two events (compare
against the first 2 columns), the real-time variant clearly
separates neurons depending on whether they have already
fired or not (see Fig. 4). In the fourth column, in contrast to the
regular SPIKE-distance, the real-time SPIKE-distance is not
yet aware of the irregular cluster affiliation in the last 500-ms
interval.

The main difference between the two measures is clearly
visible in the last column, where the regular SPIKE-distance
averages over past and future behavior and thus superimposes
the checkered pattern of the third interval with the more
disordered clustering of the last interval. This last interval is
not yet relevant for the real-time variant, which only reflects
the checkered pattern of the past interval.

Similar differences can be observed in the second and third
intervals of Fig. 5B. The matrices for the regular SPIKE-
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Fig. 5. Instantaneous clustering for artificially generated
spike trains. A: clustering of the spike trains changes
every 500 ms (dashed black lines), although there are
always exactly 2 different clusters. B: matrices of pair-
wise instantaneous values for the 4 time instants marked
by green lines in A. Both the regular (top) and the
real-time (bottom) SPIKE-distance reflect the changing
cluster association in each 500-ms interval. Arrows indi-
cate features described in the text. C: here the 3 spike
train clusters in the first 500 ms are followed by 500-ms
intervals of 4 and then 8 clusters, while the last 500 ms
contains random spiking. D: again, both the regular (top)
and the real-time (bottom) SPIKE-distance reflect
changes in instantaneous clustering.
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distance are quite symmetrical with respect to the dissimilari-
ties to the different clusters since the increasing distances
between the preceding spikes are balanced by the decreasing
distances to the following spikes. In contrast, the real-time
SPIKE-distance reflects the increasing distance between the
preceding spikes only. Thus, although the spike time differ-
ences between adjacent groups are similar, because of the
normalization lower dissimilarities are obtained for groups of
spike trains whose spikes are further in the past.

So far we have shown clustering matrices obtained at certain
time instants. Since such a matrix exists for each and every time
instant t, it is possible to selectively average over certain time
intervals. These intervals do not have to be continuous; selective
averaging over separated intervals is possible as well. Four ex-
amples are shown in Fig. 6, an average over one individual
500-ms interval, averages over two consecutive as well as two
separated 500-ms intervals, and finally the average over the
whole time interval. In each case a linear superposition of the
individual matrices can be observed. For the whole interval
(Fig. 6B, 4th column) this means that the four groups of 10
spike trains that frequently belonged to the same cluster can
still be identified (see arrow). Because there were two 500-ms
intervals (the 2nd and the 5th) where the second and the third
spike train group formed one big cluster, these two groups are
more closely related than the other groups, which is correctly
reflected by the lower values of dissimilarity.

Another option is triggered temporal averaging. Here the
matrices are averaged over certain trigger time instants only.
The idea is to check whether this triggered temporal average is

significantly different from the global average, since this would
indicate that something peculiar is happening at these trigger
instants.

The trigger times can be obtained either from internal
conditions (such as the spike times of a certain spike train) or
from external influences (such as the occurrence of certain
features in a stimulus).

An example of internal triggering can be seen in Fig. 7, A–C.
In this artificially generated setup there are 20 simultaneously
recorded neurons and almost all of them fire independently
from each other, following a Poisson statistic (Fig. 7A). The
exception is the first neuron, which fires at a lower rate and is
assumed to have a strong excitatory synaptic coupling to five of
the other neurons (4, 8, 11, 16, and 19). Correspondingly, the
spike trains of these neurons were modified such that they
contained slightly lagged and jittered copies of the spikes of the
first spike train in addition to spikes generated independently.
This represents a situation in which each spike in the first spike
train causes (triggers) a spike in these spike trains, but there are
also other spikes (which might have been caused by different
neurons that were not recorded).

The task is to identify these five neurons. This is very
difficult via visual inspection, and also the overall temporal
average is unable to do so (Fig. 7B, left). However, these
neurons can be identified by averaging over the pairwise
instantaneous values obtained for the spike times of the first
spike train (the internal trigger instants) only. The resulting
dissimilarity matrix shown in Fig. 7B, right, includes an
irregular grid of very small distance values.
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Another representation of dissimilarity matrices is hierarchi-
cal cluster trees also known as dendrograms (Fig. 7C). They
are constructed as follows: First, the closest pair of spike trains
is identified and thereby linked by a �-shaped line, where the
height of the connection measures the mutual distance. These
two time series are merged into a single element, and the next
closest pair of elements is then identified and connected. The
procedure is repeated iteratively until a single cluster remains.
The implementation of this method requires introducing the
distance between a pair of clusters. In the single linkage
algorithm used here, this distance is defined as the minimum
over all the distances between pairs of spike trains in the two
clusters. In Fig. 7C, the dendrogram obtained from the average
dissimilarity matrix (Fig. 7C, left) does not fall into separate
clusters, whereas in the dendrogram of the triggered average

(Fig. 7C, right) the five modified spike trains form one distinct
cluster with the first spike train and can thus easily be
identified.

In contrast to internal triggering, externally triggered aver-
aging allows certain (external) stimulus features to be related
with spike train synchrony and might thus be a promising tool
for the investigation of neuronal coding. While the example for
internal triggering assumes a simultaneously recorded popula-
tion of neurons, in the setup of the external triggering example
(Fig. 7, D–F) just one neuron is recorded for repeated stimu-
lation with the same stimulus. This stimulus is a chirp function,
representative of a nonperiodic time-varying stimulus. It is
assumed that the neuron is sensitive to negative amplitudes and
accordingly it exhibits higher (lower) reliability for local min-
ima (maxima) of the chirp function (Fig. 7D). However, to
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Fig. 7. Triggered temporal averaging. A–C:
internal triggering. A: Poisson spike trains
with superimposed firing patterns: 5 spike
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spike train (with small amounts of jitter).
Below the horizontal line denoting the overall
average, triangles mark the spike times of the
first spike train, which are used as trigger
instants. B: dissimilarity matrices (for the reg-
ular SPIKE-distance): averaging over the
whole interval (left) and averaging over the
instantaneous matrices at all trigger instants
only (right). C: hierarchical cluster trees (den-
drograms) obtained from the dissimilarity ma-
trices in B. D–F: external triggering. D: arti-
ficially generated spike trains. While one half
of the neurons are noisy, the synchrony of the
other half is modulated via a chirplike external
stimulus (shown at top). These nonperiodi-
cally varying levels of synchrony can be
traced by triggering on time instants with
common stimulus amplitude (marked by hor-
izontal green lines and green triangles). E: dis-
similarity matrices. Each column (from left to
right) depicts the externally triggered tempo-
ral average for decreasing amplitudes of the
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F: corresponding dendrograms. As the emerging
spike train cluster shows, lower stimulus ampli-
tudes lead to increased levels of synchrony.
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better illustrate the gradual increase in clustering, half the trials
were left unaffected from the stimulus.

As the amplitude of the chirp function varies, so does the
spike train synchrony of half of the trials. Because of the
nonperiodicity of the stimulus this is quite difficult to detect.
Detection is facilitated by externally triggered averaging where
the triggering is performed on common stimulus features (in
this example the amplitude of the chirp function). As can be
seen in the dissimilarity matrices (Fig. 7E) and even better in
the dendrogram (Fig. 7F), a decrease of this stimulus amplitude
leads to the emergence of a spike train cluster consisting of the
modulated spike trains, which indicates their increase in
reliability.

In the Supplemental Material we present Supplemental
Movie S1, which uses the artificially generated spike trains
from Figs. 5 and 6 and includes instantaneous clustering,
selective temporal averaging of individual or combined inter-
vals, several examples of triggered averaging, as well as the
corresponding dendrograms.1 As can be seen in the screenshot
of the movie shown in Fig. 8, we added one more feature, the
comparison of spike train groups, where the spike trains are manually
assigned to subgroups and a block matrix (and the corresponding
dendrogram) is obtained by averaging over the respective subma-
trices of the original dissimilarity matrix. For both distances

these spatial averages over groups of spike train pairs are
denoted by �•�G.

Application to single-unit recordings from epilepsy patients.
In all previous examples we have used artificially generated
spike trains for which the relative levels of spike train syn-
chrony were known and could serve as validation for the spike
train distances. Here we present an exemplary application of
both the SPIKE-distance and its real-time variant to field data
for which no a priori knowledge is available. As field data we
chose recordings of neuronal spiking from the human medial
temporal lobe. These recordings were performed at the Uni-
versity of Bonn in epilepsy patients undergoing seizure mon-
itoring prior to epilepsy surgery. For a description of the data
refer to APPENDIX B.

In Fig. 9A we show the spike trains recorded from 42 single
units and multiunits of an epilepsy patient during an epoch that
contained an epileptic seizure. For this particular patient the
epileptic focus was later confirmed to lie in the hippocampal
formation of the left brain hemisphere. In this example the
SPIKE-distance and its real-time variant exhibit a rather lim-
ited amount of variability before and after the epileptic seizure,
while during the seizure both distances exhibit strong fluctua-
tions, particularly during the second part of the seizure when
the local field potentials exhibit high-amplitude rhythmic ac-
tivity (data not shown). Remarkably, both distances show a
pronounced drop at the beginning of the seizure, at a time when
only subtle changes are discernible in the continuous local field

1 Supplemental Material for this article is available online at the Journal
website.
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S1. A: artificially generated spike trains.
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potential (data not shown). This could be an indication that an
increased level of synchrony among a population of neurons
plays an important role in the generation of seizure activity.

Figure 9B shows the dissimilarity matrices for both spike
train distances averaged over the periods before, during, and
after the seizure. These matrices reflect the relationships be-
tween all the neurons recorded from different regions of both
temporal lobes. In the nonfocal hemisphere, i.e., the side of the
brain that does not contain the epileptic focus, neurons 26–42
exhibit a constant pattern of synchrony before, during, and
after the seizure. In the focal hemisphere the general level of
spike distance is lower during the seizure than before or
afterwards, indicating an elevated level of neuronal synchrony
during the seizure. The spike train distances between the two
brain hemispheres (Fig. 9B, top right and bottom left quad-
rants) show a relatively high level of synchrony for the sparsely
firing neurons (26, 27, 28, 33, 34, and 37) that is substantially
diminished during the seizure.

These findings are in line with standard theories on seizure
dynamics (Engel and Pedley 2008). The spike train distances
thus appear to be suitable measures to describe the mechanisms
of seizure generation, propagation, and termination at the
neuronal level. Specifically, they provide an opportunity to
extend our mechanistic understanding of spatiotemporal sei-
zure dynamics by elucidating the functional role of synchro-
nization and desynchronization processes. A separate analysis
of spike train synchrony for different regions of the focal and
nonfocal medial temporal lobe may provide additional insights
about the evolution of a seizure (see Schevon et al. 2012).

The real-time variant could furthermore be integrated into
prospective algorithms aimed, e.g., at an early online detection
of seizure occurrence (Jouny et al. 2011).

Application to continuous data. To our knowledge, there are
no time series analysis methods that allow reliable tracking of
instantaneous synchrony in continuous data, i.e., to map their
local dissimilarity to one value for each time instant, either
once the complete segment is available for analysis or online in
real time. Now that we have provided such a method for
discrete data, the question arises as to whether it is possible to
extend their applicability to continuous data. Thus in the third
application we use the SPIKE-distance and its real-time variant
to measure time-resolved dissimilarity in continuous signals.
For this purpose, a high temporal resolution is once again
beneficial since changes in synchronization can occur on very
small timescales. Examples include the transition to seizure
observable in the EEG of epilepsy patients (Lopes da Silva et
al. 2003).

The principal idea is to first transform the continuous time
series into one or more sequences of discrete events that are
chosen to capture the most relevant characteristics of the data.
In the case of neuronal membrane potentials, these are the
spikes. Under the assumption that both the shape of the spike
and the background activity carry minimal information, neu-
ronal responses are reduced to a spike train in which the only
information maintained is the timing of the individual spikes.
For the rather oscillatory EEG data that we analyze here, each
continuous time series is transformed into two separate se-
quences of local maxima and local minima; similar choices
were made, for example, by Quian Quiroga et al. (2002) and
Kugiumtzis et al. (2004). The SPIKE-distance is applied to
both kinds of sequences, and the two resulting dissimilarity

profiles are averaged. As before, the temporal average of this
combined profile yields the SPIKE-distance. For this type of
data a causal calculation is also possible; the procedure is the
same as used above for the regular SPIKE-distance.

To validate the instantaneous measures of synchronization
on controlled continuous data, we used data freely available on
the internet via the EEG time series download page (www.
meb.uni-bonn.de/epileptologie/science/physik/eegdata.html)
of the Department of Epileptology at the University of Bonn
(Andrzejak et al. 2001). We randomly selected N � 10 indepen-
dent channels (sampling rate 173.16 Hz) and then introduced a
time-dependent mixing parameter m. For m � 0 the original
independent channels are maintained, whereas for m � 1/N all
channels are exactly identical. Intermediate values of m interpo-
late linearly between these two extremes. Although not relevant
for the event detection, the variance, which is decreased for mixed
signals, is adjusted to maintain the appearance of a regular EEG
signal.

In Fig. 10A we show an illustration of the application of the
averaged bivariate SPIKE-distance and its real-time variant to
continuous EEG data using just three channels over a short
interval of time that includes a transition from independent
channels to perfectly synchronous channels. This transition is
traced by both measures. Figure 10B depicts the dissimilarity
profiles of the two SPIKE-distances for alternating piecewise
constant variations of the mixing parameter, which converges
stepwise toward an intermediate level. Both measures are
capable of monitoring these transitions in the level of synchro-
nization. Starting from zero values for identical synchroniza-
tion and high values for independent channels, two gradual
transitions can be observed. However, as the different gradients
show, it is easier to trace deviations from identical signals than
deviations from independent signals.

DISCUSSION

There are three different contributions of this study. We
have improved the dissimilarity profile of the SPIKE-distance
(Kreuz et al. 2011) by eliminating the spurious high values that
were previously obtained for eventlike firing patterns, we have
added a variant of the SPIKE-distance that is causal and allows
real-time calculation, and, finally, we have extended the appli-
cability of both of these variants to continuous data (such as
EEG).

The instantaneous reliability obtained by the elimination of
the spurious high values has very important consequences. In
addition to the improved capability to track the overall level of
synchronization within a group of two or more spike trains (see
Figs. 2 and 3), it is now possible to visualize instantaneous
clustering (Fig. 5 and Supplemental Movie S1), i.e., to repre-
sent evolving patterns of (dis)similarity in multiple spike trains
either as instantaneous matrices of pairwise spike train dissim-
ilarities or as hierarchical cluster trees (dendrograms). Since
such matrices and dendrograms exist for each and every time
instant t, it is possible to selectively average over certain
(continuous or noncontinuous) time intervals (Fig. 6), which do
not have to have the same length (see also Fig. 9). In real data
these intervals could be chosen to correspond to different
external conditions such as normal versus pathological, asleep
versus awake, target versus nontarget stimulus, or presence/
absence of a certain channel blocker. The fact that there are no
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limits to the temporal resolution allows further analyses such as
internally or externally triggered temporal averaging (see Fig.
7). In real multineuron data, internal triggering might help to
uncover certain structures and patterns in neural networks or to
detect converging or diverging patterns of firing propagation.
External triggering might be used to address questions of
neuronal coding, e.g., it could be used to evaluate the influence
of localized stimulus features on the reliability of real neurons
under repeated stimulation. Finally, another possibility is spa-
tial averaging over spike train groups (see Fig. 8). In applica-
tions to real data, these groups could be different neuronal
populations or responses to different stimuli, depending on
whether the spike trains were recorded simultaneously or
successively.

The SPIKE-distance appears to provide a reliable time-
resolved measure of spike train similarity without the need to
optimize a timescale parameter. This extends the range of
possible neurophysiological applications of spike train similar-
ity measures. In the past, methods aimed at measuring spike
train similarity have been applied in very controlled situations,

typically protocols in which the animal is anesthetized and the
same stimulus is repeated over multiple trials. With the SPIKE-
distance, it is envisaged that similarity-based approaches could
be extended to experiments with awake, behaving animals: the
identical trials typically required to select an appropriate time-
scale parameter are not required for the SPIKE-distance, and
the time resolution allows the similarity to be monitored during
behavior or in response to complex evolving stimuli; for
example, the extent to which neurons in a population synchro-
nize in response to stimuli could be analyzed.

In cases where the complete spike trains are known, the
regular SPIKE-distance compares favorably against the real-
time SPIKE-distance. It is locally more reliable because it has
information about both the past and the future at its disposal.
For the real-time SPIKE-distance the lack of information about
spikes that occur in the future leads to high values during
reliable spiking events. While these values are not spurious
(see Fig. 4), they are not really informative since they reflect
local uncertainty that can easily be resolved by incorporating
all the information available. However, in situations that de-

0 0.1 0.2 0.3 0.4
0

0.8

0

0.4

3

2

1

EEG

SaSa

S
r
aS
r
a

Time  [s]

Time  [s]

A

0 20 40 60 80
0

0.4

0

0.2

10

8

6

4

2

EEG

SaSa

S
r
aS
r
a

B

Fig. 10. Exemplary application of the aver-
aged bivariate SPIKE-distance and its real-
time variant to continuous data. A, top: 3
continuous EEG signals of 0.5-s duration that
exhibit a transition from being independent to
being perfectly synchronous after �0.5 s (the
mixing parameter is superimposed in green).
The maxima and minima of the EEG signals
are marked in red and blue, respectively, and
the same colors are used for the dissimilarity
profiles obtained from applying the 2 SPIKE-
distances to the respective event time series
only (bottom). For each SPIKE-distance the
black trace depicts the average over these 2
profiles and the green trace its moving aver-
ages. B, top: 10 mixed signals generated from
10 different EEG channels by means of an
oscillating mixing parameter. For maximum
mixing we obtain identical signals, while with-
out mixing the original EEG channels are
preserved. Bottom: dissimilarity profiles of the
averaged bivariate SPIKE-distance and its
real-time variant, respectively (black), as well
as their moving averages (green). The excerpt
used in A is marked by a small black box (see
arrow).
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mand online monitoring, the real-time SPIKE-distance can be
relied upon, as we could show both for simulated and field
data. A good example for the latter is Fig. 9B, in which even
with only half the information available the results achieved
were very similar to those for the regular SPIKE-distance
(compare Fig. 9B, top and bottom).

The capability to monitor the synchrony between two or
more spike trains (or continuous recordings) in real time opens
up new possibilities for several important applications. Syn-
chronization has been hypothesized to play a pivotal role in
neuronal coding (Miller and Wilson 2008), and thus a real-time
tracker of spike train synchrony could be an essential tool for
rapid online decoding with brain-machine interfaces in order to
control prosthetic devices (Hochberg et al. 2006; Mulliken et
al. 2008; Sanchez et al. 2008). In epilepsy patients, monitoring
the spiking activity of large ensembles of single neurons could
lead to a better understanding of the mechanisms of seizure
generation. Furthermore, if neuronal spiking patterns turn out
to be specific predictors of seizure occurrence as reported by a
recent study (Truccolo et al. 2011), the real-time SPIKE-
distance could be a viable tool for the implementation of a
prospective seizure prediction algorithm (Mormann et al.
2007).

In a similar manner, the SPIKE-distance and its real-time
variant can be applied to monitor synchrony in continuous data
(which are first transformed into discrete data, see Fig. 10).
Even the analysis of mixed continuous-discrete signals is
possible (see also Andrzejak and Kreuz 2011). A potential
application could be the combined analysis of discrete spike
trains and continuous neuronal oscillations. In particular, it
would be interesting to investigate neuronal synchronization
patterns in dependence of the phase of the local field potential,
a scenario reminiscent of the “neuronal communication through
neuronal coherence” scenario (Fries 2005).

Note that there is a conceptual analogy between the im-
proved definition of the SPIKE-distance and the similarity
measure proposed by Hunter and Milton (2003), which basi-
cally sums the exponentially weighted distances from each
spike to its nearest spike in the other spike train. However, the
main difference, apart from the additional exponential weight-
ing and the parameter (the decay constant of the exponential),
is that the calculation is not done in a time-resolved manner by
means of a local weighting of the terms of the four corner
spikes. Instead, the term for each spike is considered just once.
The SPIKE-distance is a rather elementary measure that can be
regarded as complementary to cross correlation. Both measures
rely on differences in spike timing. However, while the latter
estimates spike synchrony in dependence on a time lag but is
not sensitive to instantaneous synchrony, the SPIKE-distance
estimates instantaneous synchrony but is not sensitive to time
lags (these should be eliminated beforehand).

Below we provide an overview of the main properties of
both the SPIKE-distance and its real-time variant.

Straightforward extension to multiple spike trains and
normalization. The SPIKE-distance directly addresses the lack
of approaches to analyze multiple spike train data (Brown et al.
2004). It can readily be applied to very large data sets (some of
the data sets analyzed contained �100 spike trains with a total
of almost 250,000 spikes). Both the bivariate and averaged
bivariate distance are normalized between 0 and 1, where 0 is

obtained for identical spike trains only. The same limits hold
for the underlying dissimilarity profiles.

Different levels of information reduction. For the SPIKE-
distance there are three different levels of information reduc-
tion. The starting point is the most detailed representation in
which one instantaneous value is obtained for each pair of
spike trains. The resulting matrix of size “number of sampled
time instants” � “squared number of spike trains” [i.e.,
#(tn)N2] can be appreciated best in a movie; an example can be
found in the Supplemental Material. For the first step of
information reduction there are two possible averages: the
average over spike train pairs and the temporal average. These
commute; either can be performed first. By averaging instan-
taneously over all pairs of spike trains a dissimilarity profile for
the whole population (e.g., Fig. 2) is obtained, whereas the
temporal averaging leads to a bivariate distance matrix (e.g.,
Fig. 5). Finally, in both cases the second average leads to one
distance value that describes the overall level of synchrony for
a group of spike trains over a given time interval. Note that
here we restricted the analysis to average values, but the
application of higher-order statistics (such as the variance) is
also conceivable. Depending on the application in mind, the
appropriate representation can be chosen. Mapping the simi-
larity of a whole population onto one single value might allow
for an easier comparison, but one might lose too much infor-
mation since high and low spike time differences at different
time instants or for different pairs of spike trains might cancel
each other out, leading to a value that could also be obtained
for a constant intermediate level of similarity. This is one
example where a higher-order statistic such as the variance
could be useful.

High temporal resolution: reliance on local information,
then global averaging. The SPIKE-distance relies on instanta-
neous values that only take into account local information from
preceding and—with the exception of the real-time SPIKE-
distance—following spikes. Temporal averaging (Eq. 1) then
yields a more global picture by means of a single-value
distance. The fact that the averaging window can be chosen
arbitrarily allows for easy comparisons between the levels of
spike train synchrony in different time intervals without the
need for recalculations. The high temporal resolution that
renders a sliding-window analysis obsolete compares them
favorably to other widespread measures of spike train variabil-
ity such as the Fano factor.

Dependence on spike train of origin. The SPIKE-distance
takes into account the spike train of origin for each individual
spike, and it is not invariant to shuffling spikes among the spike
trains. This is in contrast to measures that act on the pooled
spike train, such as all measures based on the peristimulus time
histogram (PSTH), which yield the same value regardless of
how spikes are distributed among the different spike trains and
could possibly fail to distinguish between qualitatively differ-
ent behaviors such as high-reliability spiking and chain-fire
bursting (see Kreuz et al. 2011).

Computational efficiency. The SPIKE-distance is based on
simple differences and ratios that furthermore can easily be
parallelized. For a large set of very long spike trains for which
computer memory might be a concern, the dissimilarity profile
for successive intervals can be calculated sequentially.

Timescale independence and absence of parameters. The
SPIKE-distance is invariant to stretching and compressing of
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the spike trains. It is also timescale adaptive since the infor-
mation used at each time instant is not contained within a
window of fixed size but within a time interval whose size
depends on the local rates of the spike trains. In contrast to
timescale-dependent measures such as the Victor-Purpura dis-
tance (Victor and Purpura 1996) or the van Rossum distance
(van Rossum 2001), parameter-free single-valued methods
give a more objective and comparable estimate of neuronal
variability. Other drawbacks of timescale-dependent measures
are the computational cost and the time and effort that are
needed to find the right parameter. Moreover, it is not at all
guaranteed that a right parameter exists.

One of the main arguments for the use of timescale-depen-
dent measures of spike train (dis)similarity is their potential
insight into the precision of the neuronal code (Victor and
Purpura 1996). This argument has recently been reevaluated by
Chicharro et al. (2011). According to this study the optimal
timescale obtained from a spike train discrimination analysis is
far from being conclusive. Rather, it results in a nontrivial way
from the interplay of many different factors such as the
distribution of the information contained in different parts of
the response and the degree of redundancy between them.

SPIKE-distance is complementary to ISI-distance. The SPIKE-
distance and its real-time variant share many properties with
the ISI-distance (see APPENDIX A), but there are also a few
essential differences. The ISI-distance is based on interspike
intervals and quantifies covariations in the local firing rate,
while the SPIKE-distance tracks synchrony mediated by spike
timing. This does not mean that the ISI-distance is sensitive to
rate coding and the SPIKE-distance sensitive to temporal
coding. Rather, it is the relative timing of interspike intervals
and spikes, respectively, that matters.

Another difference is the range of values obtained. For the
ISI-distance the piecewise-constant dissimilarity profile and
the distance itself cover the same range. In particular, the
distance value can come arbitrarily close to the maximum
value of 1. This is not the case for the SPIKE-distance. Here
only the piecewise linear dissimilarity profile can cover the
whole range of values, whereas the value of the SPIKE-
distance always seems to be below 0.5. For Poisson spike trains
of equal rate the expectation values for the ISI-distance and the
SPIKE-distance are 0.5 and 0.295 (numerical results),
respectively.

The MATLAB source codes for the ISI-distance and the SPIKE-
distance (including the real-time variant) as well as additional mate-
rial (including a longer version of Supplemental Movie S1) can be
found at www.fi.isc.cnr.it/users/thomas.kreuz/sourcecode.html.

APPENDIX A: THE ISI-DISTANCE

While the dissimilarity profile of the SPIKE-distance is extracted
from differences between the spike times of the two spike trains, the
dissimilarity profile of the ISI-distance (Kreuz et al. 2007, 2009) is
calculated as the instantaneous ratio between the interspike intervals
xISI

(1) and xISI
(2) (Eq. 5) according to

I(t) � � xISI
(1) (t) ⁄ xISI

(2) (t) � 1 if xISI
(1) (t) � xISI

(2) (t)

�(xISI
(2) (t) ⁄ xISI

(1) (t) � 1) otherwise
(A1)

This ISI-ratio equals 0 for identical ISI in the two spike trains and
approaches �1 and 1, respectively, if the first or the second spike train
is much faster than the other. For the ISI-distance the temporal

averaging analogous to Eq. 1 is performed on the absolute value of the
ISI-ratio; thus both kinds of deviations are treated equally. Since the
ISI-distance relies on the instantaneous ISI-values and thus requires
knowledge about the following spikes, no causal real-time extension
is possible. The dissimilarity profile is condensed into a distance value
by means of temporal averaging analogous to Eq. 1. In Andrzejak and
Kreuz (2011) the ISI-distance has been integrated in a measure that
can detect unidirectional coupling not only between spike trains but
also between spike trains and time-continuous flows.

APPENDIX B. FIELD DATA: SINGLE-UNIT RECORDINGS
FROM EPILEPSY PATIENTS

All experimental recordings were performed prior to and indepen-
dently from the design of this study and were reviewed and approved
by the Medical Institutional Review Board at the University of Bonn;
all subjects gave informed consent before participating. Electrode
locations were based exclusively on clinical criteria and were verified
by MRI and by computer tomography coregistered to preoperative
MRI. Each electrode probe had eight high-impedance (typically 800–
1,000 k	) microwires (platinum/iridium, 40-	m diameter) protruding
from its tip (Ad-Tech, Racine, WI). The differential signal from
bipolar montages of the microwires (1 wire was used as local ground)
was amplified with a 128-channel Neuralynx system (Digital Lynx
10S, Neuralynx, Bozeman, MT), filtered between 0.1 and 9,000 Hz,
and sampled continuously at 32 kHz for later processing and analysis.
The Neuralynx headstages used had unity gain, very high input
impedances (�1 T	), and no phase shift. Spike detection and sorting
were performed after band-pass filtering the signals between 300 and
3,000 Hz (Quian Quiroga et al. 2004).
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We thank Nebojša Božanić, Stefano Luccioli, Antonio Politi, Alessandro
Torcini, Heinz Beck, Martin Pofahl, Emily Caporello, and Timothy Q. Gentner
for useful discussions. We also thank Christian E. Elger for patient access and
Volker A. Coenen for electrode implantation.

GRANTS

T. Kreuz acknowledges funding support from the European Commission
through the Marie Curie Initial Training Network “Neural Engineering Trans-
formative Technologies (NETT),” project 289146, as well as from the Italian
Ministry of Foreign Affairs regarding the activity of the Joint Italian-Israeli
Laboratory on Neuroscience. C. Houghton acknowledges support from the
James S McDonnell Foundation through a Scholar Award in Human Cogni-
tion. R. G. Andrzejak acknowledges grant FIS-2010-18204 of the Spanish
Ministry of Education and Science. F. Mormann acknowledges support from
the Lichtenberg Program of the Volkswagen Foundation.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

ENDNOTE

At the request of the author(s), readers are herein alerted to the fact that
additional materials related to this manuscript may be found at the institutional
website of one of the authors, which at the time of publication they indicate is
www.fi.isc.cnr.it/users/thomas.kreuz/sourcecode.html. These materials are
not a part of this manuscript, and have not undergone peer review by the
American Physiological Society (APS). APS and the journal editors take no
responsibility for these materials, for the website address, or for any links to or
from it.

AUTHOR CONTRIBUTIONS

Author contributions: T.K., D.C., C.H., R.G.A., and F.M. conception and
design of research; T.K., R.G.A., and F.M. performed experiments; T.K.

Innovative Methodology

1471MONITORING SPIKE TRAIN SYNCHRONY

J Neurophysiol • doi:10.1152/jn.00873.2012 • www.jn.org

 at B
iblioteca de la U

niversitat P
om

peu F
abra on M

arch 12, 2013
http://jn.physiology.org/

D
ow

nloaded from
 

http://www.fi.isc.cnr.it/users/thomas.kreuz/sourcecode.html
http://www.fi.isc.cnr.it/users/thomas.kreuz/sourcecode.html
http://jn.physiology.org/


analyzed data; T.K., D.C., C.H., R.G.A., and F.M. interpreted results of
experiments; T.K. prepared figures; T.K. and F.M. drafted manuscript; T.K.,
D.C., C.H., R.G.A., and F.M. edited and revised manuscript; T.K., D.C., C.H.,
R.G.A., and F.M. approved final version of manuscript.

REFERENCES

Andrzejak RG, Lehnertz K, Rieke C, Mormann F, David P, Elger CE.
Indications of nonlinear deterministic and finite dimensional structures in
time series of brain electrical activity: dependence on recording region and
brain state. Phys Rev E 64: 061907, 2001.

Andrzejak RG, Kreuz T. Characterizing unidirectional couplings between
point processes and flows. Europhys Lett 96: 50012, 2011.

Bower MR, Stead M, Meyer FB, Marsh WR, Worrell GA. Spatiotemporal
neuronal correlates of seizure generation in focal epilepsy. Epilepsia 53:
807–816, 2012.

Brown EN, Kass RE, Mitra PP. Multiple neural spike train data analysis:
state-of-the-art and future challenges. Nat Neurosci 7: 456–461, 2004.

Chicharro D, Kreuz T, Andrzejak RG. What can spike train distances tell us
about the neural code? J Neurosci Methods 199: 146–165, 2011.

Engel J, Pedley TA. Epilepsy: A Comprehensive Textbook (2nd ed.). Phila-
delphia, PA: Lippincott-Raven, 2008.

Fries P. A mechanism for cognitive dynamics: neuronal communication
through neuronal coherence. Trends Cogn Sci 9: 474–480, 2005.

Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH,
Branner A, Chen D, Penn RD, Donoghue JP. Neuronal ensemble control of
prosthetic devices by a human with tetraplegia. Nature 442: 164–171, 2006.

Hunter JD, Milton G. Amplitude and frequency dependence of spike timing:
implications for dynamic regulation. J Neurophysiol 90: 387–394, 2003.

Ji D, Wilson MA. Coordinated memory replay in the visual cortex and
hippocampus during sleep. Nat Neurosci 10: 100–107, 2007.

Jouny CC, Franaszczuk PJ, Bergey GK. Improving early seizure detection.
Epilepsy Behav 22: 44–48, 2011.

Kreuz T, Haas JS, Morelli A, Abarbanel HD, Politi A. Measuring spike
train synchrony. J Neurosci Methods 165: 151–161, 2007.

Kreuz T, Chicharro D, Andrzejak RG, Haas JS, Abarbanel HD. Measur-
ing multiple spike train synchrony. J Neurosci Methods 183: 287–299, 2009.

Kreuz T, Chicharro D, Greschner M, Andrzejak RG. Time-resolved and
timescale adaptive measures of spike train synchrony. J Neurosci Methods
195: 92–106, 2011.

Kreuz T. Measures of spike train synchrony. Scholarpedia 6: 11934, 2011.
Kugiumtzis D, Kehagias A, Aifantis EC, Neuhäuser H. Statistical analysis

of the extreme values of stress time series from the Portevin-Le Chatelier
effect. Phys Rev E 70: 036110, 2004.

Lopes da Silva FH, Blanes W, Kalitzin SN, Parra J, Suffczynski P, Velis
DN. Epilepsies as dynamical diseases of brain systems: basic models of the
transition between normal and epileptic activity. Epilepsia 44: 72–83, 2003.

Meister M, Berry MJ. The neural code of the retina. Neuron 22: 435–450,
1999.

Miller EK, Wilson MA. All my circuits: using multiple electrodes to under-
stand functioning neural networks. Neuron 60: 483–488, 2008.

Mitchell JF, Sundberg KA, Reynolds JH. Differential attention-dependent
response modulation across cell classes in macaque visual area V4. Neuron
55: 131–141, 2007.

Mormann F, Andrzejak RG, Elger CE, Lehnertz K. Seizure prediction: the
long and winding road. Brain 130: 314–333, 2007.

Mulliken GH, Musallam S, Andersen RA. Forward estimation of movement
state in posterior parietal cortex. Proc Natl Acad Sci USA 105: 8170–8177,
2008.

Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, Chichilnisky EJ,
Simoncelli EP. Spatio-temporal correlations and visual signalling in a
complete neuronal population. Nature 454: 995, 2008.

Priebe NJ, Ferster D. Inhibition, spike threshold, and stimulus selectivity in
primary visual cortex. Neuron 570: 482–497, 2008.

Quian Quiroga R, Kreuz T, Grassberger P. Event synchronization: a simple
and fast method to measure synchronicity and time delay patterns. Phys Rev
E 66: 041904, 2002.

Quian Quiroga R, Nadasdy N, Ben-Shaul Y. Unsupervised spike detection
and sorting with wavelets and superparamagnetic clustering. Neural Comput
16: 1661–1687, 2004.

Reyes AD. Synchrony-dependent propagation of firing rate in iteratively
constructed networks in vitro. Nat Neurosci 6: 593–599, 2003.

Sanchez JC, Principe JC, Nishida T, Bashirullah R, Harris JG, Fortes JA.
Technology and signal processing for brain-machine interfaces. IEEE Signal
Processing 25: 29–40, 2008.

Schevon CA, Weiss SA, McKhann G Jr, Goodman RR, Yuste R, Emerson
RG, Trevelyan AJ. Evidence of an inhibitory restraint of seizure activity in
humans. Nat Commun 3: 1060, 2012.

Shlens J, Rieke F, Chichilnisky EJ. Synchronized firing in the retina. Curr
Opin Neurobiol 18: 396–402, 2008.

Singer W. Distributed processing and temporal codes in neuronal networks.
Cogn Neurodyn 3: 189–196, 2009.

Truccolo W, Donoghue JP, Hochberg LR, Eskandar EN, Madsen JR,
Anderson WS, Brown EN, Halgren E, Cash SS. Single-neuron dynamics
in human focal epilepsy. Nat Neurosci 14: 635–641, 2011.

Usrey WM, Reid RC. Synchronous activity in the visual system. Annu Rev
Physiol 61: 435–456, 1999.

van Rossum MC. A novel spike distance. Neural Comput 13: 751–763, 2001.
Victor JD, Purpura KP. Nature and precision of temporal coding in visual

cortex: a metric-space analysis. J Neurophysiol 76: 1310–1326, 1996.

Innovative Methodology

1472 MONITORING SPIKE TRAIN SYNCHRONY

J Neurophysiol • doi:10.1152/jn.00873.2012 • www.jn.org

 at B
iblioteca de la U

niversitat P
om

peu F
abra on M

arch 12, 2013
http://jn.physiology.org/

D
ow

nloaded from
 

http://jn.physiology.org/

