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Abstract

A fundamental problem in studying population codes is how to

compare population activity patterns. Population activity patterns

are not just spatial, but spatiotemporal. Thus, a principled approach

to the problem of the comparison of population activity patterns be-

gins with the comparison of the temporal activity patterns of a single

neuron, and then, to the extension of the scope of this comparison to

populations spread across space.

Since 1926 when Adrian and Zotterman reported that the firing

rates of somatosensory receptor cells depend on stimulus strength,

it has become apparent that a significant amount of the information

propagating through the sensory pathways is encoded in neuronal fir-

ing rates. However, while it is easy to define the average firing rate for

a cell over the lengthy presentation of a time-invariant stimulus, it is

more difficult to quantify the temporal features of spike trains. With

an experimental data set extracting a time-dependent rate function is

model dependent since calculating it requires a choice of a binning or

smoothing procedure.
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The spike train metric approach is a framework that distills and

addresses these problems. One family of metrics are “edit distances”

that quantify the changes required to match one spike train to an-

other; another family of metrics first maps spike trains into vector

spaces of functions. Both these metrics appear successful in that the

distances calculated between spike trains capture the differences be-

tween the stimuli that elicit them. Studying the properties of these

metrics illuminates the temporal coding properties of spike trains.

The approach can be extended to multineuronal activity patterns,

with the anticipation that it will prove similarly useful in understand-

ing aspects of population coding. The multineuronal metric approach

forms a conceptual bridge between metrics applicable to time series

and metrics applicable to spatial activity patterns.

Finally, since the metrics presented here are unlikely to exhaust

the possible ways to usefully quantify distances between spike trains,

the chapter concludes with some comments on how the properties of

neuronal computation could be used to derive other spike train metrics.

Index Words: metric, multineuronal metric, Victor-Purpura metric, van
Rossum metric, transmitted information, edit length, earth mover distance,
spike train, spike code, spike rate, population code, synapse, zebra finch,
linear filter, kernel.

1 Introduction

Spike trains are the means by which information propagates through the
brain. Despite the apparently variable nature of an individual neuron’s firing
patterns, our mental abilities – including our ability to rapidly and reliably
perceive external stimuli – rely on information being communicated and pro-
cessed as spike trains. Nonetheless, it is not clear how spike trains can best
be described from a mathematical perspective; but any description should
support analysis of the coding properties of individual neurons and of neural
populations, in terms of both average behavior and variability.

Clearly the firing rate is one important feature of a spike train. In the
visual system for example, examining how the firing rate is modulated by a
stimulus has led to considerable progress in understanding how visual infor-
mation is processed. However, even though the firing rate seems a straight-
forward concept, it becomes less straightforward when it is used as a measure
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of behavior on fine temporal scales: a spike train is composed of individual
spikes and the precise pattern of spike times is typically highly variable across
multiple presentations of the same stimulus. The obvious way to calculate a
time-varying spike rate requires a binned or smoothed spike train, often aver-
aged across trials. However, even this simple procedure is model-dependent
and it is difficult to determine whether a protocol for calculating the rate
preserves the relevant temporal patterning of the spike times.

The metric approach is an attempt to construct a principled mathemat-
ical framework for analyzing spike train data. The basic idea is to define a
measure of the distance between spike trains. For the analysis of multineu-
ronal responses, this strategy can be extended to give a notion of distances
between sets of spike trains, or, equivalently, composite spike trains in which
the spikes are labeled as to neuron of origin.

A useful analogy is provided by distances in a city; the most immediate
measure of the distance between two points is the “as the crow flies” distance,
the actual physical displacement of the two locations. However for many
applications a more relevant measure of displacement is provided by the
route distance; that is, the distance along the ground. The route distance
takes into account the built geography of the city. Not only is the route
distance more useful for calculating journey times, it is also descriptive of
the nature of urban geography. The relationship between the route distance
and the “as the crow flies” distance gives a local quantification of the urban
grain: the way steets are arranged into a street system. Similarly, in the
case of the brain, finding a geometric framework for describing spike trains
in terms of a physiologically motivated distance, rather than a generic one,
should allow for a more meaningful description of the relationship between
stimuli and responses in local neuronal circuits.

These considerations lead us to start with a very general mathematical
description of the space of spike trains as a space in which the distance
between points can be calculated, namely, a metric space. By taking a general
mathematical structure as a starting point we avoid fitting spike trains to
the Procrustean bed of a particular mathematical framework that may have
proved successful for other data types but may not be suitable for spike
trains. After a brief introduction to metric spaces, two types of spike train
metric are described below: the first type – kernel-based metrics, typified by
the van-Rossum metrics – work by first mapping spike trains into the vector
space of functions; the other metrics – typified by the Victor-Purpura metric
– are edit distance metrics, somewhat similar to the Earth Mover Distance
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used in image analysis or the edit distance used for genome comparison.
In broad terms our goal is to find geometries for the space of spike trains

which are relevant to the manner in which information is coded and processed
in the brain. This, of course, requires a method for evaluating candidate
metrics against this goal. One such method is described below. It evaluates
a metric by computing how well the distance based clustering of spike trains
matches the “true clustering” which groups the spike trains according to
which stimulus caused them. A related, but distinct, question asks about
the genesis of the metric structure of the space of spike trains. For this there
are at least three approaches that can be taken. The first is a statistical
approach: to think of similarity as a measure of how likely two spike trains
are to be the result of the same stimulus. The second is based on effect, how
similar is the effect of two spike trains on other neurons. The third is based
on principle; asking what metrics have the properties that a spike metric
might be required to have. None of the metrics discussed here fall precisely
into any of these three viewpoints. However, we think that it is worthwhile
to mention these considerations because ultimately, a satisfying theory will
need to provide this understanding.

Of course, along with the particular properties of spike trains, the most
striking feature of brain activity is the size and complexity of the neuronal
network; understanding the coding and processing of information requires the
analysis of multineuronal data. Each of the two example metrics described
here can be extended to a metric on the space of multineuronal spike trains
in a natural way: the metrics which are based on an embedding into a vector
space, are extended by extending the vector space; the edit-distance metrics
are extended by adding an extra type of “edit”.

Below we present the ideas behind the metric space approach, and some
examples of their application to neural data. Our examples are drawn from
sensory systems, because in sensory systems, the structure of stimuli can be
manipulated directly, and there are behavioral measures of “similarity” to
complement the analysis of neuronal activity. For a brief overview of the
metrics discussed, see Table 1.

We recognize that our approach leaves unanswered numerous mathemat-
ical questions related to the above considerations, such as a first-principles
taxonomy of biologically reasonable metrics, and whether a framework even
more general than metric spaces is appropriate. We defer a discussion of
these and other open issues to the Conclusions.
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Metric Characteristics Applicability

van Rossum kernel-based, linear,
Euclidean

single spike trains

multineuronal van
Rossum

kernel-based, linear,
Euclidean

multineuronal spike
trains

synapse kernel-based,
non-linear, Euclidean

single and multineuronal
spike trains

Victor-Purpura edit distance,
non-Euclidean

single and multineuronal
spike trains

earth mover
distance

edit distance,
non-Euclidean

spatial patterns

Table 1: An overview of the metrics discussed.

2 Metrics

The definition of a metric abstracts the intuitive notion of a distance. For-
mally, a metric is a map from pairs of points in a space, a and b, to a real
number d(a, b) such that d(a, b) is positive

d(a, b) ≥ 0, (1)

with equality if and only if a = b:

d(a, b) = 0 ⇐⇒ a = b, (2)

symmetric
d(a, b) = d(b, a), (3)

and satisfies the triangle inequality

d(a, b) ≤ d(a, c) + d(c, b). (4)

The meaning of the triangle inequality is that the distance between two points
cannot be made shorter by going by way of a third point.

An instructive and familiar example of a metric is three-dimensional real
space, R3. This is also a vector space, and, as we describe below, the vector
space structure implies a metric structure as well. As with any other vector
space, the vectors that describe the points in R3 can be added and multiplied
by scalars to give other points in the space. Like most familiar vector spaces,

5



it is also an inner-product space; there is a dot product between any two
vectors x = (x1, x2, x3) and y = (y1, y2, y3) given by

x · y = x1y1 + x2y2 + x3y3 (5)

To construct a metric, we first observe that the dot-product of a vector with
itself is a norm, a measure of the length of the vector

|x| =
√

x · x. (6)

This norm induces a metric, called the l2-metric:

d(x,y) = |x − y| =

√√√√
3∑

i=1

(xi − yi)2. (7)

This metric is the familiar real-world notion of distance. The process of
inducing a metric from a norm generalizes to any finite number of dimensions:
these are Euclidean spaces. Provided some care is taken, this can be further
generalized beyond finite-dimensional spaces to infinite-dimensional spaces,
such as function spaces. For example, if f(t) and g(t) are both real functions
on the same interval, [0, T ] say, then the L2-metric, the function-space analog
of the l2-metric, is

d(f, g) =

√∫ T

0

dt(f − g)2. (8)

While, as we just saw, all Euclidean spaces are metric spaces, the converse
is not true. In fact, Euclidean spaces are very special and have characteristic
properties that are not shared by other geometries. One such property is that
in a Euclidean space, the ratio of the circumference of a circle to its radius
is 2π. An example of a non-Euclidean space is the surface of a sphere, along
with a metric in which distances between points is the length of the great-
circle arc that joins them. This metric is non-Euclidean; the ratio between
the circumference and radius of a circle will depend on the radius and will
always be less than 2π. This example is typical of non-Euclidean spaces in
that the deviation from Euclidean geometry can be thought of as an intrinsic
curvature of the space itself.

A more complex example of a non-Euclidean space is provided by the per-
ceptual space of color vision. Human color perception is a three-parameter
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space, there are three different types of cone cells, each with a different spec-
tral sensitivity. A color percept has coordinates corresponding to the inten-
sity of activation of each cone type. In fact, this is an affine space, meaning
that there is an additive structure: composing two colors gives a third color
whose location in color space is the sum of the vectors describing the two
original colors. In this way, color space can be embedded in R3 and this
induces a Euclidean metric on it. So it is tempting to think of color space as
a three-dimensional Euclidean space. However, this Euclidean structure does
not correspond to perception. The perceptually relevant metric is the one
that captures perceived color differences: the distance between two colors
is determined by how different they are perceived to be by a human ob-
server. Psychophysical measurements of this perceptual distance show that
the metric cannot be Euclidean [27].

Like colors, spike trains cannot be assumed to have an intrinsically Eu-
clidean geometry. In fact, they do not appear to form a vector space. While
one might posit that “adding” spike trains corresponds to superposition, there
is no natural way to subtract spike trains, and no first-principles reason to
assume that adding the same quantity to two spike trains preserves the dis-
tance between them. It is even difficult to give a useful definition of the
dimension of a spike train. Since a spike train is parametrized by its spike
times, spike trains with different numbers of spikes would have to be con-
sidered to have different dimensions – even though it might make sense to
regard spike trains with a similar but different number of spikes as being
close to each other. In fact, for the two main types of spike train metrics
discussed here, the edit-length metrics are typically non-Euclidean [5], while
the metrics derived from embeddings into vector spaces are not.

2.1 Kernel-based metrics: spike train metrics derived

from vector spaces

In this section, we describe a large and important family of spike train met-
rics exemplified by the van Rossum metrics. These metrics are defined by
first mapping spike trains into a vector space, and then using the Euclidean
distance in the vector space to calculate the distance between the original
spike trains. To make the intuitions behind these metrics more evident,
though, we begin with some special limiting cases before presenting the gen-
eral definition. A schematic summary of the kernel-based metrics is given in
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Fig. 1.
First noted in the somatosensory system, the influence of stimulus strength

on a neuron’s firing rate is perhaps the most broadly observed principle in
the sensory systems. Somatosensory receptor cells fire with a rate that de-
pends on the stimulus strength; V1 cells in the mammalian visual cortex fire
with a rate that depends on how well the stimulus matches a receptive field
and auditory cells are tuned to show a rate response to particular features in
sound. In each of these examples, the degree to which some feature is present
in a stimulus is represented by a neuron’s firing rate. This immediately sug-
gests a metric: if the information in a spike train is encoded in the number
of spikes then the way to distinguish between spike trains is to compare the
number of spikes. Thus, if u = {u1, u2, . . . , um} and v = {u1, u2, . . . , un}
are two spike trains recorded during two trials, each of duration T , the spike
count distance1 is

d(u,v) = |m − n|. (9)

Obviously we cannot expect that in general, the meaning of a spike train
will be fully accounted for by the number of spikes it contains. Indeed, as will
be seen below, the spike count distance performs poorly on the clustering task
used to evaluate metrics. The immediate problem is clear: the spike train
has temporal structure that is ignored by the spike count. We expect this to
be the case when the corresponding stimulus changes rapidly with time. This
happens, for example, in zebra-finch song, a stimulus with a rich structure at
a scale measured in tens of milliseconds; data recorded from zebra finch will
be used later in Sec. 3. However, it is also the case even if the stimulus is not
changing during the recording – the nervous system adds its own dynamics to
that of the stimulus [14]. To address this, the metric needs to be sensitive to

1The careful reader may have noticed that strictly speaking, the above definition does
not constitute a metric. If two spike trains u and v have the same number of spikes,
then d(u,v) will be zero, even though u and v differ, thus violating condition in eq. (2).
Because of this, the above definition is properly considered a “pseudometric.” However,
this formal inconvenience is readily fixed by a slight change in the definition of the “points”
in the metric space. Specifically, we consider all spike trains that have the same number
of spikes to be represented by the same point. With this definition of the space the spike
count distance of eq. (9) is a metric. In other words, we recognize that spike trains
that are at a distance zero from each other, according to eq. (9), can be considered
equivalent, and a pseudometric such as this one can always be considered as a metric on
these equivalence classes. Moreover, if the “meaning” of a spike train is fully captured by
this spike count distance, then all spike trains within the same equivalence class would, in
fact, have equivalent meaning.
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spike train u
-

&%
'$
u → f - function f(t;u) H

Hj

�
�*
&%
'$
∫
· dt - d(u,v)

spike train v
-

&%
'$
v → f - function f(t;v)

In the kernel-based metrics the spike train is mapped to a function of t:

u → f(t;u)

and the distance between two spikes u and v is the L2 distance between the
corresponding functions

d(u,v) =

√∫
dt[f(t;u) − f(t;v)]2.

In most versions of the metric the map from spike train to function is a
convolution with a filter; if u has spike times {u1, u2, . . . , um}

f(t;u) =
m∑

i=1

h(t − ui)

where h(t) is a kernel. Three examples are considered here:

boxcar Gaussian exponential
For the synapse metric the map from spike train to function is more compli-
cated and is intended to model the dynamics of a synapse:

τ
d

dt
f = −f with f → f + 1 − µf when a spike arrives.

Figure 1: A schematic summary of the single neuron kernel-based metrics.
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the temporal structure of the spike train, and not just the number of spikes.
One approach is to subdivide the interval of the recording into a number,

I, of sub-intervals of length δT = T/I and take the spike count distance in
each sub-interval

d(u,v; Ti, Ti+1) = |m(Ti, Ti+1) − n(Ti, Ti+1)| (10)

where m(Ti, Ti+1) is the number of spikes in u in the sub-interval (Ti, Ti+1];
n(Ti, Ti+1) performs the same role for v. The distance between the two spike
trains could then be calculated as the Pythagorean sum of all these I sub-
interval distances

d =

√√√√
I−1∑

i=0

d2(u,v; iδT , (i + 1)δT ) (11)

The Pythagorean sum is used to combine the contributions from each sub-
interval because it seems intuitive to do so: these are distances and in ordi-
nary real-space, geometric distances in orthogonal directions are added using
the Pythagoras theorem. However, intuition from real-space geometry is not
necessarily applicable to spike trains, and this assumption should only be ac-
cepted provisionally. Note that when the interval [0, T ] is trivially “divided”
into a single sub-interval, this reduces to the spike count metric defined above.

An undesirable aspect of this calculation is that it discretizes the spike
trains, that is, it bins the spikes into particular sub-intervals. 2 As with
any discretization, it introduces an artificial granularity, with arbitary bin
boundaries, to the data. Put another way, if two spike trains have just a
single spike, then they will be considered the same if the spikes happen to
fall into the same sub-interval (“bin”), and different if they do not. However,
the bin boundary may well be consequent to an arbitrary start time for
data collection. This suggests an alternative: to use a continuously moving
window to “look in” at the spike count distance at a time t and then sum
over all t ∈ (0, T ). Since t is a continuous variable, the sum is performed as
an integral, yielding a windowed spike count metric

d =

√∫ T

0

dtd2(u,v; t − δT/2, t + δT/2). (12)

2Note that this metric also is, formally, a pseudometric: if two spike trains have match-
ing spike counts in each sub-interval, then they will have a distance of zero, and should
be considered equivalent.
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The above formulation emphasizes the relationship of the metric to spike
rates and binning.

There is an alternative form that is both more convenient for calculation,
and suggests a path to further generalization. We define a linear filtering

operation as a mapping from a spike train u = {u1, u2, · · · , um} to a real
function, f(t;u) using a kernel h(t):

u 7→ f(t;u) =

m∑

i=1

h(t − ui). (13)

Thus, filtering maps spike trains into the vector space of real functions. It
therefore immediately induces a metric on spike trains, via the standard L2

metric on functions:

d(u,v) =

√∫
dt[f(t;u) − f(t;v)]2. (14)

To bring this into approximate correspondence3 with the metric defined
above, we specify that the kernel is the boxcar window

h(t) =

{
1/δT −δT/2 < t < δT/2
0 otherwise

. (15)

The basic idea here is that spikes are discrete events while a rate function
is continuous. Any formulation of the spike rate requires a filtering of the
spikes, smearing the discrete spike times into something that can add to
give a continuous rate function. This is the role of the kernel h(t), which
can be considered to represent the “impact” of a single spike across time.
To emphasize a relationship with the rate count distance we have used a
boxcar kernel above, but other choices suggest themselves – for example,
the exponential kernel [23] which will be discussed in Subsect. 2.2 and the
Gaussian kernel

h(t) =
1√
2πσ

e−t2/2σ2

, (16)

which provides a spike-count distance though a Gaussian rather than a boxcar
window. Here, σ provides a temporal scale; as δT did before before. In all

3The correspondence is only approximate since the boxcar smooths the spike train
continuously and without regard to absolute time, while binning is a discrete operation
that depends on the (usually arbitrary) convention of when t=0.
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of these kernels, there is a free parameter – the width of the kernel – when
the kernel is wide, the corresponding metrics merely compare overall firing
rate. When the kernel is narrow, they are sensitive to variations in the rate
at small time resolutions.

We note that the use of the L2 metric in the function space is not essential;
kernel-based metrics can also be defined by importing any other vector-space
metric, such as the Lp metric:

d(u,v) =

(∫
dt|f(t;u) − f(t;v)|p

)1/p

. (17)

The L1 metric will be of interest below; it will be seen that the L1 van Rossum
metric with boxcar filter, approximates the Victor-Purpura metric when the
spikes are not dense.

2.2 Synapse-like metrics

The Gaussian kernel mentioned above is motivated by statistical considera-
tions: each spike is viewed as an exemplar of a noisy random process whose
rate is to be reconstructed using the kernel. However, neurons do not “recon-
struct” a firing rate from their inputs; rather, they are biophysical machines
that process synaptic inputs. Abstracting this physiology serves to motivate
other metrics which include and generalize the kernel-based van Rossum met-
rics.

The basic idea is that the distance between two spike trains should be
related to the difference in their effect on other neurons. Caricaturing the
effect of a single spike as a causal exponential yields the kernel that defines
the original exponential van Rossum metric [20]:

h(t) =

{
0 t < 0
1

τ
e−t/τ t ≥ 0

. (18)

This choice is motivated by the physiology of neuronal signaling: it
can be considered to mimic the dynamics of transmission across a synapse.
We go into this in some detail, because these considerations also lead to
physiologically-motivated extensions [7] of the van Rossum metric. The cen-
tral idea is to identify the function f(t;u) with the post-synaptic conduc-
tance.
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The arrival of a spike at a synapse causes neurotransmitter to diffuse
across the synaptic cleft and bind with receptors on the dendritic spine,
opening ion channels. This changes the conductance of the post-synaptic
membrane, resulting in a change in its membrane potential. Diffusion of
transmitter across the synaptic cleft occurs within a millisecond or less. Since
this is much faster than other aspects of synaptic dynamics or the membrane
time constants, it is reasonable to model the change in the post-synaptic
conductance, f , as instantaneous:

f → f + δf (19)

whenever there is a pre-synaptic spike. The increment, δf , is a constant
which can be set to one by rescaling f . Once the transmitter is bound, we
assume that it becomes unbound at a constant rate

τ
d

dt
f = −f (20)

where τ is the time constant that governs this release. It is easy to check that,
apart from an irrelevant overall amplitude scale, this conductance is identical
to the function calculated by filtering the spike train with the exponential
kernel. In short, the filtering gives a map from spike trains to functions; this
map can be rewritten as an embedding into function space, u → f(t;u),
where f(t;u) satisfies the decay equation eq. (20), with discontinuities f →
f+1 at the spike times {u1, u2, . . . , um}. Thus, a simple caricature of synaptic
dynamics provides a mapping of spike trains into functions, and this mapping
is described by a linear filtering with an exponential kernel.

We can now use this setup to incorporate more complicated aspects of
synaptic conductance dynamics ([7]). Many synapses have “depressing” char-
acteristics, [1]: the net effect of an arriving impulse is diminished when the
synapse has been recently active. We can model this behavior by allowing
the size of the f increment, δf , to depend on the spiking history. A simple
way to do this is by including an additional parameter µ, which quantifies
the dependence on spike history, by changing the increment to

δf = 1 − µf (21)

The parameter µ is in the range zero to one, if µ = 0 the function increases
by one at every spike, regardless of the spiking history: this is the original
kernel filter map from spike train to function. However, for non-zero values
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Figure 2: The function f with the synapse-like increment eq. 21calculated
with µ = 0 and µ = 0.7 and τ = 12ms. The function has been calculated
for an example spike train with spikes at 10ms, 25ms, 40ms and 80ms; the
µ = 0 function is plotted with a solid line, the µ = 0.7 with a dashed line.
Since the function is zero up to t = 10ms both functions rise by the same
amount at this first spike. However, the second spike follows soon after and
so the two function rise by different amounts at t = 25ms; this is even more
pronounced at t = 40ms. The spike at t = 80ms is sufficiently removed from
the others so that the function f has nearly decayed to zero, and so the two
functions have almost identical increases here.

of µ the amount the function increases depends on the spike history with a
smaller increase when there has been a large number of previous spikes. This
is illustrated in Fig. 2.

Biologically, this particular map is intended to model the effect of bind-
ing site depletion in the synaptic cleft. The increase in conductivity at the
dendritic spine is the result of the opening of ligand-gated channels: these
channels open when neurotransmitter in the synaptic cleft binds with recep-
tor molecules. This means that the increase in conductivity depends on the
number of available binding sites. This number, in turn, depends on how
many binding sites are already occupied because of previous spikes; it is this
depletion of unoccupied binding sites that is modeled by allowing δf to de-
pend on history. If the number of binding sites is very large compared to the
number which is typically occupied because of a singe spike, then the effect
of binding-site depletion is small, corresponding to a value of µ near zero.
On the other hand, if a spike causes all binding sites to be occupied, then
the effect of a spike is to return the conductance to its maximum value: this
corresponds to µ = 1. We also mention that because spikes at different times
interact, the mapping represented by eq. (21) is no longer a linear map from
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spike trains to functions, and cannot be expressed as a linear filter, eq. (13).
Nevertheless, like the other kernel based metrics, the metric on the space of
spike trains is induced from a Euclidean metric in the target space, the space
of functions. The map could be represented as a sum of nonlinear kernels of
increasing order, that is, as a Volterra expansion [25].

Qualitatively, the effect of incorporating binding site depletion is that
some spikes have a larger effect than others on the distance between the
spike train and other spike trains. In particular, if a spike follows closely after
other spikes, when the binding sites are depleted, it will cause the function
to increase by less than a spike that occurs in isolation, when the binding
sites have recovered. This means, for example, that the precise timing and
number of spikes in a burst is less significant than the timing and number of
isolated spike. It will be seen in Sect. 3 that, for the zebra finch data used to
compare the different metrics, this results in an improved ability to interpret
spike trains.

This extension of the van Rossum metric is just one example of how
neurophysiological principles can be used to motivate a mapping from spike
times to a continuous function, and thereby define a spike metric. A similar
strategy could be used to incorporate pre-synaptic effects, or post-synaptic
effects other than binding site depletion.

These metrics – that result from a kernel-based mapping from spike trains
into continuous functions, and then applying a metric in the function space –
give only one of the two classes of metrics we wish to consider. The other class
consists of “edit length” metrics, as typified by the Victor-Purpura metric de-
scribed below. As we will see, these provide another framework for analyzing
spike timing effects, but one that often leads to convergent conclusions.

2.3 Edit-length metrics

The fundamental point of departure between edit-length metrics and kernel-
based metrics is that edit-length metrics calculate a measure of dissimilarity
directly from a pair of spike trains, rather than going through an intermediate
transformation of the individual spike trains into a function space. The
broad consequence is that the resulting geometry of spike trains, when viewed
through edit-length metrics, need not resemble that of a function space.
In particular, edit-length distances can be expected to yield non-Euclidean
geometries [23, 24]. Figure 3 gives a schematic summary for the Victor-
Purpura metric.

15



spike train u

qδt1 qδt2 ×1 ×1 ×1

spike train v

&%
'$
∑ · - d(u,v)

The Victor-Purpura metric is an edit-distance metric; the distance between
two spike trains is the total cost of changing one into the other using ele-
mentary steps where an individual cost has been assigned to each permitted
elementary step:

• deleting and adding a spike costs one

• moving a spike a distance δt costs qδt.

Obviously there is no unique way of changing one spike train to the other
using elementary steps; the metric distance is the minimum possible. There
are other varients of the Victor-Purpura metric based on spike intervals rather
than spike times, or with a larger collection of elementary moves.

Figure 3: A schematic summary of the single neuron Victor-Purpura metric.
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The first component of an edit-length distance is a specification of a set
of “elementary steps”. Each step is a simple transformation of a spike train
that can help mold it into another. The second component of an edit-length
distance is an assignment of a non-negative cost to each step. Based on this
assignment, any sequence γ of steps has, in turn, a cost c(γ) calculated by
adding the costs of its individual elementary steps.4 The distance between
two spike trains u and v is then defined as the minimum cost of transforming
one spike train in to the other using a sequence of elementary steps:

d(u,v) = min
γ

c(γ) (22)

where the minimum is is taken over all sequences γ which transform u to v.
Provided that the cost of a step is the same as the cost of inverting the step,
the above quantity is also guaranteed to be symmetric. The general problem
of finding this minimum-cost sequence can be daunting, but, as we will see
below, it can be done in an efficient manner for important special cases.

Typically, one kind of elementary step consists of inserting or deleting
a spike, and this step is assigned a cost of one. This has two technical
advantages. First, it sets a scale on the metric. Second, including this
elementary step guarantees that the distance between two spike trains is
finite, since at worst, one can remove all of the spikes from one train, and
insert all of the spikes into the other. That is, given two spike trains with,
respectively, m and n spikes, the distance between them is no greater than
m + n. Adding other kinds of elementary steps reduces this distance and
changes the characteristics of the metric.

As a simple example, we consider the “spike time” metric. In the spike
time metric, we add a second elementary step, consisting of moving a spike.
This move is assigned a cost of qδt, where δt is the distance moved. The
behavior of the metric is determined by the parameter q, the cost per distance
of moving a spike. Specifically, the parameter q gives a time scale 2/q which
determines the relative sensitivity of the metric to spike count and spike time.
The reason is that in any minimal-cost sequence of steps, no spike is moved

4In principle, it is possible to use other rules for calculating the total cost based on the
cost of the constituent elementary steps, for example, an “L2-like” edit-distance could be
defined with

c(γ) =
√∑

[c(γi)]2

where the γi are the individual elementary steps making up γ.
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by more than 2/q: the cost to do so would exceed the cost of deleting the
spike from one spike train and inserting it into the other. That is, from the
point of view of the elementary steps, spikes in the two trains that have times
that differ by more than 2/q are considered unrelated; it costs two units to
bring them into correspondence, while spikes within a narrower window can
be related at a lower cost, via a timing shift. In the limit of q = 0, the
metric becomes the spike count distance, since there is no cost associated
with aligning the spikes. As q increases, the metric becomes increasingly
sensitive to spike time.

For this metric, an efficient algorithm for calculating the minimum-cost
sequence, eq. (22), can be constructed based on the dynamic programming
algorithm used for the comparison of genetic sequences [17]. This algorithm
exploits properties of a minimum cost sequence. For example, in a minimal
cost sequence, a spike is never moved after it is added because adding it into
its final place would have the same effect at a lower cost. Similarly, a spike is
never moved before it is deleted; the same result is accomplished by deleting
it without first moving it. Also, a spike in one spike train is never moved
past the position of a spike in the other – since the same result could be
accomplished by keeping the spikes in their original order. As described in
[23], these conditions imply that the last spike of one spike train, u say, can
be treated in a way that considers only the last spike of v, the other spike
train. This leaves just three possibilities: (a) the last spike in u is moved to
match the last spike in v, (b) the last spike of u is deleted, or (c) a new last
spike is is inserted in u to match the last spike in v. This gives an inductive
method for calculating the distance. Note, however, that this relationship
is best used in the forward direction via dynamic programming, gradually
building up the distance between u and v from the distances between shorter
sub-trains, rather than as a recursion.

This can be done in the following way. Let Gi,j denote the distance
between the truncated spike trains formed by the first i spikes of u and the
first j spikes of v. Obviously Gi,0 = i and G0,j = j; the other entries can be
filled in one by one starting with G1,1 using

Gi,j = min {Gi−1,j−1 + q|ui − vj|, Gi−1,j + 1, Gi,j−1 + 1} (23)

where the three option correspond to the three possibilities, (a), (b) and (c),
described above. The distance is then the bottom right hand corner entry,
Gm,n.

18



Another kind of edit-length metric can be defined in terms of elemen-
tary steps in which intervals are inserted, deleted, or stretched. This kind
of metric is sensitive to intrinsic spike patterns, not to their absolute tim-
ing. The above algorithmic structure applies to these “interval” metrics in a
straightforward manner [24]. Still other edit-length distances can be created
by combining spike-time and spike-interval elementary steps, or by adding
other kinds of elementary steps. One such kind of step consists of translating
a subset of contiguous spikes by a fixed amount, capturing the idea that a
“burst” plays a specific role in coding. One could also allow translation of a
subset of non-contiguous spikes, capturing the idea that “motifs” of precisely
timed spikes are important [2]. However, it is not obvious how to extend the
above algorithm to calculate the minimum-cost paths for these metrics

One interesting aspect of the Victor-Purpura metric is that the cost func-
tion for the elementary step which moves a spike time can be changed to
a different positive increasing function. As mentioned in [23], it is possible
to change the Victor-Purpura metric by using some other, convex increasing
positive, distance function: convexity is required by the triangle inequal-
ity. The dynamic programming algorithm also applies for other distance
functions. Lots of other distance functions suggest themselves, for example,
sub-threshold electrodynamics events in neurons are generally discounted in
an exponential decay process suggesting a distance function which decays
exponentially towards two. However, in a similar way to the van Rossum
metric, the performance of the metric primarily depends on the time-scale of
the distance function, not its detailed profile.

2.4 Comparing edit-length and kernel-based distances.

Edit-length distances and kernel-based distances have a different mathemati-
cal structure. Moreover, because edit-length distances have different kinds of
steps, they distinguish between “jitter” and “unreliability” in describing the
difference between two spike trains: some spikes are moved, others deleted
or added. Kernel-based distances do not match up individual spikes in this
way. Nevertheless, the Victor-Purpura and van Rossum metrics often lead to
very similar results in terms of spike train classification. To understand the
reason for this, [8], we replace the L2 van Rossum metric by its L1 analog,

d(f, g) =

∫ T

0

dt|f − g|. (24)
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An L1 van Rossum metric whose kernel is the boxcar filter of eq. (15) with
δT = 2/q yields precisely the same distance as the spike time distance when
applied to pairs of single-spike spike trains, and to pairs of spike trains in
which one spike train is empty. By extension, exact equality between the
two metrics also holds when the spike trains being compared have widely
separated spikes, because when spikes are widely separated, they do not
interact. However, this correspondence is not exact: when spikes are close
together, the metrics differ. For example, if one spike train has two spikes
u = {0, u} where u < 2/q and the other spike train has just one spike
v = {v}, where 0 ≤ v ≤ u then the distance between u and v measured
using the L1 van Rossum metric with boxcar filter is one, independent of the
value of v, while the distance measured by the Victor-Purpura metric will be
1 + qv or 1 + q(u − v), whichever is less.

In a similar fashion, different Victor-Purpura distance functions can be
chosen to match other kernel functions when applied to single-spike spike
trains. For example, the L1 van Rossum metric with exponential kernel
will measure the same distance as a Victor-Purpura metric when the cost
of moving a spike by an amount t is given by 2

(
1 − e−t/τ

)
and for the L1

van Rossum metric with Gaussian filter, the corresponding cost for moving
a spike is the error function erf (t/

√
2σ).

An intuitive approach to defining a spike train metric would be to define
the distance as the number of spikes in each spike train that is not co-incident
with a spike in the other spike train. This, in a sense, defines the spike
distance as |u − v| where the minus operation on spike trains is defined
as “canceling” co-incident spikes. This approach is also appealing from a
physiological point of view: because neurons have a firing threshold, they
often can be regarded as coincidence detectors, one spike arriving on a pre-
synaptic neuron will not cause a post-synaptic neuron to fire, but a sufficient
number of spikes arriving within a sufficiently narrow time window will cause
the post-synaptic neuron to fire. This is probably the most obvious way for
spike times to play an important role in neuronal computation.

Of course, one difficulty is that two spikes are never precisely coincident;
coincidence must be defined relative to some fixed scale. This suggests a
“windowed coincidence detection” distance where the distance between two
spike trains is given by the number of spikes that are not sufficiently close to
being coincident. However, this does not give a metric; this distance does not
satisfy the triangle inequality. As an example of a violation, say the precision
timescale is δT , then the single-spike spike trains u1 = {0} and u2 = {3δT /4}
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are a distance zero from each other, as are u2 and u3 = {3δT /2}; however,
the spikes in u1 and u3 are separated by more than δT and so the distance
between these to spike trains is two. In a way the Victor-Purpura metric
can be thought of as resolving this difficulty by adding a cost to moving a
spike. The linear cost function is the least-convex convex function and so
the Victor-Purpura metric is, in a sense, the metric that comes closest to
coincidence detection.

3 Evaluating the functional relevance of met-

rics

A metric can be viewed as a formal hypothesis for how the brain represents
information. Here, we present a machinery for testing this hypothesis. The
basic idea is that if a metric expresses the meaningful similarities and dissim-
ilarities of neural messages, then the distances between spike trains should
correspond to the perceptual or behavioral distances between the entities
that they represent.

This test is most straightforward to implement in a sensory system. The
basic idea is to use the candidate metric to cluster a set of spike trains, and to
compare this clustering with a “gold standard”, namely, clustering the spike
trains according to the stimuli that elicited them. To implement this method,
one needs a set of spike trains recorded during repeated presentations of a
set of stimuli. These, for example, could be spiking responses recorded from
a visual area during repeated presentations with different types of visual
stimuli, or, as will be used as an example here, spiking responses recorded
from the primary auditory neurons of zebra finch during repeated playback
of songs from a standard repertoire. The metric is scored by how well the
metric clustering matches the stimulus-based clustering.

In one version of this approach, introduced in [23], clustering is compared
via a confusion matrix, N . The confusion matrix is a square matrix whose
ijth entry, Nij , is the number of responses from stimulus i which is clustered
by the metric into the cluster corresponding to stimulus j. Thus, the diagonal
entries count the number of spike trains that are closest to the correct cluster
(i.e., correctly decoded); the off-diagonal elements count the number of spike
trains that are closer to a cluster corresponding to a different stimulus (i.e.,
incorrectly decoded).
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In [23], the confusion matrix is calculated by a leave-out-one procedure,
as follows. Given n responses and K stimuli, the responses are first grouped
into K clusters {C1, C2, . . . , CK} according to their stimulus. Starting with
a K×K matrix N of zero entries, each response r is considered in turn. It is
temporarily removed and the distance d(r, s) between it and each spike train
s is calculated. A weighted average distance between it and the spike trains
in each stimulus-defined cluster is calculated: for each k ∈ {1, 2, . . . , K}

dk =

[
1

|Ck|
∑

s∈Ck

d(r, s)z

]1/z

. (25)

This weighted average (typically z = −2) is used to reduce the effect of
outliers. This gives a set of average distances of the response r to each of the
K clusters: {d1, d2, . . . , dK}. If the smallest distance in this set is dj and the
response being considered was taken from ith stimulus cluster, a tally is added
to Nij .

5 This tally indicates that the particular response, which actually was
elicited by the ith stimulus, was seen by the metric as belonging to the jth
stimulus-based cluster. When all the responses have been considered, the
elements of N will add to give the total number of responses, n:

n =

K∑

i=1

K∑

j=1

Nij . (26)

If the metric faithfully recovers the stimulus-based clustering, the confu-
sion matrix will be largely diagonal. If it does not, the off-diagonal entries
will be large. A natural nonparametric measure of where the metric lies on
this continuum is the transmitted information of the confusion matrix, h:

h =
1

n

∑

ij

Nij

(
ln Nij − ln

∑

k

Nkj − ln
∑

k

Nik + ln n

)
. (27)

5To complete the recipe for construction of the confusion matrix, one needs a convention
to handle ties. One way to do this is that if several, b say, of the dK are tied for a minimum,
then 1/b is added to each Nij , for which dj is equal to the common minimum. Another,
more flattering, convention adds one to the relevant diagonal entry of N if the distance
to the spike trains own cluster is among those drawn at the minimum. Note that ties are
much more likely to occur for a metric that has discrete values, such as the spike count
metric.
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For perfect clustering of K equally likely stimuli, the maximum value of the
transmitted information h will be obtained: h = ln K. For convenience, a
normalized information, h̃ = h/ lnK will be used here.

For illustrative purposes a data set recorded from the primary auditory
area of zebra finch will be considered. These electro-physiological data were
previously analyzed in [13, 26, 7], and [13] should be consulted for a detailed
description of the experimental and primary data processing procedures. The
recordings were taken from field L of anesthetized adult male zebra finches
and data were collected from sites which showed enhanced activity during
song playback. 24 sites are considered, of these, six are classified as single-
unit sites and the rest as consisting of between two and five units [13]. The
average spike rate during song playback is 15.1 Hz with a range across sites
of 10.5-33 Hz. At each site, ten responses to each of 20 zebra finch songs
were recorded so, K = 20 and n = 200. In all the analysis here, one second
of each recording is used, beginning at the onset of song playback. It should
be noted that Field L is a primary auditory area, the metric properties of
the spike trains recorded here are unlikely to be typical of areas higher in
ascending pathway; let alone in other sensory modalities or species.

In Fig. 4 a comparison is given between the clustering performance of
the spike count distance, the van Rossum metric with boxcar filter, Gaus-
sian and exponential filter, the synapse-like metric and the Victor-Purpura
metric. One striking aspect of this comparison is how similar to each other
the performances of the three van Rossum metrics and the Victor-Purpura
metric are. The profile of the filter seems to make little difference and –
although the Victor Purpura metric differs from the van Rossum metrics in
that it actually matches particular spikes in one spike train with spikes in
the other – its performance on these data is very similar.

As illustrated in Fig. 5 for the van Rossum metric with boxcar filter, the
performance depends significantly on the timescale of the filter; δT , the size
of the window, in this case. For very small windows the performance is poor:
it improves rapidly to the best average performance at δT = 28ms. The
decline in performance is very slow. As mentioned above, the value of h̃ for
the spike count distance depends on a tie-breaking convention. However, as
illustrated in Fig. 4, even for the most favorable convention, the spike count
metric only achieves modest values of h̃.6

6In the definition of the van Rossum metric there is a slight awkwardness at the edges:
in the boxcar case, for example, the window extends beyond the experimental period [0, T ]
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0 0.25 0.5 0.75 1

Victor-Purpura

synapse

van Rossum exponential

van Rossum Gaussian

van Rossum boxcar

spike count

Figure 4: Comparing the spike count distance and various metrics. In this
figure the h̃ value has been plotted for each of the 24 sites in the zebra finch
data. Each horizontal line corresponds to the performance of a single metric,
the line runs from zero to one, as a visual aid a tiny gap is left at 0.25, 0.5
and 0.75. Along each line a small stroke corresponds to a single site, the
long stroke corresponds to the average value. The spike count line shows h̃
calculated for the spike count distance. The remaining lines each show the
average best performance of a metric: in each case the value of the parameter,
or parameters, has been chosen to give the best average performance.

van Rossum boxcar δT = 28ms
van Rossum Gaussian σ = 7ms
van Rossum exponential τ = 13ms
synapse µ = 0.6 and τ = 13ms
Victor-Purpura 2/q = 34ms
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Figure 5: Clustering is optimized by a value of δT of approximately 28ms..
This graph shows the transmitted information h̃ of the van Rossum metric
with boxcar filter, averaged across all 24 sites in the zebra finch data. It is
plotted against δT , the window width, with values of δT from 1ms to .25s.

Finally, we mention that many studies that have used this approach to
demonstrate that spike timing adds to the information that can be decoded
from a spike train; for a review, see [21]. It has also been shown that spike
timing adds not only quantitatively to what can be decoded, but qualitatively
as well: it allows a single neuron to represent the four primary qualities of
taste space [6]. While these studies, and many others, demonstrated that
spike timing carries information, they stopped short of showing that this
information is actually used. This significant step has now been taken in the
retina, by comparing behavioral performance to optimal decoding of neural
populations [9].

3.1 The synapse van Rossum metric

Figure 4 shows that the synapse van Rossum metric appears to show a clear
improvement over the other metrics for the example data set. The average
performance of the metric is plotted in Fig. 6; it is seen that increasing µ

when t < δT /2 and t > T − δT /2, this is easily solved by treating the spike trains as being
defined on the extended interval [−δT /2, T +δT /2], but with no spikes outside of [0, T ] and
this is what is generally done. Here we use a scheme of this sort with the exponential and
Gaussian filters. However, for filters with larger timescales this has an undesirable effect:
it gives less weight to spikes near the two end-points. Because we examine a broad range
of interval widths for the boxcar filter, the other obvious scheme, mapping the spike train
onto a circle, is used in that case. In fact, this awkwardness makes very little difference
provided the width of the interval is modest compared to the length of the experiment,
something that is normally the case.
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Figure 6: An intermediate value of the depletion parameter µ optimizes
transmitted information. Transmitted information, h̃, is plotted against µ
with τ = 13ms. When the parameter µ is zero the synapse metric is the
same as the van Rossum metric with an exponential filter: each spike adds
one to the function. When µ is one the spikes do not have an accumalating
effect, each spike returns the function to one. There is a noticeable rise as
µ increases, indicating that for this data set the performance of the metric
improves.A comparable effect is not seen for other models of the synaptic
response.

improves the clustering performance. In Houghton [7] a variety of other mod-
els for the synaptic response are tested, models which incorporate long term
depression and facilitation and a finite rise time for the conductance. None
of these other models has as large an effect on the clustering performance.
Of course, this relates only to one particular data set and may change when
other data sets are considered.

There are two qualitative differences between the synapse van Rossum
metric and the simpler, kernel-based, variants of the van Rossum metric.
First, the time of the first spike in a burst is more significant under the
synapse metric than the time of the spikes later in the burst. This appears
to underlie the improved performance, but of course it is unclear whether
this will generalize to other data sets. The second difference is that the
synapse-lie metric is not invariant under time reversal. That is, denoting
the time reversal of a spike train u = {u1, u2, . . . , um}by ū = {T − um, T −
um−1, . . . , T − u1}, we find that typically,:

d(u,v) 6= d(ū, v̄), (28)
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However, this asymmetry does not appear to be crucial to the performance of
the metric, which is largely the same whether it is carried out on the original
zebra finch data or on the time reversed version.

We mention time reversal asymmetry because the dynamics of signaling
between neurons is obviously not invariant under time reversal: there are
depressing and facilitating effects in both spike production and synaptic re-
sponses. It might be expected that these effects are exploited by, or even
explained by, the structure of information coding in spike trains. However,
if this is the case, it has not been demonstrated by including binding site
depletion in the van Rossum metric in this data set.

4 Multineuronal metrics

Data sets consisting of multiple simultaneously recorded neurons are increas-
ingly available. Both kinds of metrics – kernel-based and edit-length metrics
– are readily extended to this context. We outline them below, noting that
although the multineuronal edit-length metrics are perhaps the more natural,
multineuronal kernel-based metrics are considerably easier to calculate when
the number of units is large. We describe the edit-length metrics first, since
they are simple extensions of the single-unit edit-length metrics discussed
above.

In both cases, a metric is an assignment of a distance to pairs of multi-
neuronal responses, d(U ,V), where U and V each represent a multineuronal
response. We can think of a multineuronal response U as a sequence of “la-
beled” events: each event is a neuronal firing, and the label is the neuron of
origin. We can also think of U as a set of sub-sequences, one for each neuron.
In this view an N -neuron response is U = {u1,u2, . . . ,uN} where u1 to uN

are all spike trains and,

ui = {ui1, ui2, . . . , uimi
} (29)

and ui1 to uimi
are all spike times.

The central question in the analysis of multineuronal activity is, to what
extent patterns of activity across the population are crucial for coding. One
extreme is that cross-neuron population patterns are simply irrelevant: all
that matters is whether any neuron fired, not which one. In short, this is
a “summed population code”: the message conveyed by the neural popula-
tion is the same as the message of a single spike train that included all of
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the population’s spikes. At the other extreme, each neuron encodes has a
unique and distinguishable role in describing the stimulus. That is, the pop-
ulation is best decoded neuron by neuron, keeping faithful track of which
neuron fired which spike. This second possibility is a “labeled line code” .
The multineuronal metrics formalize these extremes and interpolate between
them.

4.1 A multineuronal edit-length metric

As an example of a multineuronal edit-length metric, we show how the Victor-
Purpura spike time metric can be extended to the multineuronal context.
This can be done simply by adding an extra elementary step: changing the
label of a spike. Relabeling a spike is equivalent to moving it from one neuron
to another, without changing its time [24, 4]. The other two elementary steps
are unchanged; they act on each of the individual spike trains, ui, in U to
change them into the corresponding spike train, vi in V.

The cost assigned to the label-changing step is a parameter, k, that char-
acterizes the metric on the gamut between the summed population code and
the labeled line code. If k = 0 , there is no cost associated with relabeling
a spike. The distance is unaffected by which neuron fired each spike, and
thus, represents a summed population code. Conversely, if k ≥ 2 , it is at
least as expensive to relabel a spike as it is to delete a spike from one spike
train and add it to another. In this case, the distance between U and V is
the sum of the distances between each of the individual spike trains. Thus,
k = 2 represents a labeled line code. Values of k between these extremes cor-
respond to intermediates between a summed population code and a labeled
line code. For example, a value of k = 1/M means that moving M spikes to
another neuron has the same effect on the meaning of a response as deleting
one spike. Intermediate values of k – in the range of 0.5 to 1 – have been
found to provide optimal clustering in an analysis of phase coding in visual
cortex [4].

The dynamic programming technique used to calculate the single-unit
Victor-Purpura metric can be extended to the multineuronal case. Surpris-
ingly, an efficient strategy for doing this begins by treating the two responses
U and V in an asymmetric fashion [3]. Specifically, one response, U , is treated
as a single labeled event sequence; the other response, V, is treated as a set
of single-unit sub-trains. Let Gi,j1,j2,...,jN

be the distance between, on the
one hand, the set of spike trains formed from U by taking the first i spikes,
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counted in order by ignoring which spike train they belong to, and on the
other hand, the set of spike trains formed from V by taking the first j1 spikes
in v1, the first j2 in v2 and so on. Initially, we know the values along the
edges of the array G where either U or V is empty:

Gi,0,0,...,0 = i (30)

G0,j1,j2,...,jN
=

N∑

w=1

jw (31)

Starting from these edges, the other values can be filled in iteratively using

Gi,j1,j2,...,jN
= min






Gi−1,j1,j2,...,jN
+ 1

minw:jw>0 Gi−1,j1,...,jw−1,...,jN
+ c(i, jw)

minw:jw>0 Gi,j1,...,jw−1,...,jN
+ 1




 (32)

where
c(i, jw) = q|ui − vwjw

| + k[1 − δ(i, jw)] (33)

is the cost of making the ith spike in U match the jw spike in V. In this
expression, ui is the time of the ith spike and vwjw

is the time of the jw spike
in vw; δ(i, jw) is one if the two spikes are from the same neuron, and zero
otherwise. Once the iteration has finished,the distance between the two spike
trains is Gm,n1,n2,...,nN

where v1 has n1 spikes, and so on, and m is the total
number of spikes summed over the N spike trains in U .

The drawback of the algorithm is that it requires a large array G and a
computation time that is proportional to mn̄N where m is the total number
of spikes in U and n̄ the average number of spikes in the spike trains in V.
This often limits the practicality of the approach to recordings of no more
than three to five neurons, depending on the length of the spike trains.

As described above, the metric and algorithm posits a single parameter,
k, that determines the cost of changing an event’s label. When there are
spikes from more than two neurons, it is of potential interest to consider
metrics in which the cost to change a label depend on the particular label
pair. This introduces additional parameters,a symmetric array kw1w2

, the
cost to change the label from w1 to w2, but no further complexity into the
above algorithm. Moreover, the above algorithm can be modified to allow
for efficient parallel calculation of the metric for all values of a parameter set
k or kw1w2

[22].
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4.2 A multineuronal kernel-based metric

In this section we show how kernel-based metrics can be extended to the
multineuronal context. For definiteness, our starting point is the van Rossum
metric, but the strategy is general. Recall that the van Rossum metric is
defined via a map of spike trains to functions of time, and then the L2 metric
on the space of functions is used to induce a metric back on the space of spike
trains. To extend this idea to a multineuronal metric, we begin by extending
the target space of the map, [8]: namely, each of the N spike trains in the set
is mapped to a vector of N functions of time. We will then use a standard
distance in this larger space to induce a metric on the original multineuronal
spike trains. The key consideration is to include sufficient flexibility into the
initial map so that these metrics can describe population codes, labeled line
codes, and the gamut between them. The way we do this is to map each spike
train into its own “direction” in the function space. We anticipate that when
the directions are aligned, the metric corresponds to a summed population
code. When the directions diverge, the metric corresponds to a labeled line
code.

To implement this idea, suppose that the single-unit metric is based on
the map

uw 7→ f(t;uw). (34)

This could be the linear kernel-based map (13), but the approach here is
general, and, f(t;uw) could equally well be the synapse map. To extend this
map to the multineuronal context, we replace eq. (34) by a map

uw 7→ f(t;uw)ew (35)

where ew is a N -dimensional unit vector associated with the wth neuron.
That is, the unit vectors ew determine the direction in which the wth spike
train is mapped. Adding these vectors, one from each single-unit spike train,
gives an N -dimensional vector of functions of time:

U 7→ f(t;U) =

N∑

w=1

f(t;uw)ew. (36)

We now define a metric on the multineuronal responses in terms of a metric
on the space of vectors of functions. The obvious choice is based on the norm:
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if

g(t) =




g1(t)
g2(t)

...
gN(t)


 (37)

is a vector of functions of t ∈ [0, T ], then the norm is

‖g(t)‖ =

√∫ T

0

dt(g2
1 + g2

2 + . . . + g2
N). (38)

The corresponding metric induced on the space of multineuronal responses
is given by

d(U ,V) = ‖f(t;U) − f(t;V)‖. (39)

We still need to specify the unit vectors ew used in the embedding. As long
as the metric is determined by a Euclidean distance in the target space, only
the angles between these vectors, not their absolute directions, influence the
value of the metric space. If the ew are all parallel, then the above map
eq. (36) corresponds to summing the individual response vectors f(uw)ew.
This is equivalent to superimposing the spike trains before mapping them in
to function space, and thus, precisely corresponds to a summed population
code. Conversely, if all the vectors are orthogonal, for example, if ew has a
one for its w component and is otherwise zero, then the multineuronal metric
is a Pythagorean sum of the individual van Rossum distances between the
individual spike trains: this is a labeled line code.

In the two neuron case, there are two vectors, e1 and e2 and, the metric
is defined by the angle between them. This angle plays the same role as k
in the multineuronal Victor-Purpura multineuronal metric: it maps out a
one-parameter interpolation between the summed population code and the
labeled line code. When there are more than two vectors, the situation
is more complicated: there are angles between each pair of vectors, and
N(N − 1)/2 parameters are required to specify all these angles. This is
strictly analogous to the situation that arises for edit-length distances: one
could force all of these parameters to have the same value, corresponding to a
single choice of the relabeling parameter k, or one could allow these values to
correspond to a symmetric matrix, corresponding to different costs for each
kind of relabeling. An explicit construction for a set of basis vectors that
share a common angle is given in [8].
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There is also an L1 version of this multineuronal metric:

d(U ,V) = ‖f(t;U) − f(t;V)‖1. (40)

with

‖g(t)‖1 =

∫ T

0

dt(|g1| + |g2| + . . . + |gN |) (41)

and g(t) a vector of function as in Eq. (37). The vectors ew are again unit
vectors, but note that they must be chosen to be unit vectors according to
the l1 norm. That is, the absolute values of their components must add to
one. Thus, for example, in the two-neuron case a suitable pair of vectors
would be given by e1 = (1, 0) and e2 = (1 − k/2, k/2) for k between zero
and two. The parameter k/2 has been chosen so that there is a distance k
between the two one-spike spike trains

U = {u1 = {u},u2 empty}
V = {v1 empty, v2 = {v}}

with u = v: spikes are at the same time but correspond to different neu-
rons. With the boxcar kernel,this metric partially mimics the multineuronal
edit-distance metric in that k = 0 corresponds to a population code, and
k = 2 corresponds to a labeled line code. However, the two metrics give
different distances even for one-spike spike trains. If 2/q > v − u = t > 0
the multineuronal van Rossum metric gives qt + k − qk/2 compared to the
multineuronal edit distance which gives qt + k, or two, whichever is smaller.

To pursue the goal of selecting a metric on the basis of maximizing the
faithfulness of clustering – or optimizing the transmitted information – it
is necessary to carry out repeated computation of the metric distance for
different values of the metric parameters. Here, multineuronal van Rossum
metrics has the advantage of generally being far faster to compute numeri-
cally; the computational difficulty is quadratic in the total number of spikes,
and does not have an exponential dependence on the number of neurons
– as the edit-length distances do. Thus, it should be possible to use van
Rossum metrics to study data sets with large numbers of neurons, allowing
the optimal angle parameter to be calculated as a description of the nature
of population coding for these neurons.
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4.3 The Earth Mover Distance

The strategies used above to extend the edit-length and kernel-based metrics
to the multineuronal context have a common thread: they both can be con-
sidered to use “neuron of origin” as a second domain variable, along with time.
Here we describe the “Earth Mover Distance”, because it can be viewed as
taking this idea one step further, making them applicable to images [15, 16].

To make this transition, we begin with the viewpoint of the multineuronal
edit-length metrics: spikes can be moved across time, or across neurons. That
is, time and neuron-of-origin are two “domain” variables, and they are treated
separately.7 The class of metrics represented by the Earth Mover Distance
is the result of considering these two variables as a single two-dimensional
domain. This change in viewpoint means that a spike at time x and neuron
y simply becomes an “event” at (x, y). We can now define the cost of an
elementary step to move an event from (x1, y1) to (x2, y2) in terms of the
distance between (x1, y1) and (x2, y2), and allow moves in oblique directions.
To complete the connection with the Earth Mover Distance, we note that
an array of “events” has an obvious reinterpretation as images: the event
density, I(x, y), at (x, y) corresponds to image intensity at (x, y). As the
name implies, if we interpret an image as a pile of earth at height (x, y), the
Earth Mover Distance indicates how much labor, volume×distance, must be
done to convert one image into another. The Earth Mover Distance has been
found useful for color-based image retrieval where pictures are mapped to
their color histograms and the Earth Mover Distance is used to measure the
similarity of these histograms [16, 15] .

As defined above, the Earth Mover Distance is built up from elementary
steps, each of which preserves the total amount of “earth”, that is, the to-
tal event count

∫
I(x, y)dxdy is preserved by the elementary step. Thus, to

ensure that a distance always exists, one needs at least one more ingredi-
ent – such as an elementary step that adds or subtracts earth, or, a con-
vention that all images have been normalized to contain the same amount
of “earth”. We also mention that many variations on the above theme are
readily framed. To compare flat images, the domain variable is naturally a
two-dimensional rectangle; but movies, volume-based “images”, and volume-

7This viewpoint can also be applied to the van Rossum metrics: the target of the
mapping is a function of time and neuron with the mapping from each neuron-of-origin to
the neuron direction in the target space being determined by the choice of the unit vector
ew.
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based movies, such as functional imaging data, can be similarly compared
on a three or four-dimensional domain of spatial variables and time. In all
of these cases, the cost for moves need not be isotropic, and need not even
reflect a Euclidean distance.

5 Conclusions

We have presented strategies for metric-based analysis of spike trains in a rel-
atively abstract manner, to emphasize their conceptual underpinnings and
ways in which they can be generalized.8 It is hoped, above all, to find a
framework for describing spike trains that will make it easier to understand
the relationship between the spiking activity of neurons and the computa-
tional function of neuronal circuits. We have tried to give some motivation
for the two main families of spike train metrics, the single neuron metrics
are perhaps easier to relate to our current understanding of spike coding and
of physiology. The multineuronal metrics are primarily justified by the fact
that they give a full gamut of metrics interpolating between the labeled line
and summed population codes. It seems very clear that there are many open
questions at this interesting interface of mathematics and neuroscience, and
we wish to close by making some of them explicit.

The largest question is whether the metric-space framework is sufficiently
general. It is well-known that there are cognitive phenomena that do not map
readily into metric-space descriptions [12, 18, 19]. Perhaps it is possible to
model such non-metric behaviors at the level of the decision process, but we
cannot rule out the possibility that a more general mathematical structure
will be needed even at the level of spike trains.

As an example of a more general structure for spike trains, one might
consider a non-metrizable topological space. Here, the notion of a “distance”
is replaced by the notion of “neighborhoods”: a collection of open sets within
the space. A metric space is necessarily a topological space, but the latter is
more general: there are topological spaces where the topology (i.e., the set of
neighborhoods) can not be re-created from a metric. An obvious, relevant,
example of a non-metric topological space is the topological space induced by
a semimetric, a distance function which does not satisfy the triangle inequal-
ity. The windowed coincidence detection distance mentioned in Subsect. 2.4

8From a practical point of view, robust implementations of many of the metrics dis-
cussed here can be found on neuroanalysis.org
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is a semimetric. semimetric spaces do not, in general, have nice geometries
with useful properties;perhaps a metric is required to endow the space of
spike trains the properties we would like it to have. However, it should be
noted that algorithms for distance-based clustering and classification gen-
erally work equally well with a semimetric distance function [10, 11]. The
fundamental issue is,what properties we require the space of spike trains to
possess from a biological point-of-view and how these requirements translate
into constraints on the topological or geometric structure of the space of spike
trains.

Even within the context of spike train metrics, we cannot claim that we
have been comprehensive. We have presented two kinds of metrics, both
because of their ease of use and the biological intuitions that they capture.
However, we do not wish to suggest that these are the only families that
should be considered. More generally, it would be desirable to have a first-
principles “taxonomy” of biologically relevant metrics. Of course the prelim-
inary challenge is formalizing the latter phrase: while we can readily come
up with bizarre metrics – for examples, metrics based on pathologies of real
analysis such as Cantor sets – it is not so easy to formalize the characteristics
that a metric must have to make it worth considering in neuroscience. At
its simplest such a characterization would list properties that are germane
to spike trains, these might include a jitter requirement – a small change to
spike times should cause only small change to distances – and an unreliabil-
ity requirement: similar spike trains can have different numbers of spikes. A
more ambitious scheme would attempt to derive a metric from a model for
the genesis of the geometry of spike train space.

Finally, we speculate on a possible avenue to approach the latter problem.
A neuron – or a neuronal network – can be thought of as carrying out a
transformation T on multineuronal spike trains U . This can also be viewed
as a transformation T̃ on the space of all metrics: that is, given any metric d

that we assign to the way in which output activity T (U) is evaluated, we can

induce a metric T̃ (d) on the input by asking how different the input trains
appear, once they have been processed,

T̃ (d)(U ,V) = d(T (U), T (V)). (42)

This formalizes the idea that a distance between spike trains should reflect
the difference between their effects on neural activity. Given this structure,
one could then hope to study the structure of the metric d under the as-
sumption that the transformation T̃ acts on it in a straightforward way: the
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metric might be stable fixed points, or have parameters that undergo a sim-
ple transformation. This reflects the heuristic that the overall relationship
between neural activity need not be re-invented as neural activity evolves
over time.
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