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Abstract

The Victor-Purpura spike-train metric has recently been extended
to a family of multi-neuron metrics and used to analyze spike trains
recorded simultaneously from pairs of proximate neurons. The Victor-
Purpura metric is one of the two metrics commonly used for quantify-
ing the distance between two spike trains, the other is the van Rossum
metric. Here, we suggest an extension of the van Rossum metric to
a multi-neuron metric. We believe this gives a metric which is both
natural and easy to calculate. Both types of multi-neuron metric are
applied to simulated data and are compared.

1 Introduction

A key current challenge is understanding how neurons in the primary sensory
regions encode their input stimuli. One technique is to use a spike-train met-
ric to cluster the responses to a set of stimuli. By assessing how successfully
the clusters match the stimuli it is possible to tell how successfully a given
metric utilizes the most salient features in a neuronal response.

∗houghton@maths.tcd.ie
†kamalsen@bu.edu
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This technique is used, for example, in (Narayan et al., 2006) as a tool
to investigate the response of songbird neurons to songs. In the experiment,
recordings are made of the neuronal responses of field L neurons of the anes-
thetized Zebra Finch to 10 repetitions each of 20 con-specific songs. The
van Rossum metric (van Rossum, 2001) is then used to work out the dis-
tance between pairs of spike trains and a simplified k-means type clustering
algorithm is used to divide the 200 spike trains into 20 clusters.

To calculate the van Rossum metric the spike train is first filtered to
form a function: the spike train, considered as a list of spike times t =
(t1, t2, · · · , tn) is mapped to a real function using a kernel h(t):

F : spike trains → real functions

t = (t1, t2, . . . , tn) 7→ F(t) =
n∑
i=1

h(t− ti). (1)

The distance between two spike trains, t1 and t2, is taken to be the distance
between the two corresponding functions, using, for example, the standard
L2 metric on the space of real functions:

d2(t1, t2;h) =

√∫
dt(f1 − f2)2 (2)

where f1(t) = F(t1) and f2(t) = F(t2).
One common choice of kernel is the decaying exponential

h(t) =

{
0 t < 0
1
τ
e−t/τ t ≥ 0

. (3)

In (Narayan et al., 2006), this kernel is used with different values of the time
constant τ . Different τ values give different metrics and different clusters.
By calculating which clustering most accurately groups the spike trains by
song stimulus, it is found that the best metric corresponds to τ ≈ 12 ms.
This, it is argued, gives an indication of the timescales involved in neuronal
responses in this part of the Zebra finch brain.

Another useful metric was introduced in (Victor and Purpura, 1996; Vic-
tor and Purpura, 1997). The Victor-Purpura distance between two spike
trains is calculated by considering how one spike train could be transformed
into the other using a sequence of small moves: deleting or adding a spike or
moving a spike to another location. A cost of one is associated with adding or
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deleting a spike and a cost of q|δt| is associated with moving a spike by a time
interval δt. The Victor-Purpura distance is then the cost of transforming one
spike train into the other in the cheapest possible way.

The q parameter determines the cost of moving a spike. For q = 0 there
is no cost and the Victor-Purpura distance between two spike trains is just
the difference in the number of spikes. For q very large, in contrast, it is
cheaper to delete and create spikes than to move a spike from one location
to another and so the distance between two spike trains is the total number
of non-coincident spikes. Roughly speaking, 2/q gives the time-difference
interval for which two spikes can be considered to be related by jitter.

It should be determined experimentally whether the Victor-Purpura or
the van Rossum is the more suitable spike-train metric. One nice feature
of the Victor-Purpura metric is that it allows unreliability and jitter to be
distinguished in the spiking response to repeated presentations of the same
stimuli. On the other hand, the metric explicitly pairs spikes in the two spike
trains; it is not clear whether this is a good property for a spike-train metric
to have.

Because it involves a kernel function and a choice of metric on the function
space, the van Rossum metric is very flexible. In fact, numerically, the Victor-
Purpura distance is very similar to an L1 van Rossum distance:

d1(t1, t2;h = δ2/q) =

∫
dt|f1 − f2| (4)

where the kernel δ2/q(t) is the block function

δ2/q(t) =

{
q/2 0 ≤ t < 2/q
0 otherwise

(5)

and q is the time-scale parameter in the Victor-Purpura metric. By consider-
ing simple cases, with small numbers of spikes, is easy to see why this might
the case. We have checked that the two metrics are numerically similar for
real data by computing the distance between 400 pairs of spike trains chosen
at random from the collection of field L spike trains described in (Narayan
et al., 2006). We have found that the average difference between the Victor-
Purpura distance and van Rossum distance, with 2/q = 20 ms is 2.54% with
a standard deviation of .08%.

It might be also interesting to consider a generalized Victor-Purpura met-
ric which gains the flexibility of the van Rossum metric by changing the cost
of moving a spike from q|δt| to f(|δt|) for some function f .
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2 Multi-neuron metrics

It is pointed out in (Aronov et al., 2003) that it is useful to apply the clus-
tering technique to simultaneous recordings from proximate neurons. This
could help to uncover how populations of neurons cooperate to encode a sen-
sory input. In order to cluster the response of, for example, a pair of neurons,
a two-neuron metric must be defined. In (Aronov et al., 2003; Aronov, 2003)
a family of multi-neuron metrics is defined; we will call these the ARMV
metrics. In the ARMV metrics, spikes are labelled by the neuron that fired
them, but this label can be changed at a cost of k, where k is a parameter.
Hence, the ARMV distance between two sets of labelled spike trains is the
cheapest set of small moves transforming one set into the other, where, now,
the small moves are adding or deleting a spike at a cost of one, moving a
spike by an interval δt at a cost of q|δt| and relabelling a spike at a cost of k.

In (Aronov et al., 2003) two different coding strategies for neuron pop-
ulations are distinguished: a ‘summed population code’ (SP) metric where
the two spike trains from the two neurons are super-imposed before the dis-
tance is calculated, and a ‘labeled line code’ (LL) metric where the distance
is measured for each neuron separately and then added. These two possibil-
ities correspond to the metrics at either end of the one-parameter family of
ARMV metrics obtained by varying k. If k = 0 there is no cost to relabelling
a spike and so this is a SP metric. On the other hand, if k ≥ 2 it costs more
to relabel a spike than to delete a spike from one spike train and to add a
spike in the other. Hence, for k ≥ 2 the ARMV distance between the two
sets of spike trains is the same as the sum of the individual Victor-Purpura
distances. Therefore, this is an SP metric.

To illustrate, the SP and LL two-neuron metric constructed from the van
Rossum spike-train metric will be considered. Let t1 and u1 be the responses
of the two neurons to the first stimulus presentation and t2 and u2 to the
second and define the corresponding functions

fi(t) = F(ti)
gi(t) = F(ui) (6)

with i = 1, 2. Since a SP metric first superimposes the spike trains, the
two-neuron SP distance between the responses to the two stimuli is given by

d2[(t1,u1), (t2,u2);h, SP] =

√∫
dt(f1 + g1 − f2 − g2)2 (7)
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whereas the LL distance is the sum of the distances between stimuli for each
neuron:

d2[(t1,u1), (t2,u2);h,LL] =

√∫
dt(f1 − f2)2 +

∫
dt(g1 − g2)2 (8)

where, because this is an L2 metric, the sum has been taken using the The-
orem of Pythagoras. The purpose of this paper is to define a natural one-
parameter family of metrics interpolating between these two possibilities.
For simplicity, we will construct the two-neuron metrics in the next section,
the multi-neuron metric is constructed in a similar way and is described in
appendix 1.

3 The metrics

The idea behind the new metrics is to map the filtered spike trains fa and ga
into the space of two-dimensional vector fields. The space of two-dimensional
vector fields on the line

{(f, g) : f(t) and g(t) are real functions} (9)

can be thought of as the space of ordered pairs of functions. The space has
an obvious norm whereby, the length is given by taking the usual Euclidean
norm on the two-dimensional vector space and the L2 norm on the function
space:

‖(f, g)‖2 =

√∫
dt(f 2 + g2). (10)

Now, if we associate each of the neurons with a two-dimensional unit vector,
e, we can map its spike-trains into the space of two-dimensional vector fields

Fe : spike trains → two-dimensional vector fields (11)

t = (t1, t2, · · · , tn) 7→ Fe[(t1, t2, · · · , tn)] = F(t)e =

(
n∑
i=1

h(t− ti)

)
e.

So, for example, if we assign the unit vector

e0 =

(
1
0

)
(12)
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to the first neuron then a spike train t = (t1, t2, · · · , tn) from that neuron is
mapped to the vector field

Fe0(t) =

( ∑n
i=1 h(t− ti)

0

)
. (13)

The two-neuron metric being proposed here is calculated by assigning
different unit vectors to each of the two neurons. The metrics are parame-
terized by the angle between these vectors. It will be seen that varying this
angle from zero to π/2 interpolates between the SP and LL metrics described
above. For simplicity, the unit vector e0 is assigned to the first neuron, and
the vector

eθ =

(
cos θ
sin θ

)
(14)

to the second. The total response vector field r is then formed by adding
together the two vector fields associated with the two neurons. Hence, using
the same notation as above, we have two response vector fields, one for each
presentation

r1 = f1e0 + g1eθ
r2 = f2e0 + g2eθ. (15)

The distance between the two pairs of spike trains, (t1,u1) and (t2,u2), is
defined as the distance between the two corresponding vector fields, given by
the norm above:

d2[(t1,u1), (t2,u2);h, θ] = ‖r1 − r2‖2. (16)

Expanding in terms of the fa and ga

d2[(t1,u1), (t2,u2);h, θ] =

√∫
dt(δf 2 + δg2 + 2cδfδg) (17)

=

√
d2[(t1,u2), (t2,u2);h,LL]2 + 2c

∫
dtδfδg

where δf = f1− f2, δg = g1− g2 and c = cos θ. It is clear from these formula
that

d2[(t1,u1), (t2,u2);h, θ = 0] = d2[(t1,u2), (t2,u2);h, SP)
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d2[(t1,u1), (t2,u2);h, θ = π/2] = d2[(t1,u2), (t2,u2);h,LL) (18)

and that the parameter θ interpolates between these by varying the contri-
bution the correlation

∫
dtδfδg makes to the metric.

The two-neuron metrics can be generalized to multi-neuron metrics by us-
ing higher dimensional vectors: for an n-neuron metrics the two-dimensional
vectors are replaced by n-dimensional vectors. This is discussed in ap-
pendix 1.

It is possible that θ > π/2 metrics will also prove useful. For example,
in the θ = π case, common spikes do not contribute to the distance; this
may be of interest when the neurons receive a common noisy drive, or are
subject to common excitability fluctuations, while the signal is coded in the
difference in their behavior.

It is easy to use this prescription to form other, similar, metrics. For
example, there is an L1 version which uses an L1 norm on functions and the
l1 norm on the two-dimensional vector space:

‖(f, g)‖1 =

∫
dt(|f |+ |g|). (19)

Now, using this norm,

fα =

(
1− α
α

)
(20)

with 0 ≤ α < 1, is a unit length vector. If

α =
sin θ

cos θ + sin θ
(21)

there is an angle of θ between fα and the unit vector e0. Using the same
notation as above, two responses are

r1 = f1e0 + g1fα
r2 = f2e0 + g2fα (22)

and the metric is

d1[(t1,u1), (t2,u2);h, α] = ‖r1 − r2‖1. (23)

The same kernel need not be used for the different neurons: for example,
if an exponential kernel is being used, a different time constant could be used
for each neuron.
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In addition to the Victor-Purpura and van Rossum metrics, correla-
tion based metrics (Schreiber et al., 2003) have been considered, as has a
parameter-free metric based in the ratios of interspike intervals (Kreuz et al.,
2007). It would be interesting to examine how these could be naturally ex-
tended to multi-neuron recordings.

4 Testing the metrics using simulated data

To illustrate the properties of the new metrics and to compare them to the
ARMV metrics, we apply the metrics to some simple simulated spike-train
data. As discussed above, a common application of spike-train metrics uses
them to cluster responses to different stimuli. The simulation attempts to
replicate this situation.

4.1 The simulation

Four neurons are used in the simulation: two receptive neurons feeding for-
ward to two leaky integrate-and-fire (LIF) neurons. The receptive neurons
produce Poisson spike trains with time-varying firing rates, the functions de-
termining these firing rates are the analog of stimuli in the simulations and
we will refer to a pair of firing rate function as a stimulus. As illustrated
in Fig. 1, the feed-forward connectivity depends on a mixing parameter a.
Each receptive neuron is connected to one LIF neuron with relative strength
a and to the other with relative strength 1−a. For a = 0 each receptive neu-
ron is connected to a different LIF neuron and for a = 0.5 each LIF neuron
receives input equally from each of the receptive neurons. The LIF neurons
also receive a background Poisson input. The LIF neurons, in turn, produce
spike trains. We will refer to these pairs of spike trains, produced by the
LIF neurons, as responses and it is to these that the metrics will be applied.
The LIF neurons follow a standard implementation and there is a detailed
description of the entire simulation in appendix 2.

During each run, five stimuli are chosen and all five are presented 20 times,
giving 100 responses in all. Throughout the simulation and when calculating
the new metrics, time is discretized into .25 ms time steps and the stimuli
are two seconds long.
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Figure 1: The network used for the simulations. The two receptive neurons
produce Poisson spikes according to time varying firing rate functions. These
spike trains feed forward to two leaky integrate-and-fire neurons, the relative
synaptic strengths of the feed-forward connections are parameterized by a.

4.2 Clustering

To examine the performance of the metrics we will follow the bootstrapped
clustering procedure used in (Victor and Purpura, 1996). In this procedure
a confusion matrix, N , is calculated; this is a square matrix whose size is
given by the number of stimuli and whose ijth entry, Nij, is the number of
responses from stimulus i which are closest, on average, to the responses from
stimulus j. Thus, the diagonal entries represent correctly clustered responses
and the off-diagonal, responses which are closest to the wrong cluster.

More precisely, if there are n responses and c stimuli, the responses are
grouped into c clusters according to their stimulus. Starting with all the
entries in the confusion matrix set to zero, each response is considered in
turn: it is temporarily removed and the average distance between it and
the members of each of the c clusters is calculated giving a set of average
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distances {d1, d2, . . . , dc}. If the smallest distance in this set is dj and the
response being considered was taken from ith cluster, one is added to Nij.
When all the responses have been considered, the elements of N will add to
n

n =
c∑
i=1

c∑
j=1

Nij. (24)

In our case, there are five stimuli, so c = 5 and for each stimuli there are
20 responses, so n = 100. As in (Victor and Purpura, 1996), the averaging
over cluster elements is performed with a bias exponent, so, for a response
r, the biased average distance to the kth cluster, Ck, is

dk =

[∑
s∈Ck

d(r, s)z

]1/z

(25)

where the bias is taken to be z = −2, under-weighting outliers. Of course,
here, the responses r and s will be pairs of spike trains and d(r, s) will be
one of the multi-unit metrics described above.

If the metric is good at clustering the responses by stimulus, the confusion
matrix will be largely diagonal, if it is poor, the entries off the diagonals will
be approximately equal to the diagonal elements. As pointed out in (Victor
and Purpura, 1996), the transmitted information, h, is a good quantitive
measure of how well the responses are clustered. It is given by

h =
1

n

∑
ij

Nij

(
lnNij − ln

∑
i

Nij − ln
∑
j

Nij + lnn

)
. (26)

For perfect clustering, for c equally likely stimuli, h will be ln c. So, in the
case being considered here, the maximum value of h will be ln 5 ≈ 1.61. If
there is no clustering by stimulus h = 0, though, in practise, a finite sample
will over-estimate this.

4.3 Results

We will use the L1 version of the new metrics with the block kernel δ2/q
given in Eq. (5). This makes the comparison between the new metric and
the ARMV metric clearer: as discussed above, the Victor-Purpura metric
with cost parameter q is very similar to the L1 van Rossum metric with the
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Figure 2: The optimal α plotted against a. The value of metric parameter α
giving the maximum h is plotted for different values of the mixing parameter
a. For each value of a the best value of α has been found for 20 different
runs, the average is marked and the error bars give one standard deviation.

δ2/q kernel. A time scale of 2/q = 20 ms is used for the new metrics and with
the corresponding q used in the ARMV metrics, this matches the membrane
time constant in the LIF neurons. The L1 version of the new metrics have
a parameter α with α = 0 corresponding to the SP metric and α = 1 to
LL. The simulations also have a parameter, a, which controls how much the
inputs from the two receptive neurons are mixed in the LIF neurons.

First, we examine whether it is possible that the metric parameter α
could be used to deduce the connectivity of neurons from spiking responses.
In Fig. 2, the optimal metric parameter, as determined by calculating the
transmitted information h (26), is graphed against α for different values of
a. It is seen that when there is no mixing, a = 0, the best clustering results
from α nearer one and, when the inputs are equally mixed, a = 0.5, the best
clustering results from values of α nearer zero. Furthermore, the transition
between these two is gradual.

In Fig. 3 the performances of both the new metrics and the ARMV metrics
are plotted against a. The new metrics consistently have a higher h value
than the ARMV metrics. This implies that, at least on simulated data,
the new metrics are better at capturing the structures in the data which
encode the stimuli. This should not be taken to imply that the new metrics
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Figure 3: The relative performances of the different metrics. The best and
worst value of h over the parameter range is plotted against a, the mixing
parameter. For each value of a, h was calculated for different values of the
metric parameter, α ∈ [0, 1] for the new metric and k ∈ [0, 2] for the ARMV
metric. The best and worst values are marked max and min in the graph,
the average h value calculated using the responses of each of the two neurons
taken on its own is also shown and is marked one. For the single unit
examples, the new metric reduces to the van Rossum metric and the ARMV
to the Victor-Purpura metric. All values have been averaged over 20 runs.

will prove better than the ARMV metrics when dealing with real data, the
simulated data probably has a different statistical structure than real data. It
is noteworthy, however, that both metrics have a similar performance profile,
changing in a similar way as a changes; this indicates that they have similar
clustering properties. The distinction between them is therefore likely to be
subtle and informative when applied to real data and, for large numbers of
neurons, where the ARMV metrics become computationally expensive, the
new metrics are likely to produce similar results.

Again, when the performances of the metrics are plotted as the spike
trains are degraded, the new metrics outperform the ARMV metrics, and,
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Figure 4: Noise and the performances of the metrics. Here, the amount of
input from the Poisson background is varied: h is plotted against the relative
value of the synaptic strengths g and gP for the new and ARMV metrics. For
each value of gP/g, the synaptic strengths were tuned to give the LIF neurons
a firing rate of 20 Hz. Because the background spiking has a higher average
rate, gP/g = 1 corresponds to an input where the background component is,
on average, 2.5 times larger than the component coming from the receptive
neurons.

more importantly, the performance profiles are very similar. In Fig. 4, the h
value for metric clustering is plotted as the relative amount of background
input is increased. When there is no background input, both the new metric
and ARMV metrics have similar performances, near the maximum possible
value. As the background input becomes more and more significant, the h
value falls. When the amount of background input is five times the feed-
forward input from the receptive neurons, h has fallen to 0.75 for the new
metric, and 0.62 for the ARMV metric.

In Fig. 5, the spike trains are degraded by adding jitter; again, as the jitter
is increased, the h value falls in a similar way for both the new and ARMV
metrics. In Fig. 6 the spike trains are degraded by the random relabelling of
individual spikes, this is intended to reproduce the situation where a spike
sorting algorithm is used to separate individual spike trains from a single
recording. Again, the performances of both metrics decline gracefully. As
before the new metric performs better and, in this case, it is more robust.
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Figure 5: Jitter and the performance of the metrics. Jitter has been added to
all the spikes in the a = 0.5 simulated responses; the jitter has been drawn
uniformly from the interval [−j, j]. In each case, the mixing parameter is
a = 0.5; for the new metrics, α = 0.5 and k = 1 for the ARMV metrics. For
each value of j, h is averaged over 20 runs.

5 Discussion

We have presented new multi-neuron metrics: they are constructed by map-
ping the multi-neuron spike trains into a space of vector fields. The metrics
are straight-forward to calculate. It does not seem possible to say whether
the metrics present here or the ARMV metrics presented in (Aronov et al.,
2003) will prove more useful for analyzing multi-unit recordings in the pri-
mary sensory regions. However, in the case of the simulated data, the two
types of metrics perform in a very similar way when the simulation parame-
ters are changed and when the simulated spike trains are degraded. As with
the ARMV metrics, it is expected that the new metrics will be a useful tool
in analysing the population coding of information in the sensory pathways.
It is also hoped that the subtle differences between the new metrics and the
ARMV metrics will, when applied to real data, reveal subtle difference in
neuronal coding.

The new metrics are faster to compute than the ARMV metrics. In a sit-
uation like the one described in section 4, where a large matrix of distances
is computed, the slowest step is calculating the distance between the two
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Figure 6: Spike misassignment and the performances of the metrics. The
spike trains have been corrupted by a random relabelling of the spikes, each
spike has a λ probability of being swapped over to the other spike train in the
response. For both the new and ARMV metrics, h is plotted against λ for
the SP and LL metrics, as well as the metric lying half way between these:
α = 0.5 for the new metrics and k = 1 for the ARMV metrics. For each value
of λ, the value of h is averaged over 20 runs. The runs are all for zero mixing
parameter, a = 0, where the LL metrics are at their greatest advantage over
the SP metric. The SP distances are invariant under the relabelling of spikes.
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response vectors fields. This is an O(n2d) calculation, where n is the number
of neurons and d is the number of time steps used in the integration. The
ARMV metric, in comparison, has computation time O(2n2mn+1) (Aronov,
2003), where m is the typical number of spikes in a spike train. This il-
lustrates one elegant aspect of the ARMV metrics: they can be calculated
without discretizing time, however, they are slower. In the simulations we
have performed, m = 40, n = 2 and d = 4000 predicting that for two neurons
the new metrics are an order of magnitude quicker. This is what we observed
when analyzing the simulated data. Even for small numbers of neurons, the
new metric is considerably faster and for large numbers of neurons the dif-
ference will be huge. Thus the new metrics may provide a useful tool to do
template-based spike-train classification for brain-computer interfaces with
large numbers of units.
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Appendix 1: More than two spike trains

It is easy to generalize the two-neuron metrics to metrics for more than two
neurons by using higher-dimensional unit vectors. The multi-neuron metrics
have many parameters, corresponding to the different angles between the unit
vectors. At first, this may seem to distinguish this family of metrics from
the ARMV metrics which are described as having only one such parameter.
However, the ARMV metrics can be generalized so that there are different
costs for relabelling spikes between different pairs of neurons. Although it
is likely that multi-neuron metrics will be most useful when each of these
inter-neuronal parameters is separately optimized, it is possible to consider a
family of multi-neuron metrics which has only one parameter, by requiring,
for example, that the unit vectors are all at the same mutual angle. A set
of this sort can be calculated by doing a succession of rotations in different
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planes. The first unit vector, e1, is chosen to lie in x1-direction: (1, 0, . . . , 0),
the second, e2 is then generated from the first by rotating it an angle θ in the
x1x2-plane. e3, in turn, is generated from the second by rotating it an angle
θ′ in the x2x3-plane. Since the x1-axis is perpendicular to the x2x3-plane,
e1 · e3 = e1 · e2 = cos θ. However, θ′ must be chosen to make the angle
between the e2 and e3 equal to θ. For three-neurons, for example, the three
unit vectors would be given by

e1 =

 1
0
0

 , e2 =

 cos θ
sin θ

0

 , e3 =

 cos θ
sin θ cos θ′

sin θ sin θ′

 (27)

and taking the scalar product of e2 and e3 shows that cos θ′ is given by

cos θ′ =
cos θ − cos2 θ

sin2 θ
(28)

and, of course, sin θ′ =
√

1− cos2 θ′, θ′ itself is not needed. For four neurons,
a further rotation in the x3x4-plane gives unit vectors

1
0
0
0

 ,


cos θ
sin θ

0
0

 ,


cos θ

sin θ cos θ′

sin θ sin θ′

0

 ,


cos θ

sin θ cos θ′

sin θ sin θ′ cos θ′′

sin θ sin θ′ sin θ′′

 (29)

where

cos θ′′ =
cos θ′ − cos2 θ′

sin2 θ′
(30)

and, in fact, this can be iterated: in going from the n − 1 neuron to the n
neuron case, the extra unit vector can be obtain by a rotation into the new
dimension by an angle that satisfies an equation of this form.

Appendix 2: The simulation

The receptive neurons fire stochastically, with a time dependent firing rate
given by a rate function, s(t). These rate functions are chosen randomly as
rectified Fourier series:

s(t) = A

[
20∑
i=0

an cos 2nπt/T

]
+

(31)
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where T = 2s is the total duration of the stimulus and the an are sampled
uniformly from the interval [−1, 1]. The square bracket denotes half-wave
rectification

[x]+ =

{
x x > 0
0 otherwise

(32)

and A is chosen so that ∫ T

0

s(t) = 20T (33)

giving an average firing rate of 20 Hz.
For the LIF neurons, a standard model is used, following an example

described in (Dayan and Abbott, 2001). Each neuron has a voltage satisfying

τm
dV

dt
= El − V + I (34)

where El = −54mV is the leak potential, τm = 20 ms is the membrane
time constant and I is the synaptic input current. The neuron fires when V
reaches the threshold, −50 mV and is then reset to −65 mV. The synaptic
current is

I = g(Ee − V ) (35)

where Ee = 0 mV is the excitatory synapse reversal potential; all the synapses
are excitatory. The synaptic conductance is the sum of the individual synap-
tic conductances. For each LIF neuron there are three synapses, two feeding
forward from the receptive neurons and one from the background. In each
case the synaptic conductance depends on a gating probability P and is given
by gmaxP where gmax = ga and g(1− a) for the feed-forward synapses, with
g = 1.25 and gmax = gP for the background synapse.

These values have been chosen to give the LIF neurons spiking rates of
roughly 20 Hz, though the precise value will vary from stimulus to stimulus.
Each synapse has its own gating probability P satisfying

τs
dP

dt
= −P (36)

where τs = 4 ms is the synaptic time constant. Each time a spike arrives at
a synapse, that synapse’s gating probability is increased according to

P → P + (1− P )Pmax (37)

where Pmax = 0.3.
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For most simulations gP = g; the only time g and gP are varied is in
the simulations used to produce Fig. 4 where the effect of changing the ratio
gP/g is examined. The background firing rate is 50 Hz. So, for gP = g, the
average input current from the background is 2.5 times the average current
from the receptive neurons, however, the variance of the current from the
receptive neurons will be much higher.
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