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Abstract. Many data sets can be represented by undirected networks. Often, an

interesting and important feature of these networks is the existence of communities;

groups of nodes whose interconnectivity is higher than the average for the network.

Finding these communities can be a difficult problem; exhaustive search and even

simulated annealing methods are impractical for larger networks. Here, a different

approach is suggested, a measure of the similarity between a pair of nodes is calculated

by simulating a game of pass-the-parcel. This similarity is greater for nodes in the same

community and so the pass-the-parcel similarity matrix reduces this problem to the

better studied problem of clustering. To demonstrate this approach, it is applied to a

number of standard data sets. It shows comparable performance to the state-of-the-

art extremal optimization and spectral methods. This algorithm, however, is very

similar to one described by Pons and Latapy [1] and so the work described

here is not novel.

PACS numbers: 89.75.Hc,87.23.Ge
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1. Introduction

An undirected network is a set of nodes where some pairs are connected by links. A

number of standard examples are considered in this paper and these serve to illustrate

the diversity of network data sets: the standard examples include a sociological study

of a university karate club where pairs of members are linked if they are friends and a

metabolic network where pairs of substrates are linked if they participate in the same

metabolic reaction. Not only are networks of practical importance; the mathematics of

network theory has proved to be interesting and rich. One part of network theory that

is both useful and mathematically interesting is the study of community structure, the

identification of subsets of the nodes with particularly high inter-connectivity.

The modularity has been proposed as a measure of how well a network divides into

communities [2]. The modularity expresses the idea that the inter-connectivity within

a community should be higher than expected. First, the adjacency matrix is defined as

Ars =

{

1 nodes r and s linked

0 otherwise
(1)

with Arr = 0. The order of a node

ar =
∑

s

Ars (2)

is the number of links terminating at the node r. The total number of links, m, is given

m =
1

2

∑

r

ar (3)

where there is a factor of one half because each link joins two nodes. It can be argued that

the expected number of links between the r and s nodes is aras/2m and the modularity

Q of a division into communities is

Q =
1

2m

∑

r,s

(

Ars −
aras

2m

)

∆rs (4)

where

∆rs =

{

1 nodes r and s are the same community

0 otherwise
. (5)

Finding the grouping which maximizes the modularity Q is believed to be NP-hard

[3] and so, in practice, some approximate scheme is required. Among the algorithms

that have been proposed, two are particularly successful: the extremal optimization

method [4] and the spectral method with refinement [5, 3].

The approach taken here is different. Rather than use the network topology directly

in searching for community structure, a similarity matrix Srs is calculated by simulating

a game of pass-the-parcel‡. Consider a node r; to calculate the similarity between this

node and all the others, a game of pass-the-parcel is simulated in which the node r starts

‡ Pass-the-parcel is a children’s party game involving a parcel covered with multiple layers of wrapping,

the layers conceal party favours which the children win by removing the layers as the parcel is passed

from child to child.
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with the parcel. With each iteration, whichever node has the parcel passes it along one

of its links, chosen randomly. Roughly speaking, the similarity between the node r and

the node s is the number of times s receives the parcel during the game, averaged over

repetitions of the game. A parcel will be passed more often within a community than

out of it and, so, the similarity between two nodes will be higher if they belong to the

same community. This reduces the problem of finding community structure to that of

clustering items against a similarity matrix, something for which a number of successful

algorithms exist.

2. Methods

Pass-the-parcel

In the introduction above, the simulated game of pass-the-parcel was described

discretely, with the parcel being passed randomly around the network and the similarity

calculated by averaging over trials. In fact, it is much more efficient to do a single

continuous simulation which calculates the iteration-by-iteration probability density for

the parcel: a node passes an equal part of the parcel along all its links. Precisely, each

node r has a parcel value, pr, and a cumulative parcel value cr. If, at the i iteration

these have values pr(i) and cr(i), then the values at the i + 1 iteration are

pr(i + 1) =
∑

s∈Nr

ps(i)

as

(6)

and

cr(i + 1) = cr(i) + pr(i + 1) (7)

where Nr is the set of nodes linked to the node r.

To calculate the whole similarity matrix the game is played once for each node.

When it is played for the node r, pr = 1 initially and all the other ps’s are zero. The

cs’s are also all zero. The game then proceeds though N iterations. If n is the total

number of nodes and a = 2m/n the average number of links terminating at each node,

loga n gives a estimate of the number of iterations required before almost every node

has a non-zero cr. In fact, setting

N ≈ 2 loga n (8)

appears to be work well here. Now, the r row of the similarity matrix is calculated by

normalizing the final cs’s

Srs =
cs

as

. (9)

Finally, when the game has been played all n times, once for each node, the similarity

matrix is symmetrized in its two indices.
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Identifying communities

Since there is now a similarity matrix, the nodes can be clustered. The two

most commonly used clustering algorithms are probably K-means and Hierarchical

Agglomerative Clustering (HAC). HAC is used here. Starting with n clusters containing

only one node, HAC builds larger clusters by successively joining smaller ones. The

similarity of two clusters is calculated as the average similarity between the nodes in

the clusters:

Similarity(Ck1
, Ck2

) =
1

|Ck1
||Ck2

|

∑

r∈Ck1

∑

s∈Ck2

Srs (10)

At each step the two most similar clusters are joined. Thus, HAC arranges the nodes

into a dendrogram with one cluster at the base, n at the top and, in between, every

number in between.

Refinement

The problem with HAC is that decisions made early on cannot be changed later and

it is common to supplement HAC with a refinement stage. Here, the refinement is

chosen to match the Kernighan-Lin inspired refinement introduced in [5]. When HAC

is finished, the clustering which has the highest value of the modularity Q is chosen

for refinement. For each node δQ, the change in Q that would result from changing

its cluster is calculated. The best change is the one with the highest δQ; if there is no

positive δQ, this means the least negative one. The best change is performed and the

whole process is repeated on the unmoved nodes until every node has been moved once.

The intermediate state which has the highest Q value is then selected and the process

repeated until it causes no further improvement.

3. Results

For ease of comparison, the pass-the-parcel community detection algorithm has been

applied to the same networks considered in [4] and [5]. These networks range in size

from 34 nodes to 27,519 and the results are tabulated in Table 1. The pass-the-parcel

algorithm shows a similar performance to the spectral and the extremal optimization

algorithms.

The algorithmic complexity of the pass-the-parcel algorithm is comparable to the

spectral and extremal optimization algorithms, for sparse networks this is O(n2 log n).

Each of the three stages here, the game, HAC and refinement are O(n2 log n). However,

memory requirement is a significant weakness of the pass-the-parcel algorithm. For large

networks, it would be expensive to store the whole n × n similarity matrix.

To calculate Table 1 the values were thresholded to make the S matrix easier to

store. For each row, the diagonal element is set to zero, the row average is calculated

and all values less than this are set to zero. After thresholding, the number of nonzero

values ranged from 0.044 to 0.323 for the networks considered here. For the first four
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Table 1. Comparing different algorithms for detecting community structure. Five

algorithms are compared here; as well as the extremal optimization (DA) and spectral

(N) algorithm mentioned earlier, it includes GN, a pioneering algorithm which finds

the links which carry the largest number of shortest paths and eliminates them [2] and

CNM, a very quick greedy algorithm which is well suited for extremely large networks

[6]. These are applied to six data sets of varying size and structure. These six sets have

become something of a standard for comparing community identification algorithms.

They are the karate network [7], a network of jazz musicians where the musicians

are linked if they played in the same band [8], the metabolic network [9, 4], an email

network based on communication in a medium sized university [10], a PGP web of

trust (key signing) [11, 12] and a network of physicists who have placed papers on

the cond-mat arXiv, the links represent co-authorship [13]. Apart from the addition

of the results calculated using the pass-the-parcel algorithm, this table is substantially

based on one appearing in [5] and is similar to one appearing in [4].

Modularity Q

network size n GN CNM DA N Here

karate 34 0.401 0.381 0.419 0.419 0.419

jazz musicians 198 0.405 0.439 0.445 0.442 0.444

metabolic 453 0.403 0.402 0.434 0.435 0.433

email 1133 0.532 0.494 0.574 0.572 0.575

key signing 10 680 0.816 0.733 0.846 0.855 0.864

physicists 27 519 – 0.668 0.679 0.723 0.730

networks, it has been verified that the thresholding makes very little difference to the

result.

4. Discussion

When applied to the six standard networks, this new algorithm finds community

structures with similar modularities to those found using the extremal optimization and

spectral algorithms. It is interesting that these three algorithms are all very different

and, indeed, there are a large variety of community detection algorithms [14] including

a random walk method [15]. This random walk method differs from our algorithm in

that it measures the average length of a random walk between two points.

The pass-the-parcel algorithm has a pleasingly intuitive motivation; it does suffer,

however, from being rather ad hoc. In fact, although the other two algorithms are

better motivated mathematical, none could really be described as well understood from

a mathematical point of view and interest in the mathematics of community detection is

likely to be ongoing. Although the need to store the similarity matrix is a disadvantage

to the algorithm in its current form, it may prove useful in practical applications because

it is well suited to parallel, distributed or on-line implementations.
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