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Randomized Communication Complexity



Deterministic Communication Complexity

Deterministic Communication Complexity:

» result(lg, M)

[s

- M is a function of I,

- Output is a function of M and Iy

- No randomization, same input = same output
- Protocol successful on all inputs



Randomized Communication Complexity

Randomized Communication Complexity:
«— public randomness

R = 010010010110101010110....

M (I, R)

» result(lg, M, R)

IA IB
- Public Randomness: Parties have access to a shared random bit-string

: 1 :
- Protocol needs to succeed with proba. > S over the public randomness

- Randomized CC R.(f) is minimum cost over all randomized
communication protocols that succeed with probability at least 1 — €



Example: Equality

Equality:
- Alice holds X € {0, 1}, Bob holds Y € {0, 1}"
- They wish to compute the equality function:

EQ(X,Y)=1,if X=Y,and EQ(X,Y) = 0 otherwise
Deterministic Communication Complexity: D (E(Q,,) = n (exercise!)

Randomized Communication Complexity: R, 99(EQ,,) = O(logn)

- Alice and Bob compute a hash function h: EO 1} %i@(logn} using public
randomness as seed for the hash function (see Adv. Alg.)

- It can be seen that protocol succeeds with probability at least 0.99.



Randomized CC of INDEX

010010010110101010110 ...

M

Bob . X[K]

X € {0,1}" k € [n]
Can we make use of the shared rand. bits to solve INDEX with message size o(n)?

Theorem. Rz (INDEX,,) = Q(n)
3

— Randomjzed one-pass streaming algorithms for Maximum Matching also require
space Q(n?). (see previous Iecture%



Protocols that are Good on Average

Lower Bounds for Randomized Protocols:
- Proving lower bunds for randomized protocols directly is difficult

- Yao’s Lemma allows us to consider deterministic protocols instead, albeit using a
different quality guarantee...

Deterministic Protocols: For every input (I, Ig) the protocol succeeds

Deterministic Protocols that are Good on Average:
Let u be an input distribution so that (14, Iz) ~ u. A deterministic protocol P
computes a function f up to error wiﬁw respect to u if

IP)(IA:IB)NH [P(IA, IB) faIIS] < 0.
“Deterministic protocol with distributional error”

Distributional CC: §-error u-distributional deterministic communication complexity
Dg is minimum cost of a protocol that satisfies previous inequality



Example: “Greater than” Function

Greater-than (GT) function:

| 1ifx>=y
GT(x,y) = {O, otherwise’
M
Bob - GT(X,Y)
X € {0,1}" Y € {0,1}"

X, Y are binary representations of numbersin {0, 1, ..., 2" — 1}

Deterministic CC: D(GT,,) = n.



Example: “Greater than” Function
M

Bob -~ GT(X,Y)
X € {0,1}" Y € {0,1}"

1 i C .
Lerror Uniform Distributional CC:

- Consider the uniform dist., where X, Y are chosen independently from {0, 1}"

- Consider the following protocol: Alice sends position of her most significant bit
MSB(X?, i.e., position of left-most “1”, and valuen + 1if X = 0...0 (— message

of size [log(n + 1)])
- Bob outputs “1” if MSB(X) < MSB(Y)

Example:

Output = 0 (correct)



Example: “Greater than” Function
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Example: “Greater than” Function
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Yao’s Lemma

Connecting Randomized CC to Deterministic CC with distributional Error

Yao’s Lemma. y
R5(f) — mp?x D5 (f);

where max. is taken over all prob. distributions u on the domain of f.

Recall:

- Randomized CC: probability of error at most 6 on any input instance
(randomness in random bits)

- Deterministic CC with distributional Error: probability of error at
most 0 (randomness over input distribution)



Randomized CC of INDEX

Theorem. R 1 (INDEX,,) = Q(n)

10

Proof.
- Let P be a randomized protocol for INDEX,, with cost cn = R 1 (INDEX},) and error

1 1 10
probability —, for some ¢ < —
10 10

- We will prove that such a protocol does not exist in the following

- By Yao’s Lemma, there exists a deterministic protocol Q for INDEX,, with cost(Q) < cn
and dist. error proba. 110 over the uniform distribution (i.e., X € {0,1}" and k € [n] are
chosen uniformly at random)

- Since cost(Q) = cn, Q sends at most 2¢™ different messages M, M, ..., M,cn. Denote
by M (x) the message sent by Alice when Alice holds input x.

- Denote by out(M;, k) the output produced by Bob when Bob’s input is k and M; is
received. Let out(M;) = (out(M;, 1), out(M;, 2), ..., out(Ml-,n)) be the output vector of
length n



Randomized CC of INDEX

Proof. (continued)
- Denote by Ml-_1 the set of Alice’s inputs on which she sends message M; to Bob

- Letx € M; . Then:
dy (x, out(Ml-))

n

where dy(a, b) denotes the Hamming distance (number of positions where the
two strings are not equal) between a and b.

- We thus obtain:

Plerror | X = x] =

1 1 dylx, out(M (x
Plerror] = o z Plerror | X = x| = o z H( n( ( ))).
x€{0,1}" x€{0,1}"



Randomized CC of INDEX

Proof. (continued)
- Let out = {out(M;) | i € [2°™*]} be the set of all output vectors

- Let X004, Xpaa be a partition of the set of Alice’s inputs {0, 1}", s.t.

X

n
good ={XE {0,1}" : 3i such that dH(x, out(Ml-)) < Z}

Xpad = {0,137 \ Xgood

- Observe: Plerror |[x € X, 4] = 1/4
- We will show now that X4 is small and most of Alice’s inputs are in X} ;4

- This then implies that the average error is large!



Randomized CC of INDEX

Proof. (continued)
- Claim. |Xgood| < 20.961n+o(n)

- Proof of Claim.
- Consider out(M;), for any i. Then:

{y € {0, 13" : dyy (out(M,),y) < %| _ Zn<
<n (48)%

n
l

n (4‘9)% — n2logz(4e)n/4 < p 20.861n

- Hence:

)

20.861n+logn

|X oodl < cn . 20.861n+logn — 7cn+0.861n+o(n) < 20.1n+0.861n+0(n)



Randomized CC of INDEX

Proof. (continued)
- We thus obtain:

Plerror] = i z Plerror | X = x| = i z dH(x’ out(M(x)))

AL AL n
n x€{0,1}" x€{0,1}"
1 Z 1 1 1 1 0.961n+
>on Y e Mgl 2 7o (27 209610 = 1/4 — o(1)
X€Xpad

: . . 1 :
- This contradicts the error probability of 0 Hence, protocols P and Q cannot exist!



Lower Bound for CONNECTIVITY

Theorem. Every one-pass randomized streaming algorithm with error probability at
most 0.1 for deciding CONNECTIVITY requires space Q(n).

Proof.

Let A be a one-pass randomized streaming algorithm for CONNECTIVITY.

We will show how A can be used to solve INDEX,,_,. Since R, { (INDEX,,_,) = Q(n),
the result follows.

Consider thus an instance (X, k) € {0,1}" % x [n — 2] of INDEX,,_,

Given X, Alice’s constructs the following graph G; = (V U {x, v}, E; U {(x,y)}), with
V=[n-2]and(i,x) EE; © X]|i] =1

Alice runs algorithm A on E; U {(x, y)} and sends state of algorithm to Bob
Bob adds edges E;, = {(i,y) |1 <i <n—2andi # k} and completes the algorithm
Bob outputs X|[k] = 1 if graph connected and X[k] = 0 if graph not connected.

[



Lower Bound for CONNECTIVITY (2)

Example (n=8).
- AliceholdsX =011101€{0,1}" % ={0,1}°
- Bob holds index k = 5

Alice’s Edges Bob adds the red edges

©@ @ ® ® ® ©

Graph connected © X|k]| =1



summary

Summary:
- We have proved that the one-way two-party randomized CC of INDEX,is Q(n)

- To this end, we considered deterministic protocols with distributional error and
applied Yao’s lemma

Streaming Applications:

- We have already seen that a streaming algorithm for MAXIMUM MATCHING can be
used to solve INDEXg ;2

- Since we now know that not only D(INDEX,,) = Q(n) but also R1(INDEX,,) = Q(n),
3
every randomized streaming alg. for MAXIMUM MATCHING requires space Q(n?)

- We have also seen that solving CONNECTIVITY requires (1(n) space for every
randomized streaming algorithm



