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Randomized Communication Complexity



Deterministic Communication Complexity

Deterministic Communication Complexity:

- 𝑀 is a function of 𝐼𝐴

- Output is a function of 𝑀 and 𝐼𝐵

- No randomization, same input → same output

- Protocol successful on all inputs

Alice Bob
𝑀(𝐼𝐴)

𝐼𝐴
𝐼𝐵

result(𝐼𝐵 , 𝑀)



Randomized Communication Complexity

Randomized Communication Complexity:

- Public Randomness: Parties have access to a shared random bit-string

- Protocol needs to succeed with proba. > 
1

2
over the public randomness

- Randomized CC 𝑅𝜖(𝑓) is minimum cost over all randomized 
communication protocols that succeed with probability at least 1 − 𝜖

Alice Bob
𝑀(𝐼𝐴, 𝑅)

𝐼𝐴
𝐼𝐵

result(𝐼𝐵 , 𝑀, 𝑅)

𝑅 = 010010010110101010110 …
public randomness



Example: Equality

Equality: 
- Alice holds 𝑋 ∈ 0, 1 𝑛, Bob holds 𝑌 ∈ 0, 1 𝑛

- They wish to compute the equality function: 

𝐸𝑄 𝑋, 𝑌 = 1, if 𝑋 = 𝑌, and 𝐸𝑄 𝑋, 𝑌 = 0 otherwise

Deterministic Communication Complexity: 𝐷 𝐸𝑄𝑛 = n (exercise!)

Randomized Communication Complexity: 𝑅0.99 𝐸𝑄𝑛 = Θ log 𝑛

- Alice and Bob compute a hash function ℎ: 0, 1 𝑛 → [Θ(log 𝑛)] using public 
randomness as seed for the hash function (see Adv. Alg.)

- It can be seen that protocol succeeds with probability at least 0.99.



Randomized CC of INDEX

Can we make use of the shared rand. bits to solve INDEX with message size 𝒐 𝒏 ?

Theorem. 𝑅2

3

INDEX𝑛 = Ω 𝑛

→ Randomized one-pass streaming algorithms for Maximum Matching also require 
space Ω n2 . (see previous lecture)

Alice Bob
𝑀

𝑋 ∈ 0, 1 𝑛 𝑘 ∈ [𝑛]

X[k]

010010010110101010110 …



Protocols that are Good on Average

Lower Bounds for Randomized Protocols:

- Proving lower bunds for randomized protocols directly is difficult

- Yao’s Lemma allows us to consider deterministic protocols instead, albeit using a 
different quality guarantee...

Deterministic Protocols: For every input (𝐼𝐴, 𝐼𝐵) the protocol succeeds

Deterministic Protocols that are Good on Average:
Let 𝜇 be an input distribution so that 𝐼𝐴, 𝐼𝐵 ∼ 𝜇. A deterministic protocol 𝑃
computes a function 𝑓 up to error 𝛿 with respect to 𝜇 if

ℙ(𝐼𝐴,𝐼𝐵)∼𝜇 𝑃 𝐼𝐴, 𝐼𝐵 fails ≤ 𝛿.

“Deterministic protocol with distributional error”

Distributional CC: 𝛿-error 𝜇-distributional deterministic communication complexity 
𝐷𝛿

𝜇
is minimum cost of a protocol that satisfies previous inequality



Example: “Greater than” Function

Greater-than (GT) function:

GT 𝑥, 𝑦 = ቊ
1, if 𝑥 ≥ 𝑦

0, otherwise
.

𝑋, 𝑌 are binary representations of numbers in {0, 1, … , 2𝑛 − 1}

Deterministic CC: 𝐷 𝐺𝑇𝑛 = 𝑛. 

Alice Bob
𝑀

𝑋 ∈ 0,1 𝑛 𝑌 ∈ 0,1 𝑛

GT(𝑋, 𝑌)



Example: “Greater than” Function

𝟏

𝟒
-error Uniform Distributional CC:

- Consider the uniform dist., where 𝑋, 𝑌 are chosen independently from 0, 1 𝑛

- Consider the following protocol: Alice sends position of her most significant bit 
𝑀𝑆𝐵(𝑋), i.e., position of left-most “1”, and value 𝑛 + 1 if 𝑋 = 0 … 0 (→ message 
of size ⌈log(𝑛 + 1)⌉)

- Bob outputs “1” if 𝑀𝑆𝐵 𝑋 ≤ 𝑀𝑆𝐵 𝑌

Example:
𝑋 = 0 1 0 1 → 𝑀𝑆𝐵 𝑋 = 2
𝑌 = 1 0 0 1 → 𝑀𝑆𝐵 𝑌 = 1

Output = 0 (correct)

Alice Bob
𝑀

𝑋 ∈ 0,1 𝑛 𝑌 ∈ 0,1 𝑛

GT(𝑋, 𝑌)



Example: “Greater than” Function
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Theorem. 

ℙ correct ≥
3

4
.

→

𝐷1
4

𝑢𝑛𝑖 𝐺𝑇𝑛

≤ ⌈log(𝑛 + 1)⌉



Yao’s Lemma

Connecting Randomized CC to Deterministic CC with distributional Error

Yao’s Lemma. 
𝑅𝛿 𝑓 = max

𝜇
𝐷𝛿

𝜇
𝑓 ,

where max. is taken over all prob. distributions 𝜇 on the domain of 𝑓.

Recall:

- Randomized CC: probability of error at most 𝛿 on any input instance 
(randomness in random bits)

- Deterministic CC with distributional Error: probability of error at 
most 𝛿 (randomness over input distribution)



Randomized CC of INDEX

Theorem. R 1

10

INDEXn = Ω(n)

Proof.

- Let 𝑃 be a randomized protocol for INDEX𝑛 with cost cn = R 1

10

INDEXn and error 

probability 
1

10
, for some 𝑐 <

1

10

- We will prove that such a protocol does not exist in the following

- By Yao’s Lemma, there exists a deterministic protocol 𝑄 for INDEX𝑛 with 𝑐𝑜𝑠𝑡 𝑄 ≤ 𝑐𝑛

and dist. error proba. 
1

10
over the uniform distribution (i.e., 𝑋 ∈ 0, 1 𝑛 and 𝑘 ∈ [𝑛] are 

chosen uniformly at random)

- Since 𝑐𝑜𝑠𝑡 𝑄 = 𝑐𝑛, 𝑄 sends at most 2𝑐𝑛 different messages 𝑀1, 𝑀2, … , 𝑀2𝑐𝑛. Denote 
by 𝑀(𝑥) the message sent by Alice when Alice holds input 𝑥.

- Denote by 𝑜𝑢𝑡(𝑀𝑖 , 𝑘) the output produced by Bob when Bob’s input is 𝑘 and 𝑀𝑖 is 
received. Let 𝑜𝑢𝑡(𝑀𝑖) = 𝑜𝑢𝑡 𝑀𝑖 , 1 , 𝑜𝑢𝑡 𝑀𝑖 , 2 , … , 𝑜𝑢𝑡 𝑀𝑖 , 𝑛 be the output vector of 
length 𝑛



Randomized CC of INDEX

Proof. (continued)

- Denote by 𝑀𝑖
−1 the set of Alice’s inputs on which she sends message 𝑀𝑖 to Bob

- Let 𝑥 ∈ 𝑀𝑖
−1. Then: 

ℙ error X = x] =
dH 𝑥, 𝑜𝑢𝑡 𝑀𝑖

𝑛
,

where 𝑑𝐻(𝑎, 𝑏) denotes the Hamming distance (number of positions where the 
two strings are not equal) between 𝑎 and 𝑏.

- We thus obtain:

ℙ 𝑒𝑟𝑟𝑜𝑟 =
1

2𝑛
෍

𝑥∈{0,1}𝑛

ℙ 𝑒𝑟𝑟𝑜𝑟 | 𝑋 = 𝑥 =
1

2𝑛
෍

𝑥∈{0,1}𝑛

dH 𝑥, 𝑜𝑢𝑡 𝑀(𝑥)

𝑛
.



Randomized CC of INDEX

Proof. (continued)

- Let 𝑜𝑢𝑡 = 𝑜𝑢𝑡 𝑀𝑖 𝑖 ∈ [2𝑐𝑛]} be the set of all output vectors

- Let 𝑋𝑔𝑜𝑜𝑑 , 𝑋𝑏𝑎𝑑 be a partition of the set of Alice’s inputs 0, 1 𝑛, s.t.

𝑋𝑔𝑜𝑜𝑑 ≔ {x ∈ 0, 1 𝑛 ∶ ∃𝑖 such that 𝑑𝐻 𝑥, 𝑜𝑢𝑡 𝑀𝑖 ≤
𝑛

4
}

𝑋𝑏𝑎𝑑 ≔ 0, 1 𝑛 ∖ 𝑋𝑔𝑜𝑜𝑑

- Observe: ℙ 𝑒𝑟𝑟𝑜𝑟 𝑥 ∈ 𝑋𝑏𝑎𝑑] ≥ 1/4

- We will show now that 𝑋𝑔𝑜𝑜𝑑 is small and most of Alice’s inputs are in 𝑋𝑏𝑎𝑑

- This then implies that the average error is large!



Randomized CC of INDEX

Proof. (continued)

- Claim. 𝑋𝑔𝑜𝑜𝑑 ≤ 20.961𝑛+𝑜(𝑛).

- Proof of Claim.

- Consider 𝑜𝑢𝑡(𝑀𝑖), for any 𝑖. Then: 

|{𝑦 ∈ 0, 1 𝑛 ∶ 𝑑𝐻 𝑜𝑢𝑡 𝑀𝑖 , 𝑦 ≤
𝑛

4
| = ෍

0≤𝑖≤
𝑛
4

𝑛

𝑖
≤ ෍

0≤𝑖≤
𝑛
4

𝑒𝑛

𝑖

𝑖

≤
𝑛

4
⋅

𝑒𝑛
𝑛
4

𝑛
4

≤ 𝑛 4𝑒
𝑛
4

𝑛 4𝑒
𝑛
4 = 𝑛2log2(4𝑒)𝑛/4 ≤ 𝑛 20.861𝑛 = 20.861𝑛+log 𝑛

- Hence: 
𝑋𝑔𝑜𝑜𝑑 ≤ 2𝑐𝑛 ⋅ 20.861𝑛+log 𝑛 = 2𝑐𝑛+0.861𝑛+𝑜(𝑛) ≤ 20.1𝑛+0.861𝑛+𝑜(𝑛)

□



Randomized CC of INDEX

Proof. (continued)

- We thus obtain:

ℙ 𝑒𝑟𝑟𝑜𝑟 =
1

2𝑛
෍

𝑥∈{0,1}𝑛

ℙ 𝑒𝑟𝑟𝑜𝑟 | 𝑋 = 𝑥 =
1

2𝑛
෍

𝑥∈{0,1}𝑛

dH 𝑥, 𝑜𝑢𝑡 𝑀(𝑥)

𝑛

≥
1

2𝑛
෍

𝑥∈𝑋𝑏𝑎𝑑

𝑛
4
𝑛

=
1

4
⋅

1

2𝑛
⋅ 𝑋𝑏𝑎𝑑 ≥

1

4
⋅

1

2𝑛
⋅ (2𝑛 −20.961𝑛+𝑜(𝑛)) = 1/4 − 𝑜(1).

- This contradicts the error probability of 
1

10
. Hence, protocols 𝑃 and 𝑄 cannot exist!

□



Lower Bound for CONNECTIVITY

Theorem. Every one-pass randomized streaming algorithm with error probability at 
most 0.1 for deciding CONNECTIVITY requires space Ω(𝑛).

Proof. 

- Let 𝐴 be a one-pass randomized streaming algorithm for CONNECTIVITY.

- We will show how 𝐴 can be used to solve INDEX𝑛−2. Since 𝑅0.1 INDEX𝑛−2 = Ω(𝑛), 
the result follows.

- Consider thus an instance  𝑋, 𝑘 ∈ 0,1 𝑛−2 × 𝑛 − 2 of INDEX𝑛−2

- Given 𝑋, Alice’s constructs the following graph 𝐺1 = (𝑉 ∪ {𝑥, 𝑦}, 𝐸1 ∪ { 𝑥, 𝑦 }), with 
𝑉 = [𝑛 − 2] and 𝑖, 𝑥 ∈ 𝐸1 ⇔ 𝑋 𝑖 = 1

- Alice runs algorithm 𝐴 on 𝐸1 ∪ { 𝑥, 𝑦 } and sends state of algorithm to Bob

- Bob adds edges 𝐸2 = 𝑖, 𝑦 1 ≤ 𝑖 ≤ 𝑛 − 2 and 𝑖 ≠ 𝑘} and completes the algorithm

- Bob outputs 𝑋 𝑘 = 1 if graph connected and 𝑋 𝑘 = 0 if graph not connected.          □



Lower Bound for CONNECTIVITY (2)

Example (n=8).

- Alice holds 𝑋 = 0 1 1 1 0 1 ∈ 0, 1 𝑛−2 = 0,1 6

- Bob holds index 𝑘 = 5

Alice’s Edges                                         Bob adds the red edges

Graph connected ⇔ 𝑿 𝒌 = 𝟏



Summary

Summary:

- We have proved that the one-way two-party randomized CC of INDEX𝑛is Ω 𝑛

- To this end, we considered deterministic protocols with distributional error and 
applied Yao’s lemma

Streaming Applications:

- We have already seen that a streaming algorithm for MAXIMUM MATCHING can be 
used to solve INDEXΘ(𝑛2)

- Since we now know that not only 𝐷 INDEX𝑛 = Ω(𝑛) but also 𝑅1

3

INDEX𝑛 = Ω(𝑛), 

every randomized streaming alg. for MAXIMUM MATCHING requires space Ω 𝑛2

- We have also seen that solving CONNECTIVITY requires Ω(𝑛) space for every 
randomized streaming algorithm


