
Topics in TCS

Counting distinct elements

Raphaël Clifford

Counting distinct elements

Counting distinct elements

10 distinct colours

Counting distinct elements

.

. .

.

.

.

.

.

.

.

10 distinct colours

Counting distinct elements

Naive counting solution

Sort the elements. O(m logm) time.

Traverse from left to right. O(m) time.

O(m logm) time overall BUT O(m) words of space.

NOT one-pass.

Counting distinct elements

Naive counting solution

Sort the elements. O(m logm) time.

Traverse from left to right. O(m) time.

O(m logm) time overall BUT O(m) words of space.

NOT one-pass.

Counting distinct elements

Naive counting solution

Sort the elements. O(m logm) time.

Traverse from left to right. O(m) time.

O(m logm) time overall BUT O(m) words of space.

NOT one-pass.

Counting distinct elements

Naive counting solution

Sort the elements. O(m logm) time.

Traverse from left to right. O(m) time.

O(m logm) time overall BUT O(m) words of space.

NOT one-pass.

Counting distinct elements

Slightly less naive counting solution

Use a balanced binary search tree.

Traverse values from left to right

If value not in tree, insert it

At the conclusion the number of distinct values will be the
number of nodes in tree.

Running time O(logm) per Find and Insert operation making
O(m logm) time overall BUT O(m) words of space.

One-pass ✓

No deterministic sub-linear space one-pass solution is possible.

We will need a randomised algorithm.

Counting distinct elements

Slightly less naive counting solution

Use a balanced binary search tree.

Traverse values from left to right

If value not in tree, insert it

At the conclusion the number of distinct values will be the
number of nodes in tree.

Running time O(logm) per Find and Insert operation making
O(m logm) time overall BUT O(m) words of space.

One-pass ✓

No deterministic sub-linear space one-pass solution is possible.

We will need a randomised algorithm.

Counting distinct elements

Slightly less naive counting solution

Use a balanced binary search tree.

Traverse values from left to right

If value not in tree, insert it

At the conclusion the number of distinct values will be the
number of nodes in tree.

Running time O(logm) per Find and Insert operation making
O(m logm) time overall BUT O(m) words of space.

One-pass ✓

No deterministic sub-linear space one-pass solution is possible.

We will need a randomised algorithm.

Counting distinct elements

Slightly less naive counting solution

Use a balanced binary search tree.

Traverse values from left to right

If value not in tree, insert it

At the conclusion the number of distinct values will be the
number of nodes in tree.

Running time O(logm) per Find and Insert operation making
O(m logm) time overall BUT O(m) words of space.

One-pass ✓

No deterministic sub-linear space one-pass solution is possible.

We will need a randomised algorithm.

Counting distinct elements

Slightly less naive counting solution

Use a balanced binary search tree.

Traverse values from left to right

If value not in tree, insert it

At the conclusion the number of distinct values will be the
number of nodes in tree.

Running time O(logm) per Find and Insert operation making
O(m logm) time overall BUT O(m) words of space.

One-pass ✓

No deterministic sub-linear space one-pass solution is possible.

We will need a randomised algorithm.

Counting distinct elements

Slightly less naive counting solution

Use a balanced binary search tree.

Traverse values from left to right

If value not in tree, insert it

At the conclusion the number of distinct values will be the
number of nodes in tree.

Running time O(logm) per Find and Insert operation making
O(m logm) time overall BUT O(m) words of space.

One-pass ✓

No deterministic sub-linear space one-pass solution is possible.

We will need a randomised algorithm.

Counting distinct elements

Slightly less naive counting solution

Use a balanced binary search tree.

Traverse values from left to right

If value not in tree, insert it

At the conclusion the number of distinct values will be the
number of nodes in tree.

Running time O(logm) per Find and Insert operation making
O(m logm) time overall BUT O(m) words of space.

One-pass ✓

No deterministic sub-linear space one-pass solution is possible.

We will need a randomised algorithm.

Counting distinct elements

Slightly less naive counting solution

Use a balanced binary search tree.

Traverse values from left to right

If value not in tree, insert it

At the conclusion the number of distinct values will be the
number of nodes in tree.

Running time O(logm) per Find and Insert operation making
O(m logm) time overall BUT O(m) words of space.

One-pass ✓

No deterministic sub-linear space one-pass solution is possible.

We will need a randomised algorithm.

First randomised algorithm

stream ⟨a1, . . . , am⟩,ai ∈ [n]
initialise

choose random h : [n] → [n]

Simple-Count

Set M = h(a1)
For each i ≥ 2

if h(ai) < M
set M = h(ai)

return d̂ = n/M

Worked example

• Stream ⟨5, 4, 5, 7, 4, 5, 7, 4⟩.
n = 10.

•

•

•

• True answer is 3.

First randomised algorithm

stream ⟨a1, . . . , am⟩,ai ∈ [n]
initialise

choose random h : [n] → [n]

Simple-Count

Set M = h(a1)
For each i ≥ 2

if h(ai) < M
set M = h(ai)

return d̂ = n/M

Worked example

• Stream ⟨5, 4, 5, 7, 4, 5, 7, 4⟩.
n = 10.

•

•

•

• True answer is 3.

First randomised algorithm

stream ⟨a1, . . . , am⟩,ai ∈ [n]
initialise

choose random h : [n] → [n]

Simple-Count

Set M = h(a1)
For each i ≥ 2

if h(ai) < M
set M = h(ai)

return d̂ = n/M

Worked example

• Stream ⟨5, 4, 5, 7, 4, 5, 7, 4⟩.
n = 10.

•

•

•

• True answer is 3.

First randomised algorithm

stream ⟨a1, . . . , am⟩,ai ∈ [n]
initialise

choose random h : [n] → [n]

Simple-Count

Set M = h(a1)
For each i ≥ 2

if h(ai) < M
set M = h(ai)

return d̂ = n/M

Worked example

• Stream ⟨5, 4, 5, 7, 4, 5, 7, 4⟩.
n = 10.

• Randomly hash to
⟨10, 9, 10, 6, 9, 10, 6, 9⟩

•

•

• True answer is 3.

First randomised algorithm

stream ⟨a1, . . . , am⟩,ai ∈ [n]
initialise

choose random h : [n] → [n]

Simple-Count

Set M = h(a1)
For each i ≥ 2

if h(ai) < M
set M = h(ai)

return d̂ = n/M

Worked example

• Stream ⟨5, 4, 5, 7, 4, 5, 7, 4⟩.
n = 10.

• Randomly hash to
⟨10, 9, 10, 6, 9, 10, 6, 9⟩

• M = 6 at termination.

•

• True answer is 3.

First randomised algorithm

stream ⟨a1, . . . , am⟩,ai ∈ [n]
initialise

choose random h : [n] → [n]

Simple-Count

Set M = h(a1)
For each i ≥ 2

if h(ai) < M
set M = h(ai)

return d̂ = n/M

Worked example

• Stream ⟨5, 4, 5, 7, 4, 5, 7, 4⟩.
n = 10.

• Randomly hash to
⟨10, 9, 10, 6, 9, 10, 6, 9⟩

• M = 6 at termination.

• Return d̂ = 10/6 = 12
3

• True answer is 3.

First randomised algorithm

stream ⟨a1, . . . , am⟩,ai ∈ [n]
initialise

choose random h : [n] → [n]

Simple-Count

Set M = h(a1)
For each i ≥ 2

if h(ai) < M
set M = h(ai)

return d̂ = n/M

Worked example

• Stream ⟨5, 4, 5, 7, 4, 5, 7, 4⟩.
n = 10.

• Randomly hash to
⟨10, 9, 10, 6, 9, 10, 6, 9⟩

• M = 6 at termination.

• Return d̂ = 10/6 = 12
3

• True answer is 3.

First randomised algorithm

stream ⟨a1, . . . , am⟩,ai ∈ [n]
initialise

choose random h : [n] → [n]

Simple-Count

Set M = h(a1)
For each i ≥ 2

if h(ai) < M
set M = h(ai)

return d̂ = n/M

Worked example. 2nd try

• Stream ⟨5, 4, 5, 7, 4, 5, 7, 4⟩.
n = 10.

• Rehash: ⟨4, 3, 4, 8, 3, 4, 8, 3⟩

•

•

• True answer is 3.

First randomised algorithm

stream ⟨a1, . . . , am⟩,ai ∈ [n]
initialise

choose random h : [n] → [n]

Simple-Count

Set M = h(a1)
For each i ≥ 2

if h(ai) < M
set M = h(ai)

return d̂ = n/M

Worked example. 2nd try

• Stream ⟨5, 4, 5, 7, 4, 5, 7, 4⟩.
n = 10.

• Rehash: ⟨4, 3, 4, 8, 3, 4, 8, 3⟩

• M = 3 at termination.

•

• True answer is 3.

First randomised algorithm

stream ⟨a1, . . . , am⟩,ai ∈ [n]
initialise

choose random h : [n] → [n]

Simple-Count

Set M = h(a1)
For each i ≥ 2

if h(ai) < M
set M = h(ai)

return d̂ = n/M

Worked example. 2nd try

• Stream ⟨5, 4, 5, 7, 4, 5, 7, 4⟩.
n = 10.

• Rehash: ⟨4, 3, 4, 8, 3, 4, 8, 3⟩

• M = 3 at termination.

• Return d̂ = 10/3 = 31
3

• True answer is 3.

Probability lemma for counting distinct elements

Lemma
Let (Z1, . . . ,ZN) be an array of pairwise independent indicator
random variables with Pr(Zi = 1) = p and let W =

∑N
i=1 Zi , then

E(W) = Np, var(W) = Np(1− p) and

Pr(W > 0) ≤ Np and Pr(W = 0) ≤ 1

Np
(1)

Proof.

▶ E(W) = Np, var(W) = Np(1− p) both follow from linearity of
expectation and the preliminary probability notes.

▶ Pr(W > 0) ≤ Np is by the union bound and that Pr(Zi = 1) = p.

▶ Pr(W = 0) ≤ Pr(|W − E(W)| ≥ E(W)) ≤ var(W)
(Np)2

≤ 1
Np

Probability lemma for counting distinct elements

Lemma
Let (Z1, . . . ,ZN) be an array of pairwise independent indicator
random variables with Pr(Zi = 1) = p and let W =

∑N
i=1 Zi , then

E(W) = Np, var(W) = Np(1− p) and

Pr(W > 0) ≤ Np and Pr(W = 0) ≤ 1

Np
(1)

Proof.
▶ E(W) = Np, var(W) = Np(1− p) both follow from linearity of

expectation and the preliminary probability notes.

▶ Pr(W > 0) ≤ Np is by the union bound and that Pr(Zi = 1) = p.

▶ Pr(W = 0) ≤ Pr(|W − E(W)| ≥ E(W)) ≤ var(W)
(Np)2

≤ 1
Np

Probability lemma for counting distinct elements

Lemma
Let (Z1, . . . ,ZN) be an array of pairwise independent indicator
random variables with Pr(Zi = 1) = p and let W =

∑N
i=1 Zi , then

E(W) = Np, var(W) = Np(1− p) and

Pr(W > 0) ≤ Np and Pr(W = 0) ≤ 1

Np
(1)

Proof.
▶ E(W) = Np, var(W) = Np(1− p) both follow from linearity of

expectation and the preliminary probability notes.

▶ Pr(W > 0) ≤ Np is by the union bound and that Pr(Zi = 1) = p.

▶ Pr(W = 0) ≤ Pr(|W − E(W)| ≥ E(W)) ≤ var(W)
(Np)2

≤ 1
Np

Probability lemma for counting distinct elements

Lemma
Let (Z1, . . . ,ZN) be an array of pairwise independent indicator
random variables with Pr(Zi = 1) = p and let W =

∑N
i=1 Zi , then

E(W) = Np, var(W) = Np(1− p) and

Pr(W > 0) ≤ Np and Pr(W = 0) ≤ 1

Np
(1)

Proof.
▶ E(W) = Np, var(W) = Np(1− p) both follow from linearity of

expectation and the preliminary probability notes.

▶ Pr(W > 0) ≤ Np is by the union bound and that Pr(Zi = 1) = p.

▶ Pr(W = 0) ≤ Pr(|W − E(W)| ≥ E(W)) ≤ var(W)
(Np)2

≤ 1
Np

Simple-Count analysis

▶ Let us consider the set of distinct values in the stream S with
d = |S |.

▶ Let r.v. Ya be the number of elements that are hashed to a value
less than or equal to a, for arbitrary a.

▶ Ya corresponds to W from (1) with N = d and p = a/n.
Therefore:

Pr(Ya > 0) = Pr(M ≤ a) ≤ da/n and Pr(M > b) ≤ n

db
(2)

▶ Now let da/n = 1/3 and n/db = 1/3, so that a = n/(3d) and
b = 3n/d , then (2) becomes

Pr(M ≤ n/(3d)) ≤ 1/3 and Pr(M > 3n/d) ≤ 1/3

or
Pr(d ≤ d̂/3) ≤ 1/3 and Pr(d > 3d̂) ≤ 1/3

using d̂ = n/M.

There is an element less than
or equal to a iff the min is at most a

Define Zi = 1 if h(ai) ≤ b and 0 otherwise
Let the random variable Z =

∑d
i=1 Zi

From (1), Pr(M > b) = Pr(Z = 0) ≤ 1
db
n

= n
db

Simple-Count analysis

▶ Let us consider the set of distinct values in the stream S with
d = |S |.

▶ Let r.v. Ya be the number of elements that are hashed to a value
less than or equal to a, for arbitrary a.

▶ Ya corresponds to W from (1) with N = d and p = a/n.
Therefore:

Pr(Ya > 0) = Pr(M ≤ a) ≤ da/n and Pr(M > b) ≤ n

db
(2)

▶ Now let da/n = 1/3 and n/db = 1/3, so that a = n/(3d) and
b = 3n/d , then (2) becomes

Pr(M ≤ n/(3d)) ≤ 1/3 and Pr(M > 3n/d) ≤ 1/3

or
Pr(d ≤ d̂/3) ≤ 1/3 and Pr(d > 3d̂) ≤ 1/3

using d̂ = n/M.

There is an element less than
or equal to a iff the min is at most a

Define Zi = 1 if h(ai) ≤ b and 0 otherwise
Let the random variable Z =

∑d
i=1 Zi

From (1), Pr(M > b) = Pr(Z = 0) ≤ 1
db
n

= n
db

Simple-Count analysis

▶ Let us consider the set of distinct values in the stream S with
d = |S |.

▶ Let r.v. Ya be the number of elements that are hashed to a value
less than or equal to a, for arbitrary a.

▶ Ya corresponds to W from (1) with N = d and p = a/n.
Therefore:

Pr(Ya > 0) = Pr(M ≤ a) ≤ da/n and Pr(M > b) ≤ n

db
(2)

▶ Now let da/n = 1/3 and n/db = 1/3, so that a = n/(3d) and
b = 3n/d , then (2) becomes

Pr(M ≤ n/(3d)) ≤ 1/3 and Pr(M > 3n/d) ≤ 1/3

or
Pr(d ≤ d̂/3) ≤ 1/3 and Pr(d > 3d̂) ≤ 1/3

using d̂ = n/M.

There is an element less than
or equal to a iff the min is at most a

Define Zi = 1 if h(ai) ≤ b and 0 otherwise
Let the random variable Z =

∑d
i=1 Zi

From (1), Pr(M > b) = Pr(Z = 0) ≤ 1
db
n

= n
db

Simple-Count analysis

▶ Let us consider the set of distinct values in the stream S with
d = |S |.

▶ Let r.v. Ya be the number of elements that are hashed to a value
less than or equal to a, for arbitrary a.

▶ Ya corresponds to W from (1) with N = d and p = a/n.
Therefore:

Pr(Ya > 0) = Pr(M ≤ a) ≤ da/n and Pr(M > b) ≤ n

db
(2)

▶ Now let da/n = 1/3 and n/db = 1/3, so that a = n/(3d) and
b = 3n/d , then (2) becomes

Pr(M ≤ n/(3d)) ≤ 1/3 and Pr(M > 3n/d) ≤ 1/3

or
Pr(d ≤ d̂/3) ≤ 1/3 and Pr(d > 3d̂) ≤ 1/3

using d̂ = n/M.

There is an element less than
or equal to a iff the min is at most a

Define Zi = 1 if h(ai) ≤ b and 0 otherwise
Let the random variable Z =

∑d
i=1 Zi

From (1), Pr(M > b) = Pr(Z = 0) ≤ 1
db
n

= n
db

Simple-Count analysis

▶ Let us consider the set of distinct values in the stream S with
d = |S |.

▶ Let r.v. Ya be the number of elements that are hashed to a value
less than or equal to a, for arbitrary a.

▶ Ya corresponds to W from (1) with N = d and p = a/n.
Therefore:

Pr(Ya > 0) = Pr(M ≤ a) ≤ da/n and Pr(M > b) ≤ n

db
(2)

▶ Now let da/n = 1/3 and n/db = 1/3, so that a = n/(3d) and
b = 3n/d , then (2) becomes

Pr(M ≤ n/(3d)) ≤ 1/3 and Pr(M > 3n/d) ≤ 1/3

or
Pr(d ≤ d̂/3) ≤ 1/3 and Pr(d > 3d̂) ≤ 1/3

using d̂ = n/M.

There is an element less than
or equal to a iff the min is at most a

Define Zi = 1 if h(ai) ≤ b and 0 otherwise
Let the random variable Z =

∑d
i=1 Zi

From (1), Pr(M > b) = Pr(Z = 0) ≤ 1
db
n

= n
db

Simple-Count analysis

▶ Let us consider the set of distinct values in the stream S with
d = |S |.

▶ Let r.v. Ya be the number of elements that are hashed to a value
less than or equal to a, for arbitrary a.

▶ Ya corresponds to W from (1) with N = d and p = a/n.
Therefore:

Pr(Ya > 0) = Pr(M ≤ a) ≤ da/n and Pr(M > b) ≤ n

db
(2)

▶ Now let da/n = 1/3 and n/db = 1/3, so that a = n/(3d) and
b = 3n/d , then (2) becomes

Pr(M ≤ n/(3d)) ≤ 1/3 and Pr(M > 3n/d) ≤ 1/3

or
Pr(d ≤ d̂/3) ≤ 1/3 and Pr(d > 3d̂) ≤ 1/3

using d̂ = n/M.

There is an element less than
or equal to a iff the min is at most a

Define Zi = 1 if h(ai) ≤ b and 0 otherwise
Let the random variable Z =

∑d
i=1 Zi

From (1), Pr(M > b) = Pr(Z = 0) ≤ 1
db
n

= n
db

Simple-Count space/time

Our random estimate d̂ gives us:

Pr(d ≤ d̂/3) ≤ 1/3 and Pr(d > 3d̂) ≤ 1/3

stream ⟨a1, . . . , am⟩,ai ∈ [n]
initialise

Choose random h : [n] → [n]

Simple-Count

Set M = h(a1)
For each i ≥ 2

if h(ai) < M
set M = h(ai)

return d̂ = n/M

• Running time O(m)

• One-pass ✓

• Space O(log n) ✓

• Can we use less space? (Sort
of)

• The error probability is
pretty bad. Can we fix that?
(Yes)

Simple-Count space/time

Our random estimate d̂ gives us:

Pr(d ≤ d̂/3) ≤ 1/3 and Pr(d > 3d̂) ≤ 1/3

stream ⟨a1, . . . , am⟩,ai ∈ [n]
initialise

Choose random h : [n] → [n]

Simple-Count

Set M = h(a1)
For each i ≥ 2

if h(ai) < M
set M = h(ai)

return d̂ = n/M

• Running time O(m)

• One-pass ✓

• Space O(log n) ✓

• Can we use less space? (Sort
of)

• The error probability is
pretty bad. Can we fix that?
(Yes)

Simple-Count space/time

Our random estimate d̂ gives us:

Pr(d ≤ d̂/3) ≤ 1/3 and Pr(d > 3d̂) ≤ 1/3

stream ⟨a1, . . . , am⟩,ai ∈ [n]
initialise

Choose random h : [n] → [n]

Simple-Count

Set M = h(a1)
For each i ≥ 2

if h(ai) < M
set M = h(ai)

return d̂ = n/M

• Running time O(m)

• One-pass ✓

• Space O(log n) ✓

• Can we use less space? (Sort
of)

• The error probability is
pretty bad. Can we fix that?
(Yes)

Simple-Count space/time

Our random estimate d̂ gives us:

Pr(d ≤ d̂/3) ≤ 1/3 and Pr(d > 3d̂) ≤ 1/3

stream ⟨a1, . . . , am⟩,ai ∈ [n]
initialise

Choose random h : [n] → [n]

Simple-Count

Set M = h(a1)
For each i ≥ 2

if h(ai) < M
set M = h(ai)

return d̂ = n/M

• Running time O(m)

• One-pass ✓

• Space O(log n) ✓

• Can we use less space? (Sort
of)

• The error probability is
pretty bad. Can we fix that?
(Yes)

Simple-Count space/time

Our random estimate d̂ gives us:

Pr(d ≤ d̂/3) ≤ 1/3 and Pr(d > 3d̂) ≤ 1/3

stream ⟨a1, . . . , am⟩,ai ∈ [n]
initialise

Choose random h : [n] → [n]

Simple-Count

Set M = h(a1)
For each i ≥ 2

if h(ai) < M
set M = h(ai)

return d̂ = n/M

• Running time O(m)

• One-pass ✓

• Space O(log n) ✓

• Can we use less space? (Sort
of)

• The error probability is
pretty bad. Can we fix that?
(Yes)

Simple-Count space/time

Our random estimate d̂ gives us:

Pr(d ≤ d̂/3) ≤ 1/3 and Pr(d > 3d̂) ≤ 1/3

stream ⟨a1, . . . , am⟩,ai ∈ [n]
initialise

Choose random h : [n] → [n]

Simple-Count

Set M = h(a1)
For each i ≥ 2

if h(ai) < M
set M = h(ai)

return d̂ = n/M

• Running time O(m)

• One-pass ✓

• Space O(log n) ✓

• Can we use less space? (Sort
of)

• The error probability is
pretty bad. Can we fix that?
(Yes)

The Tidemark algorithm

initialise

choose random h : [n] → [n]
set z = 0

Tidemark(ai)
if zeros(h(ai)) > z

set z = zeros(h(ai))

Output 2z+
1
2

• h chosen from a pairwise random
family of hash functions.

• zeros counts the number of
trailing zeros in the binary
representation of a positive
integer.

• Finds the maximum value of
zeros(h(ai)) overall.

The Tidemark algorithm

initialise

choose random h : [n] → [n]
set z = 0

Tidemark(ai)
if zeros(h(ai)) > z

set z = zeros(h(ai))

Output 2z+
1
2

• h chosen from a pairwise random
family of hash functions.

• zeros counts the number of
trailing zeros in the binary
representation of a positive
integer.

• Finds the maximum value of
zeros(h(ai)) overall.

The Tidemark algorithm

initialise

choose random h : [n] → [n]
set z = 0

Tidemark(ai)
if zeros(h(ai)) > z

set z = zeros(h(ai))

Output 2z+
1
2

• h chosen from a pairwise random
family of hash functions.

• zeros counts the number of
trailing zeros in the binary
representation of a positive
integer.

• Finds the maximum value of
zeros(h(ai)) overall.

The Tidemark algorithm

initialise

choose random h : [n] → [n]
set z = 0

Tidemark(ai)
if zeros(h(ai)) > z

set z = zeros(h(ai))

Output 2z+
1
2

• h chosen from a pairwise random
family of hash functions.

• zeros counts the number of
trailing zeros in the binary
representation of a positive
integer.

• Finds the maximum value of
zeros(h(ai)) overall.

The Tidemark algorithm

initialise

choose random h : [n] → [n]
set z = 0

Tidemark(ai)
if zeros(h(ai)) > z

set z = zeros(h(ai))

Output 2z+
1
2

• h chosen from a pairwise random
family of hash functions.

• zeros counts the number of
trailing zeros in the binary
representation of a positive
integer.

• Finds the maximum value of
zeros(h(ai)) overall.

Let’s try it. Stream ⟨5, 4, 5, 7, 4, 5, 7, 4⟩. n = 10.

The Tidemark algorithm

initialise

choose random h : [n] → [n]
set z = 0

Tidemark(ai)
if zeros(h(ai)) > z

set z = zeros(h(ai))

Output 2z+
1
2

• h chosen from a pairwise random
family of hash functions.

• zeros counts the number of
trailing zeros in the binary
representation of a positive
integer.

• Finds the maximum value of
zeros(h(ai)) overall.

Let’s try it. Stream ⟨5, 4, 5, 7, 4, 5, 7, 4⟩. n = 10.

▶ Hashed to ⟨8, 2, 8, 1, 2, 8, 1, 2⟩

▶ In binary: ⟨1000, 10, 1000, 1, 10, 1000, 1, 10⟩
▶ Max value of Zeros is 3. Return 23+1/2 ≈ 11.3

▶ True value 3. What happens if we pick another hash function?

The Tidemark algorithm

initialise

choose random h : [n] → [n]
set z = 0

Tidemark(ai)
if zeros(h(ai)) > z

set z = zeros(h(ai))

Output 2z+
1
2

• h chosen from a pairwise random
family of hash functions.

• zeros counts the number of
trailing zeros in the binary
representation of a positive
integer.

• Finds the maximum value of
zeros(h(ai)) overall.

Let’s try it. Stream ⟨5, 4, 5, 7, 4, 5, 7, 4⟩. n = 10.

▶ Hashed to ⟨8, 2, 8, 1, 2, 8, 1, 2⟩
▶ In binary: ⟨1000, 10, 1000, 1, 10, 1000, 1, 10⟩

▶ Max value of Zeros is 3. Return 23+1/2 ≈ 11.3

▶ True value 3. What happens if we pick another hash function?

The Tidemark algorithm

initialise

choose random h : [n] → [n]
set z = 0

Tidemark(ai)
if zeros(h(ai)) > z

set z = zeros(h(ai))

Output 2z+
1
2

• h chosen from a pairwise random
family of hash functions.

• zeros counts the number of
trailing zeros in the binary
representation of a positive
integer.

• Finds the maximum value of
zeros(h(ai)) overall.

Let’s try it. Stream ⟨5, 4, 5, 7, 4, 5, 7, 4⟩. n = 10.

▶ Hashed to ⟨8, 2, 8, 1, 2, 8, 1, 2⟩
▶ In binary: ⟨1000, 10, 1000, 1, 10, 1000, 1, 10⟩
▶ Max value of Zeros is 3. Return 23+1/2 ≈ 11.3

▶ True value 3. What happens if we pick another hash function?

The Tidemark algorithm

initialise

choose random h : [n] → [n]
set z = 0

Tidemark(ai)
if zeros(h(ai)) > z

set z = zeros(h(ai))

Output 2z+
1
2

• h chosen from a pairwise random
family of hash functions.

• zeros counts the number of
trailing zeros in the binary
representation of a positive
integer.

• Finds the maximum value of
zeros(h(ai)) overall.

Let’s try it. Stream ⟨5, 4, 5, 7, 4, 5, 7, 4⟩. n = 10.

▶ Hashed to ⟨8, 2, 8, 1, 2, 8, 1, 2⟩
▶ In binary: ⟨1000, 10, 1000, 1, 10, 1000, 1, 10⟩
▶ Max value of Zeros is 3. Return 23+1/2 ≈ 11.3

▶ True value 3. What happens if we pick another hash function?

The Tidemark algorithm

initialise

choose random h : [n] → [n]
set z = 0

Tidemark(ai)
if zeros(h(ai)) > z

set z = zeros(h(ai))

Output 2z+
1
2

• h chosen from a pairwise random
family of hash functions.

• zeros counts the number of
trailing zeros in the binary
representation of a positive
integer.

• Finds the maximum value of
zeros(h(ai)) overall.

Let’s try it. Stream ⟨5, 4, 5, 7, 4, 5, 7, 4⟩. n = 10.

▶ Hashed to ⟨4, 3, 4, 1, 3, 4, 1, 3⟩

▶ In binary: ⟨100, 11, 100, 1, 11, 100, 1, 11⟩
▶ Max value of Zeros is 2. Return 22+1/2 ≈ 5.7. We were luckier.

The Tidemark algorithm

initialise

choose random h : [n] → [n]
set z = 0

Tidemark(ai)
if zeros(h(ai)) > z

set z = zeros(h(ai))

Output 2z+
1
2

• h chosen from a pairwise random
family of hash functions.

• zeros counts the number of
trailing zeros in the binary
representation of a positive
integer.

• Finds the maximum value of
zeros(h(ai)) overall.

Let’s try it. Stream ⟨5, 4, 5, 7, 4, 5, 7, 4⟩. n = 10.

▶ Hashed to ⟨4, 3, 4, 1, 3, 4, 1, 3⟩
▶ In binary: ⟨100, 11, 100, 1, 11, 100, 1, 11⟩

▶ Max value of Zeros is 2. Return 22+1/2 ≈ 5.7. We were luckier.

The Tidemark algorithm

initialise

choose random h : [n] → [n]
set z = 0

Tidemark(ai)
if zeros(h(ai)) > z

set z = zeros(h(ai))

Output 2z+
1
2

• h chosen from a pairwise random
family of hash functions.

• zeros counts the number of
trailing zeros in the binary
representation of a positive
integer.

• Finds the maximum value of
zeros(h(ai)) overall.

Let’s try it. Stream ⟨5, 4, 5, 7, 4, 5, 7, 4⟩. n = 10.

▶ Hashed to ⟨4, 3, 4, 1, 3, 4, 1, 3⟩
▶ In binary: ⟨100, 11, 100, 1, 11, 100, 1, 11⟩
▶ Max value of Zeros is 2. Return 22+1/2 ≈ 5.7. We were luckier.

Understanding the Tidemark algorithm

Zeros(x) = 0 x = 1, 3, 5, . . .

p = 1/2

Zeros(x) ≥ 1 x = 2, 4, 6, . . .

p = 1/2

Zeros(x) ≥ 2 x = 4, 8, 12, . . .

p = 1/4

Zeros(x) ≥ 3 x = 8, 16, 24, . . .

p = 1/8

Zeros(x) ≥ 4 x = 16, 32, 48, . . .

p = 1/16

10

Zeros(x)=0Zeros(x)=1

Zeros(x)=2

Zeros(x)=3

Zeros(x)=4

Min

Let T be the final value of z
1/2T+1 ≤ Min ≤ 1/2T

d ≈ 1/Min
=⇒ d ≈ 2T+1/2

Understanding the Tidemark algorithm

Zeros(x) = 0 x = 1, 3, 5, . . . p = 1/2

Zeros(x) ≥ 1 x = 2, 4, 6, . . . p = 1/2

Zeros(x) ≥ 2 x = 4, 8, 12, . . . p = 1/4

Zeros(x) ≥ 3 x = 8, 16, 24, . . . p = 1/8

Zeros(x) ≥ 4 x = 16, 32, 48, . . . p = 1/16

10

Zeros(x)=0Zeros(x)=1

Zeros(x)=2

Zeros(x)=3

Zeros(x)=4

Min

Let T be the final value of z
1/2T+1 ≤ Min ≤ 1/2T

d ≈ 1/Min
=⇒ d ≈ 2T+1/2

Understanding the Tidemark algorithm

Zeros(x) = 0 x = 1, 3, 5, . . . p = 1/2

Zeros(x) ≥ 1 x = 2, 4, 6, . . . p = 1/2

Zeros(x) ≥ 2 x = 4, 8, 12, . . . p = 1/4

Zeros(x) ≥ 3 x = 8, 16, 24, . . . p = 1/8

Zeros(x) ≥ 4 x = 16, 32, 48, . . . p = 1/16

10

Zeros(x)=0Zeros(x)=1

Zeros(x)=2

Zeros(x)=3

Zeros(x)=4

Min

Let T be the final value of z
1/2T+1 ≤ Min ≤ 1/2T

d ≈ 1/Min
=⇒ d ≈ 2T+1/2

Understanding the Tidemark algorithm

Zeros(x) = 0 x = 1, 3, 5, . . . p = 1/2

Zeros(x) ≥ 1 x = 2, 4, 6, . . . p = 1/2

Zeros(x) ≥ 2 x = 4, 8, 12, . . . p = 1/4

Zeros(x) ≥ 3 x = 8, 16, 24, . . . p = 1/8

Zeros(x) ≥ 4 x = 16, 32, 48, . . . p = 1/16

10

Zeros(x)=0Zeros(x)=1

Zeros(x)=2

Zeros(x)=3

Zeros(x)=4

Min

Let T be the final value of z
1/2T+1 ≤ Min ≤ 1/2T

d ≈ 1/Min
=⇒ d ≈ 2T+1/2

Understanding the Tidemark algorithm

Zeros(x) = 0 x = 1, 3, 5, . . . p = 1/2

Zeros(x) ≥ 1 x = 2, 4, 6, . . . p = 1/2

Zeros(x) ≥ 2 x = 4, 8, 12, . . . p = 1/4

Zeros(x) ≥ 3 x = 8, 16, 24, . . . p = 1/8

Zeros(x) ≥ 4 x = 16, 32, 48, . . . p = 1/16

10

Zeros(x)=0Zeros(x)=1

Zeros(x)=2

Zeros(x)=3

Zeros(x)=4

Min

Let T be the final value of z
1/2T+1 ≤ Min ≤ 1/2T

d ≈ 1/Min
=⇒ d ≈ 2T+1/2

Understanding the Tidemark algorithm

Zeros(x) = 0 x = 1, 3, 5, . . . p = 1/2

Zeros(x) ≥ 1 x = 2, 4, 6, . . . p = 1/2

Zeros(x) ≥ 2 x = 4, 8, 12, . . . p = 1/4

Zeros(x) ≥ 3 x = 8, 16, 24, . . . p = 1/8

Zeros(x) ≥ 4 x = 16, 32, 48, . . . p = 1/16

10

Zeros(x)=0Zeros(x)=1

Zeros(x)=2

Zeros(x)=3

Zeros(x)=4

Min

Let T be the final value of z
1/2T+1 ≤ Min ≤ 1/2T

d ≈ 1/Min
=⇒ d ≈ 2T+1/2

The tidemark algorithm - analysis I

For j ∈ [n], define indicator r.v. Xr ,j = 1 if zeros(h(j)) ≥ r .

Define r.v. Yr =
∑

j ,fj>0 Xr ,j . That is the number of hashed
values in the stream that have at least r trailing zeros.

Let T be the final value of z ,

Yr > 0 iff T ≥ r

Yr = 0 iff T ≤ r − 1

E(Xr ,j) = Pr(zeros(h(j)) ≥ r) = Pr(2r divides h(j))

Assuming 2r ≤ n then

1/2r ≤ Pr(2r divides h(j)) ≤ 1/2r−1

If n is a power of 2, E(Xr ,j) = 1/2r

The tidemark algorithm - analysis I

For j ∈ [n], define indicator r.v. Xr ,j = 1 if zeros(h(j)) ≥ r .

Define r.v. Yr =
∑

j ,fj>0 Xr ,j . That is the number of hashed
values in the stream that have at least r trailing zeros.

Let T be the final value of z ,

Yr > 0 iff T ≥ r

Yr = 0 iff T ≤ r − 1

E(Xr ,j) = Pr(zeros(h(j)) ≥ r) = Pr(2r divides h(j))

Assuming 2r ≤ n then

1/2r ≤ Pr(2r divides h(j)) ≤ 1/2r−1

If n is a power of 2, E(Xr ,j) = 1/2r

The tidemark algorithm - analysis I

For j ∈ [n], define indicator r.v. Xr ,j = 1 if zeros(h(j)) ≥ r .

Define r.v. Yr =
∑

j ,fj>0 Xr ,j . That is the number of hashed
values in the stream that have at least r trailing zeros.

Let T be the final value of z ,

Yr > 0 iff T ≥ r

Yr = 0 iff T ≤ r − 1

E(Xr ,j) = Pr(zeros(h(j)) ≥ r) = Pr(2r divides h(j))

Assuming 2r ≤ n then

1/2r ≤ Pr(2r divides h(j)) ≤ 1/2r−1

If n is a power of 2, E(Xr ,j) = 1/2r

The tidemark algorithm - analysis I

For j ∈ [n], define indicator r.v. Xr ,j = 1 if zeros(h(j)) ≥ r .

Define r.v. Yr =
∑

j ,fj>0 Xr ,j . That is the number of hashed
values in the stream that have at least r trailing zeros.

Let T be the final value of z ,

Yr > 0 iff T ≥ r

Yr = 0 iff T ≤ r − 1

E(Xr ,j) = Pr(zeros(h(j)) ≥ r) = Pr(2r divides h(j))

Assuming 2r ≤ n then

1/2r ≤ Pr(2r divides h(j)) ≤ 1/2r−1

If n is a power of 2, E(Xr ,j) = 1/2r

The tidemark algorithm - analysis I

For j ∈ [n], define indicator r.v. Xr ,j = 1 if zeros(h(j)) ≥ r .

Define r.v. Yr =
∑

j ,fj>0 Xr ,j . That is the number of hashed
values in the stream that have at least r trailing zeros.

Let T be the final value of z ,

Yr > 0 iff T ≥ r

Yr = 0 iff T ≤ r − 1

E(Xr ,j) = Pr(zeros(h(j)) ≥ r) = Pr(2r divides h(j))

Assuming 2r ≤ n then

1/2r ≤ Pr(2r divides h(j)) ≤ 1/2r−1

If n is a power of 2, E(Xr ,j) = 1/2r

The tidemark algorithm - analysis I

For j ∈ [n], define indicator r.v. Xr ,j = 1 if zeros(h(j)) ≥ r .

Define r.v. Yr =
∑

j ,fj>0 Xr ,j . That is the number of hashed
values in the stream that have at least r trailing zeros.

Let T be the final value of z ,

Yr > 0 iff T ≥ r

Yr = 0 iff T ≤ r − 1

E(Xr ,j) = Pr(zeros(h(j)) ≥ r) = Pr(2r divides h(j))

Assuming 2r ≤ n then

1/2r ≤ Pr(2r divides h(j)) ≤ 1/2r−1

If n is a power of 2, E(Xr ,j) = 1/2r

The tidemark algorithm - analysis I

For j ∈ [n], define indicator r.v. Xr ,j = 1 if zeros(h(j)) ≥ r .

Define r.v. Yr =
∑

j ,fj>0 Xr ,j . That is the number of hashed
values in the stream that have at least r trailing zeros.

Let T be the final value of z ,

Yr > 0 iff T ≥ r

Yr = 0 iff T ≤ r − 1

E(Xr ,j) = Pr(zeros(h(j)) ≥ r) = Pr(2r divides h(j))

Assuming 2r ≤ n then

1/2r ≤ Pr(2r divides h(j)) ≤ 1/2r−1

If n is a power of 2, E(Xr ,j) = 1/2r

The tidemark algorithm - analysis I

For j ∈ [n], define indicator r.v. Xr ,j = 1 if zeros(h(j)) ≥ r .

Define r.v. Yr =
∑

j ,fj>0 Xr ,j . That is the number of hashed
values in the stream that have at least r trailing zeros.

Let T be the final value of z ,

Yr > 0 iff T ≥ r

Yr = 0 iff T ≤ r − 1

E(Xr ,j) = Pr(zeros(h(j)) ≥ r) = Pr(2r divides h(j))

Assuming 2r ≤ n then

1/2r ≤ Pr(2r divides h(j)) ≤ 1/2r−1

If n is a power of 2, E(Xr ,j) = 1/2r

The tidemark algorithm - analysis II

For simplicity, assume n is a power of 2.

E(Yr) =
∑
j :fj>0

E(Xr ,j) =
d

2r

var(Yr) =
∑
j :fj>0

var(Xr ,j) ≤
∑
j :fj>0

E(X 2
r ,j) =

∑
j :fj>0

E(Xr ,j) =
d

2r

By Markov’s inequality,

Pr(Yr > 0) = Pr(Yr ≥ 1) ≤ E(Yr)

1
=

d

2r

By Chebyshev’s inequality,

Pr(Yr = 0) ≤ Pr(|Yr − E(Yr)| ≥ d/2r) ≤ var(Yr)

(d/2r)2
≤ 2r

d

The tidemark algorithm - analysis II

For simplicity, assume n is a power of 2.

E(Yr) =
∑
j :fj>0

E(Xr ,j) =
d

2r

var(Yr) =
∑
j :fj>0

var(Xr ,j) ≤
∑
j :fj>0

E(X 2
r ,j) =

∑
j :fj>0

E(Xr ,j) =
d

2r

By Markov’s inequality,

Pr(Yr > 0) = Pr(Yr ≥ 1) ≤ E(Yr)

1
=

d

2r

By Chebyshev’s inequality,

Pr(Yr = 0) ≤ Pr(|Yr − E(Yr)| ≥ d/2r) ≤ var(Yr)

(d/2r)2
≤ 2r

d

The tidemark algorithm - analysis II

For simplicity, assume n is a power of 2.

E(Yr) =
∑
j :fj>0

E(Xr ,j) =
d

2r

var(Yr) =
∑
j :fj>0

var(Xr ,j) ≤
∑
j :fj>0

E(X 2
r ,j) =

∑
j :fj>0

E(Xr ,j) =
d

2r

By Markov’s inequality,

Pr(Yr > 0) = Pr(Yr ≥ 1) ≤ E(Yr)

1
=

d

2r

By Chebyshev’s inequality,

Pr(Yr = 0) ≤ Pr(|Yr − E(Yr)| ≥ d/2r) ≤ var(Yr)

(d/2r)2
≤ 2r

d

The tidemark algorithm - analysis II

For simplicity, assume n is a power of 2.

E(Yr) =
∑
j :fj>0

E(Xr ,j) =
d

2r

var(Yr) =
∑
j :fj>0

var(Xr ,j) ≤
∑
j :fj>0

E(X 2
r ,j) =

∑
j :fj>0

E(Xr ,j) =
d

2r

By Markov’s inequality,

Pr(Yr > 0) = Pr(Yr ≥ 1) ≤ E(Yr)

1
=

d

2r

By Chebyshev’s inequality,

Pr(Yr = 0) ≤ Pr(|Yr − E(Yr)| ≥ d/2r) ≤ var(Yr)

(d/2r)2
≤ 2r

d

The tidemark algorithm - analysis II

For simplicity, assume n is a power of 2.

E(Yr) =
∑
j :fj>0

E(Xr ,j) =
d

2r

var(Yr) =
∑
j :fj>0

var(Xr ,j) ≤
∑
j :fj>0

E(X 2
r ,j) =

∑
j :fj>0

E(Xr ,j) =
d

2r

By Markov’s inequality,

Pr(Yr > 0) = Pr(Yr ≥ 1) ≤ E(Yr)

1
=

d

2r

By Chebyshev’s inequality,

Pr(Yr = 0) ≤ Pr(|Yr − E(Yr)| ≥ d/2r) ≤ var(Yr)

(d/2r)2
≤ 2r

d

The tidemark algorithm - analysis II

For simplicity, assume n is a power of 2.

E(Yr) =
∑
j :fj>0

E(Xr ,j) =
d

2r

var(Yr) =
∑
j :fj>0

var(Xr ,j) ≤
∑
j :fj>0

E(X 2
r ,j) =

∑
j :fj>0

E(Xr ,j) =
d

2r

By Markov’s inequality,

Pr(Yr > 0) = Pr(Yr ≥ 1) ≤ E(Yr)

1
=

d

2r

By Chebyshev’s inequality,

Pr(Yr = 0) ≤ Pr(|Yr − E(Yr)| ≥ d/2r) ≤ var(Yr)

(d/2r)2
≤ 2r

d

The tidemark algorithm - analysis III

Recall: d̂ = 2T+1/2, Pr(Yr > 0) ≤ d
2r and Pr(Yr = 0) ≤ 2r

d .

▶ Let a be the smallest integer such that 2a+1/2 ≥ 3d . We have,

Pr(d̂ ≥ 3d) = Pr(T ≥ a) = Pr(Ya > 0) ≤ d

2a
≤

√
2

3

This gives us the probability that our estimate is too large. We
now bound the probability it is too small.

▶ For the probability that our estimate is too small let b be the
largest integer such that 2b+1/2 ≤ d/3.

Pr(d̂ ≤ d/3) = Pr(T ≤ b) = Pr(Yb+1 = 0) ≤ 2b+1

d
≤

√
2

3

The bounds are not ideal in two ways.

1. We can’t get an arbitrarily close approximation (yet).

2. The failure probably is high.
√
2/3 ≈ 0.47!

2a+1/2 ≥ 3d =⇒ d ≤
√
2·2a
3

=⇒ d
2a ≤

√
2
3

The tidemark algorithm - analysis III

Recall: d̂ = 2T+1/2, Pr(Yr > 0) ≤ d
2r and Pr(Yr = 0) ≤ 2r

d .

▶ Let a be the smallest integer such that 2a+1/2 ≥ 3d . We have,

Pr(d̂ ≥ 3d) = Pr(T ≥ a)

= Pr(Ya > 0) ≤ d

2a
≤

√
2

3

This gives us the probability that our estimate is too large. We
now bound the probability it is too small.

▶ For the probability that our estimate is too small let b be the
largest integer such that 2b+1/2 ≤ d/3.

Pr(d̂ ≤ d/3) = Pr(T ≤ b) = Pr(Yb+1 = 0) ≤ 2b+1

d
≤

√
2

3

The bounds are not ideal in two ways.

1. We can’t get an arbitrarily close approximation (yet).

2. The failure probably is high.
√
2/3 ≈ 0.47!

2a+1/2 ≥ 3d =⇒ d ≤
√
2·2a
3

=⇒ d
2a ≤

√
2
3

The tidemark algorithm - analysis III

Recall: d̂ = 2T+1/2, Pr(Yr > 0) ≤ d
2r and Pr(Yr = 0) ≤ 2r

d .

▶ Let a be the smallest integer such that 2a+1/2 ≥ 3d . We have,

Pr(d̂ ≥ 3d) = Pr(T ≥ a) = Pr(Ya > 0) ≤ d

2a
≤

√
2

3

This gives us the probability that our estimate is too large. We
now bound the probability it is too small.

▶ For the probability that our estimate is too small let b be the
largest integer such that 2b+1/2 ≤ d/3.

Pr(d̂ ≤ d/3) = Pr(T ≤ b) = Pr(Yb+1 = 0) ≤ 2b+1

d
≤

√
2

3

The bounds are not ideal in two ways.

1. We can’t get an arbitrarily close approximation (yet).

2. The failure probably is high.
√
2/3 ≈ 0.47!

2a+1/2 ≥ 3d =⇒ d ≤
√
2·2a
3

=⇒ d
2a ≤

√
2
3

The tidemark algorithm - analysis III

Recall: d̂ = 2T+1/2, Pr(Yr > 0) ≤ d
2r and Pr(Yr = 0) ≤ 2r

d .

▶ Let a be the smallest integer such that 2a+1/2 ≥ 3d . We have,

Pr(d̂ ≥ 3d) = Pr(T ≥ a) = Pr(Ya > 0) ≤ d

2a
≤

√
2

3

This gives us the probability that our estimate is too large. We
now bound the probability it is too small.

▶ For the probability that our estimate is too small let b be the
largest integer such that 2b+1/2 ≤ d/3.

Pr(d̂ ≤ d/3) = Pr(T ≤ b) = Pr(Yb+1 = 0) ≤ 2b+1

d
≤

√
2

3

The bounds are not ideal in two ways.

1. We can’t get an arbitrarily close approximation (yet).

2. The failure probably is high.
√
2/3 ≈ 0.47!

2a+1/2 ≥ 3d =⇒ d ≤
√
2·2a
3

=⇒ d
2a ≤

√
2
3

The tidemark algorithm - analysis III

Recall: d̂ = 2T+1/2, Pr(Yr > 0) ≤ d
2r and Pr(Yr = 0) ≤ 2r

d .

▶ Let a be the smallest integer such that 2a+1/2 ≥ 3d . We have,

Pr(d̂ ≥ 3d) = Pr(T ≥ a) = Pr(Ya > 0) ≤ d

2a
≤

√
2

3

This gives us the probability that our estimate is too large. We
now bound the probability it is too small.

▶ For the probability that our estimate is too small let b be the
largest integer such that 2b+1/2 ≤ d/3.

Pr(d̂ ≤ d/3) = Pr(T ≤ b) = Pr(Yb+1 = 0) ≤ 2b+1

d
≤

√
2

3

The bounds are not ideal in two ways.

1. We can’t get an arbitrarily close approximation (yet).

2. The failure probably is high.
√
2/3 ≈ 0.47!

2a+1/2 ≥ 3d =⇒ d ≤
√
2·2a
3

=⇒ d
2a ≤

√
2
3

The tidemark algorithm - analysis III

Recall: d̂ = 2T+1/2, Pr(Yr > 0) ≤ d
2r and Pr(Yr = 0) ≤ 2r

d .

▶ Let a be the smallest integer such that 2a+1/2 ≥ 3d . We have,

Pr(d̂ ≥ 3d) = Pr(T ≥ a) = Pr(Ya > 0) ≤ d

2a
≤

√
2

3

This gives us the probability that our estimate is too large. We
now bound the probability it is too small.

▶ For the probability that our estimate is too small let b be the
largest integer such that 2b+1/2 ≤ d/3.

Pr(d̂ ≤ d/3) = Pr(T ≤ b) = Pr(Yb+1 = 0) ≤ 2b+1

d
≤

√
2

3

The bounds are not ideal in two ways.

1. We can’t get an arbitrarily close approximation (yet).

2. The failure probably is high.
√
2/3 ≈ 0.47!

2a+1/2 ≥ 3d =⇒ d ≤
√
2·2a
3

=⇒ d
2a ≤

√
2
3

The tidemark algorithm - analysis III

Recall: d̂ = 2T+1/2, Pr(Yr > 0) ≤ d
2r and Pr(Yr = 0) ≤ 2r

d .

▶ Let a be the smallest integer such that 2a+1/2 ≥ 3d . We have,

Pr(d̂ ≥ 3d) = Pr(T ≥ a) = Pr(Ya > 0) ≤ d

2a
≤

√
2

3

This gives us the probability that our estimate is too large. We
now bound the probability it is too small.

▶ For the probability that our estimate is too small let b be the
largest integer such that 2b+1/2 ≤ d/3.

Pr(d̂ ≤ d/3) = Pr(T ≤ b) = Pr(Yb+1 = 0) ≤ 2b+1

d
≤

√
2

3

The bounds are not ideal in two ways.

1. We can’t get an arbitrarily close approximation (yet).

2. The failure probably is high.
√
2/3 ≈ 0.47!

2a+1/2 ≥ 3d =⇒ d ≤
√
2·2a
3

=⇒ d
2a ≤

√
2
3

Tidemark space/time

initialise

Choose random h : [n] → [n]
Set z = 0

Tidemark(ai)
if Zeros(h(ai)) > z

set z = Zeros(h(ai))

Output 2z+
1
2

• One-pass and O(m) time. ✓

• O(log log n) bits of space. ✓

Why is it O(log log n) bits of space?

▶ We store one value of Zeros(h(ai)) where h(ai) ∈ [n].

▶ The maximum value of Zeros(h(ai)) is ⌊log2 n⌋ ∈ O(log n).

▶ Therefore only O(log log n) bits are needed to represent the
biggest possible value.

Tidemark space/time

initialise

Choose random h : [n] → [n]
Set z = 0

Tidemark(ai)
if Zeros(h(ai)) > z

set z = Zeros(h(ai))

Output 2z+
1
2

• One-pass and O(m) time. ✓

• O(log log n) bits of space. ✓

Why is it O(log log n) bits of space?

▶ We store one value of Zeros(h(ai)) where h(ai) ∈ [n].

▶ The maximum value of Zeros(h(ai)) is ⌊log2 n⌋ ∈ O(log n).

▶ Therefore only O(log log n) bits are needed to represent the
biggest possible value.

Tidemark space/time

initialise

Choose random h : [n] → [n]
Set z = 0

Tidemark(ai)
if Zeros(h(ai)) > z

set z = Zeros(h(ai))

Output 2z+
1
2

• One-pass and O(m) time. ✓

• O(log log n) bits of space. ✓

Why is it O(log log n) bits of space?

▶ We store one value of Zeros(h(ai)) where h(ai) ∈ [n].

▶ The maximum value of Zeros(h(ai)) is ⌊log2 n⌋ ∈ O(log n).

▶ Therefore only O(log log n) bits are needed to represent the
biggest possible value.

Tidemark space/time

initialise

Choose random h : [n] → [n]
Set z = 0

Tidemark(ai)
if Zeros(h(ai)) > z

set z = Zeros(h(ai))

Output 2z+
1
2

• One-pass and O(m) time. ✓

• O(log log n) bits of space. ✓

Why is it O(log log n) bits of space?

▶ We store one value of Zeros(h(ai)) where h(ai) ∈ [n].

▶ The maximum value of Zeros(h(ai)) is ⌊log2 n⌋ ∈ O(log n).

▶ Therefore only O(log log n) bits are needed to represent the
biggest possible value.

Tidemark space/time

initialise

Choose random h : [n] → [n]
Set z = 0

Tidemark(ai)
if Zeros(h(ai)) > z

set z = Zeros(h(ai))

Output 2z+
1
2

• One-pass and O(m) time. ✓

• O(log log n) bits of space. ✓

Why is it O(log log n) bits of space?

▶ We store one value of Zeros(h(ai)) where h(ai) ∈ [n].

▶ The maximum value of Zeros(h(ai)) is ⌊log2 n⌋ ∈ O(log n).

▶ Therefore only O(log log n) bits are needed to represent the
biggest possible value.

Tidemark space/time

initialise

Choose random h : [n] → [n]
Set z = 0

Tidemark(ai)
if Zeros(h(ai)) > z

set z = Zeros(h(ai))

Output 2z+
1
2

• One-pass and O(m) time. ✓

• O(log log n) bits of space. ✓

Why is it O(log log n) bits of space?

▶ We store one value of Zeros(h(ai)) where h(ai) ∈ [n].

▶ The maximum value of Zeros(h(ai)) is ⌊log2 n⌋ ∈ O(log n).

▶ Therefore only O(log log n) bits are needed to represent the
biggest possible value.

Tidemark space/time

initialise

Choose random h : [n] → [n]
Set z = 0

Tidemark(ai)
if Zeros(h(ai)) > z

set z = Zeros(h(ai))

Output 2z+
1
2

• One-pass and O(m) time. ✓

• O(log log n) bits of space. ✓

Why is it O(log log n) bits of space?

▶ We store one value of Zeros(h(ai)) where h(ai) ∈ [n].

▶ The maximum value of Zeros(h(ai)) is ⌊log2 n⌋ ∈ O(log n).

▶ Therefore only O(log log n) bits are needed to represent the
biggest possible value.

The median trick - upper bound

Method: For each value in the input, run k independent copies of
Tidemark in parallel and output the median.

Recall: Pr(d̂ ≥ 3d) ≤
√
2
3

▶ If the median is greater than 3d , then at least k/2 values are at
least 3d .

Define Xi = 1 if d̂ ≥ 3d , 0 otherwise. X =
∑k

i=1 Xi , µ ≤
√
2k/3.

Let δ = 3/(2
√
2)− 1 ≈ 0.06 so (1 + δ)µ = k/2.

Pr[X ≥ (1 + δ)µ] ≤ exp
(
−δ2µ/3

)
(Chernoff bound)

In other words, as k grows the probability that the median is at least
3d decreases exponentially.

The median trick - upper bound

Method: For each value in the input, run k independent copies of
Tidemark in parallel and output the median.

Recall: Pr(d̂ ≥ 3d) ≤
√
2
3

▶ If the median is greater than 3d , then at least k/2 values are at
least 3d .

Define Xi = 1 if d̂ ≥ 3d , 0 otherwise. X =
∑k

i=1 Xi , µ ≤
√
2k/3.

Let δ = 3/(2
√
2)− 1 ≈ 0.06 so (1 + δ)µ = k/2.

Pr[X ≥ (1 + δ)µ] ≤ exp
(
−δ2µ/3

)
(Chernoff bound)

In other words, as k grows the probability that the median is at least
3d decreases exponentially.

The median trick - upper bound

Method: For each value in the input, run k independent copies of
Tidemark in parallel and output the median.

Recall: Pr(d̂ ≥ 3d) ≤
√
2
3

▶ If the median is greater than 3d , then at least k/2 values are at
least 3d .

Define Xi = 1 if d̂ ≥ 3d , 0 otherwise. X =
∑k

i=1 Xi , µ ≤
√
2k/3.

Let δ = 3/(2
√
2)− 1 ≈ 0.06 so (1 + δ)µ = k/2.

Pr[X ≥ (1 + δ)µ] ≤ exp
(
−δ2µ/3

)
(Chernoff bound)

In other words, as k grows the probability that the median is at least
3d decreases exponentially.

The median trick - upper bound

Method: For each value in the input, run k independent copies of
Tidemark in parallel and output the median.

Recall: Pr(d̂ ≥ 3d) ≤
√
2
3

▶ If the median is greater than 3d , then at least k/2 values are at
least 3d .

Define Xi = 1 if d̂ ≥ 3d , 0 otherwise. X =
∑k

i=1 Xi , µ ≤
√
2k/3.

Let δ = 3/(2
√
2)− 1 ≈ 0.06 so (1 + δ)µ = k/2.

Pr[X ≥ (1 + δ)µ] ≤ exp
(
−δ2µ/3

)
(Chernoff bound)

In other words, as k grows the probability that the median is at least
3d decreases exponentially.

The median trick - upper bound

Method: For each value in the input, run k independent copies of
Tidemark in parallel and output the median.

Recall: Pr(d̂ ≥ 3d) ≤
√
2
3

▶ If the median is greater than 3d , then at least k/2 values are at
least 3d .

Define Xi = 1 if d̂ ≥ 3d , 0 otherwise. X =
∑k

i=1 Xi , µ ≤
√
2k/3.

Let δ = 3/(2
√
2)− 1 ≈ 0.06 so (1 + δ)µ = k/2.

Pr[X ≥ (1 + δ)µ] ≤ exp
(
−δ2µ/3

)
(Chernoff bound)

In other words, as k grows the probability that the median is at least
3d decreases exponentially.

The median trick - lower bound

Method: For each value in the input, run k independent copies of
Tidemark in parallel and output the median.

Recall: Pr(d̂ ≤ d/3) ≤
√
2

3

▶ If the median is less than d/3 , then at least k/2 values are at

most d/3 .

Define Xi = 1 if d̂ ≤ d/3 , 0 otherwise, X =
∑k

i=1 Xi , µ ≤
√
2k/3.

Let δ = 3/(2
√
2)− 1 ≈ 0.06 so (1 + δ)µ = k/2.

Pr[X ≥ (1 + δ)µ] ≤ exp
(
−δ2µ/3

)
(Chernoff bound)

In other words, as k grows the probability that the median is at most
d/3 decreases exponentially.

Summary

We saw two streaming algorithms for estimating the number of
distinct items in a stream.

They are both one-pass algorithms and run in O(m) time.

They both hash the incoming elements to [n].

▶ Simple-count stores the minimum of the hashed values.

▶ Simple-count uses O(log n) bits of space.

▶ It gives us Pr(d ≤ d̂/3) ≤ 1/3 and Pr(d > 3d̂) ≤ 1/3.

▶ Tidemark stores the maximum number of trailing zeros in the
hashed values.

▶ Tidemark uses O(log log n) bits of space.

▶ It gives us Pr(d̂ ≤ d/3) ≤
√
2
3 and Pr(d̂ ≥ 3d) ≤

√
2
3

▶ By performing k parallel iterations the probability of being
outside the range [d/3, 3d] can be made exponentially small.

Summary

We saw two streaming algorithms for estimating the number of
distinct items in a stream.

They are both one-pass algorithms and run in O(m) time.

They both hash the incoming elements to [n].

▶ Simple-count stores the minimum of the hashed values.

▶ Simple-count uses O(log n) bits of space.

▶ It gives us Pr(d ≤ d̂/3) ≤ 1/3 and Pr(d > 3d̂) ≤ 1/3.

▶ Tidemark stores the maximum number of trailing zeros in the
hashed values.

▶ Tidemark uses O(log log n) bits of space.

▶ It gives us Pr(d̂ ≤ d/3) ≤
√
2
3 and Pr(d̂ ≥ 3d) ≤

√
2
3

▶ By performing k parallel iterations the probability of being
outside the range [d/3, 3d] can be made exponentially small.

Summary

We saw two streaming algorithms for estimating the number of
distinct items in a stream.

They are both one-pass algorithms and run in O(m) time.

They both hash the incoming elements to [n].

▶ Simple-count stores the minimum of the hashed values.

▶ Simple-count uses O(log n) bits of space.

▶ It gives us Pr(d ≤ d̂/3) ≤ 1/3 and Pr(d > 3d̂) ≤ 1/3.

▶ Tidemark stores the maximum number of trailing zeros in the
hashed values.

▶ Tidemark uses O(log log n) bits of space.

▶ It gives us Pr(d̂ ≤ d/3) ≤
√
2
3 and Pr(d̂ ≥ 3d) ≤

√
2
3

▶ By performing k parallel iterations the probability of being
outside the range [d/3, 3d] can be made exponentially small.

Summary

We saw two streaming algorithms for estimating the number of
distinct items in a stream.

They are both one-pass algorithms and run in O(m) time.

They both hash the incoming elements to [n].

▶ Simple-count stores the minimum of the hashed values.

▶ Simple-count uses O(log n) bits of space.

▶ It gives us Pr(d ≤ d̂/3) ≤ 1/3 and Pr(d > 3d̂) ≤ 1/3.

▶ Tidemark stores the maximum number of trailing zeros in the
hashed values.

▶ Tidemark uses O(log log n) bits of space.

▶ It gives us Pr(d̂ ≤ d/3) ≤
√
2
3 and Pr(d̂ ≥ 3d) ≤

√
2
3

▶ By performing k parallel iterations the probability of being
outside the range [d/3, 3d] can be made exponentially small.

Summary

We saw two streaming algorithms for estimating the number of
distinct items in a stream.

They are both one-pass algorithms and run in O(m) time.

They both hash the incoming elements to [n].

▶ Simple-count stores the minimum of the hashed values.

▶ Simple-count uses O(log n) bits of space.

▶ It gives us Pr(d ≤ d̂/3) ≤ 1/3 and Pr(d > 3d̂) ≤ 1/3.

▶ Tidemark stores the maximum number of trailing zeros in the
hashed values.

▶ Tidemark uses O(log log n) bits of space.

▶ It gives us Pr(d̂ ≤ d/3) ≤
√
2
3 and Pr(d̂ ≥ 3d) ≤

√
2
3

▶ By performing k parallel iterations the probability of being
outside the range [d/3, 3d] can be made exponentially small.

Summary

We saw two streaming algorithms for estimating the number of
distinct items in a stream.

They are both one-pass algorithms and run in O(m) time.

They both hash the incoming elements to [n].

▶ Simple-count stores the minimum of the hashed values.

▶ Simple-count uses O(log n) bits of space.

▶ It gives us Pr(d ≤ d̂/3) ≤ 1/3 and Pr(d > 3d̂) ≤ 1/3.

▶ Tidemark stores the maximum number of trailing zeros in the
hashed values.

▶ Tidemark uses O(log log n) bits of space.

▶ It gives us Pr(d̂ ≤ d/3) ≤
√
2
3 and Pr(d̂ ≥ 3d) ≤

√
2
3

▶ By performing k parallel iterations the probability of being
outside the range [d/3, 3d] can be made exponentially small.

Summary

We saw two streaming algorithms for estimating the number of
distinct items in a stream.

They are both one-pass algorithms and run in O(m) time.

They both hash the incoming elements to [n].

▶ Simple-count stores the minimum of the hashed values.

▶ Simple-count uses O(log n) bits of space.

▶ It gives us Pr(d ≤ d̂/3) ≤ 1/3 and Pr(d > 3d̂) ≤ 1/3.

▶ Tidemark stores the maximum number of trailing zeros in the
hashed values.

▶ Tidemark uses O(log log n) bits of space.

▶ It gives us Pr(d̂ ≤ d/3) ≤
√
2
3 and Pr(d̂ ≥ 3d) ≤

√
2
3

▶ By performing k parallel iterations the probability of being
outside the range [d/3, 3d] can be made exponentially small.

Summary

We saw two streaming algorithms for estimating the number of
distinct items in a stream.

They are both one-pass algorithms and run in O(m) time.

They both hash the incoming elements to [n].

▶ Simple-count stores the minimum of the hashed values.

▶ Simple-count uses O(log n) bits of space.

▶ It gives us Pr(d ≤ d̂/3) ≤ 1/3 and Pr(d > 3d̂) ≤ 1/3.

▶ Tidemark stores the maximum number of trailing zeros in the
hashed values.

▶ Tidemark uses O(log log n) bits of space.

▶ It gives us Pr(d̂ ≤ d/3) ≤
√
2
3 and Pr(d̂ ≥ 3d) ≤

√
2
3

▶ By performing k parallel iterations the probability of being
outside the range [d/3, 3d] can be made exponentially small.

