Advanced Algorithms - COMS31900

van Emde Boas trees

Raphaël Clifford

Slides by Benjamin Sach

Dictionaries

In a dynamic dictionary data structure we store (key, value)-pairs
such that for any key there is at most one pair (key, value) in the dictionary.
Three operations are supported:
$\operatorname{add}(x, v) \quad$ Add the the pair (x, v) where $x \in U$, the universe
lookup $(x) \quad$ Return v if (x, v) is in dictionary, or NuLL otherwise.
delete $(x) \quad$ Remove pair (x, v) (assuming (x, v) is in the dictionary).

In previous lectures we have focussed on solutions using Hashing

Dictionaries

In a dynamic dictionary data structure we store (key, value)-pairs
such that for any key there is at most one pair (key, value) in the dictionary.
Three operations are supported:
$\operatorname{add}(x, v) \quad$ Add the the pair (x, v) where $x \in U$, the universe
lookup $(x) \quad$ Return v if (x, v) is in dictionary, or NuLL otherwise.
delete $(x) \quad$ Remove pair (x, v) (assuming (x, v) is in the dictionary).

In previous lectures we have focussed on solutions using Hashing
in particular...

Dictionaries

In a dynamic dictionary data structure we store (key, value)-pairs
such that for any key there is at most one pair (key, value) in the dictionary.
Three operations are supported:
$\operatorname{add}(x, v) \quad$ Add the the pair (x, v) where $x \in U$, the universe
lookup $(x) \quad$ Return v if (x, v) is in dictionary, or NuLL otherwise.
delete $(x) \quad$ Remove pair (x, v) (assuming (x, v) is in the dictionary).
In previous lectures we have focussed on solutions using Hashing
in particular...
Theorem
In the Cuckoo hashing scheme:

- Every lookup and every delete takes $O(1)$ worst-case time,
- The space is $O(n)$ where n is the number of keys stored
- An insert takes amortised expected $O(1)$ time

Dictionaries

In a dynamic dictionary data structure we store (key, value)-pairs
such that for any key there is at most one pair (key, value) in the dictionary.
Three operations are supported:
add $(x, v) \quad$ Add the the pair (x, v) where $x \in U$, the universe
lookup $(x) \quad$ Return v if (x, v) is in dictionary, or NuLL otherwise.
delete $(x) \quad$ Remove pair (x, v) (assuming (x, v) is in the dictionary).
In previous lectures we have focussed on solutions using Hashing
in particular...
Theorem
In the Cuckoo hashing scheme:

- Every lookup and every delete takes $O(1)$ worst-case time,
- The space is $O(n)$ where n is the number of keys stored
- An insert takes amortised expected $O(1)$ time

Dictionaries

In a dynamic dictionary data structure we store (key, value)-pairs
such that for any key there is at most one pair (key, value) in the dictionary.
Three operations are supported:
$\operatorname{add}(x, v) \quad$ Add the the pair (x, v) where $x \in U$, the universe
lookup $(x) \quad$ Return v if (x, v) is in dictionary, or NuLL otherwise.
delete $(x) \quad$ Remove pair (x, v) (assuming (x, v) is in the dictionary).
In previous lectures we have focussed on solutions using Hashing
in particular...
Theorem
In the Cuckoo hashing scheme:

- Every lookup and every delete takes $O(1)$ worst-case time,
- The space is $O(n)$ where n is the number of keys stored
- An insert takes amortised expected $O(1)$ time

Dictionaries

In a dynamic dictionary data structure we store (key, value)-pairs
such that for any key there is at most one pair (key, value) in the dictionary.
Three operations are supported:
$\operatorname{add}(x, v) \quad$ Add the the pair (x, v) where $x \in U$, the universe
lookup $(x) \quad$ Return v if (x, v) is in dictionary, or NuLL otherwise.
delete $(x) \quad$ Remove pair (x, v) (assuming (x, v) is in the dictionary).
In previous lectures we have focussed on solutions using Hashing
in particular...
Theorem
In the Cuckoo hashing scheme:

- Every lookup and every delete takes $O(1)$ worst-case time,
- The space is $O(n)$ where n is the number of keys stored
- An insert takes amortised expected $O(1)$ time

Dictionaries

In a dynamic dictionary data structure we store (key, value)-pairs
such that for any key there is at most one pair (key, value) in the dictionary.
Three operations are supported:
$\operatorname{add}(x, v) \quad$ Add the the pair (x, v) where $x \in U$, the universe
lookup $(x) \quad$ Return v if (x, v) is in dictionary, or NuLL otherwise.
delete $(x) \quad$ Remove pair (x, v) (assuming (x, v) is in the dictionary).
In previous lectures we have focussed on solutions using Hashing
in particular...
Theorem
In the Cuckoo hashing scheme:

- Every lookup and every delete takes $O(1)$ worst-case time,
- The space is $O(n)$ where n is the number of keys stored
- An insert takes amortised expected $O(1)$ time

Dictionaries

In a dynamic dictionary data structure we store (key, value)-pairs
such that for any key there is at most one pair (key, value) in the dictionary.
Three operations are supported:
$\operatorname{add}(x, v) \quad$ Add the the pair (x, v) where $x \in U$, the universe
lookup $(x) \quad$ Return v if (x, v) is in dictionary, or NuLL otherwise.
delete $(x) \quad$ Remove pair (x, v) (assuming (x, v) is in the dictionary).
In previous lectures we have focussed on solutions using Hashing
in particular...
Theorem
In the Cuckoo hashing scheme:

- Every lookup and every delete takes $O(1)$ worst-case time,
what
inflexibility?
- The space is $O(n)$ where n is the number of keys stored
- An insert takes amortised expected $O(1)$ time

Supporting more operations

In a dynamic dictionary data structure we store (key, value)-pairs
such that for any key there is at most one pair (key, value) in the dictionary.
Three operations are supported:

$$
\begin{array}{ll}
\operatorname{add}(x, v) & \text { Add the the pair }(x, v) \text { where } x \in U \text { - the universe } \\
\text { Iookup }(x) & \text { Return } v \text { if }(x, v) \text { is in dictionary, or NULL otherwise. } \\
\text { delete }(x) & \text { Remove pair }(x, v) \text { (assuming }(x, v) \text { is in the dictionary). }
\end{array}
$$

Supporting more operations

In a dynamic dictionary data structure we store (key, value)-pairs
such that for any key there is at most one pair (key, value) in the dictionary.
Three operations are supported:

$$
\begin{array}{ll}
\operatorname{add}(x, v) & \text { Add the the pair }(x, v) \text { where } x \in U \text { - the universe } \\
\text { lookup }(x) & \text { Return } v \text { if }(x, v) \text { is in dictionary, or NULL otherwise. } \\
\text { delete }(x) & \text { Remove pair }(x, v) \text { (assuming }(x, v) \text { is in the dictionary). }
\end{array}
$$

What happens if we add more operations?

Supporting more operations

In a dynamic dictionary data structure we store (key, value)-pairs
such that for any key there is at most one pair (key, value) in the dictionary.
Three operations are supported:

$$
\begin{array}{ll}
\operatorname{add}(x, v) & \text { Add the the pair }(x, v) \text { where } x \in U \text { - the universe } \\
\text { lookup }(x) & \text { Return } v \text { if }(x, v) \text { is in dictionary, or NULL otherwise. } \\
\text { delete }(x) & \text { Remove pair }(x, v) \text { (assuming }(x, v) \text { is in the dictionary). }
\end{array}
$$

What happens if we add more operations?
We also want our data structure to support:
predecessor (k) - returns the (unique) element (x, v) in the dictionary with the largest key, x such that $x \leqslant k$

Supporting more operations

In a dynamic dictionary data structure we store (key, value)-pairs
such that for any key there is at most one pair (key, value) in the dictionary.
Three operations are supported:

$$
\begin{array}{ll}
\operatorname{add}(x, v) & \text { Add the the pair }(x, v) \text { where } x \in U \text { - the universe } \\
\text { lookup }(x) & \text { Return } v \text { if }(x, v) \text { is in dictionary, or NULL otherwise. } \\
\text { delete }(x) & \text { Remove pair }(x, v) \text { (assuming }(x, v) \text { is in the dictionary). }
\end{array}
$$

What happens if we add more operations?
We also want our data structure to support:
predecessor (k) - returns the (unique) element (x, v) in the dictionary with the largest key, x such that $x \leqslant k$

Supporting more operations

In a dynamic dictionary data structure we store (key, value)-pairs such that for any key there is at most one pair (key, value) in the dictionary.

Three operations are supported:

$$
\begin{array}{ll}
\operatorname{add}(x, v) & \text { Add the the pair }(x, v) \text { where } x \in U \text { - the universe } \\
\text { lookup }(x) & \text { Return } v \text { if }(x, v) \text { is in dictionary, or NULL otherwise. } \\
\text { delete }(x) & \text { Remove pair }(x, v) \text { (assuming }(x, v) \text { is in the dictionary). }
\end{array}
$$

What happens if we add more operations?

We also want our data structure to support:
predecessor (k) - returns the (unique) element (x, v) in the dictionary with the largest key, x such that $x \leqslant k$

the universe

Supporting more operations

In a dynamic dictionary data structure we store (key, value)-pairs
such that for any key there is at most one pair (key, value) in the dictionary.
Three operations are supported:

$$
\begin{array}{ll}
\operatorname{add}(x, v) & \text { Add the the pair }(x, v) \text { where } x \in U \text { - the universe } \\
\text { lookup }(x) & \text { Return } v \text { if }(x, v) \text { is in dictionary, or NULL otherwise. } \\
\text { delete }(x) & \text { Remove pair }(x, v) \text { (assuming }(x, v) \text { is in the dictionary). }
\end{array}
$$

What happens if we add more operations?
We also want our data structure to support:
predecessor (k) - returns the (unique) element (x, v) in the dictionary with the largest key, x such that $x \leqslant k$

Supporting more operations

In a dynamic dictionary data structure we store (key, value)-pairs
such that for any key there is at most one pair (key, value) in the dictionary.
Three operations are supported:

$$
\begin{array}{ll}
\operatorname{add}(x, v) & \text { Add the the pair }(x, v) \text { where } x \in U \text { - the universe } \\
\text { lookup }(x) & \text { Return } v \text { if }(x, v) \text { is in dictionary, or NULL otherwise. } \\
\text { delete }(x) & \text { Remove pair }(x, v) \text { (assuming }(x, v) \text { is in the dictionary). }
\end{array}
$$

What happens if we add more operations?
We also want our data structure to support:
predecessor (k) - returns the (unique) element (x, v) in the dictionary with the largest key, x such that $x \leqslant k$

Supporting more operations

In a dynamic dictionary data structure we store (key, value)-pairs
such that for any key there is at most one pair (key, value) in the dictionary.
Three operations are supported:

$$
\begin{array}{ll}
\operatorname{add}(x, v) & \text { Add the the pair }(x, v) \text { where } x \in U \text { - the universe } \\
\text { lookup }(x) & \text { Return } v \text { if }(x, v) \text { is in dictionary, or NULL otherwise. } \\
\text { delete }(x) & \text { Remove pair }(x, v) \text { (assuming }(x, v) \text { is in the dictionary). }
\end{array}
$$

What happens if we add more operations?
We also want our data structure to support:
predecessor (k) - returns the (unique) element (x, v) in the dictionary with the largest key, x such that $x \leqslant k$

Supporting more operations

In a dynamic dictionary data structure we store (key, value)-pairs
such that for any key there is at most one pair (key, value) in the dictionary.
Three operations are supported:

$$
\begin{array}{ll}
\operatorname{add}(x, v) & \text { Add the the pair }(x, v) \text { where } x \in U \text { - the universe } \\
\text { lookup }(x) & \text { Return } v \text { if }(x, v) \text { is in dictionary, or NULL otherwise. } \\
\text { delete }(x) & \text { Remove pair }(x, v) \text { (assuming }(x, v) \text { is in the dictionary). }
\end{array}
$$

What happens if we add more operations?
We also want our data structure to support:
predecessor (k) - returns the (unique) element (x, v) in the dictionary with the largest key, x such that $x \leqslant k$

Supporting more operations

In a dynamic dictionary data structure we store (key, value)-pairs
such that for any key there is at most one pair (key, value) in the dictionary.
Three operations are supported:

$$
\begin{array}{ll}
\operatorname{add}(x, v) & \text { Add the the pair }(x, v) \text { where } x \in U \text { - the universe } \\
\text { lookup }(x) & \text { Return } v \text { if }(x, v) \text { is in dictionary, or NULL otherwise. } \\
\text { delete }(x) & \text { Remove pair }(x, v) \text { (assuming }(x, v) \text { is in the dictionary). }
\end{array}
$$

What happens if we add more operations?

We also want our data structure to support:
predecessor (k) - returns the (unique) element (x, v) in the dictionary with the largest key, x such that $x \leqslant k$
successor (k) - returns the (unique) element (x, v) in the dictionary

Supporting more operations

In a dynamic dictionary data structure we store (key, value)-pairs
such that for any key there is at most one pair (key, value) in the dictionary.
Three operations are supported:

$$
\begin{array}{ll}
\operatorname{add}(x, v) & \text { Add the the pair }(x, v) \text { where } x \in U \text { - the universe } \\
\text { lookup }(x) & \text { Return } v \text { if }(x, v) \text { is in dictionary, or NULL otherwise. } \\
\text { delete }(x) & \text { Remove pair }(x, v) \text { (assuming }(x, v) \text { is in the dictionary). }
\end{array}
$$

What happens if we add more operations?

We also want our data structure to support:
predecessor (k) - returns the (unique) element (x, v) in the dictionary with the largest key, x such that $x \leqslant k$
successor (k) - returns the (unique) element (x, v) in the dictionary

Supporting more operations

In a dynamic dictionary data structure we store (key, value)-pairs
such that for any key there is at most one pair (key, value) in the dictionary.
Three operations are supported:

$$
\begin{array}{ll}
\operatorname{add}(x, v) & \text { Add the the pair }(x, v) \text { where } x \in U \text { - the universe } \\
\text { lookup }(x) & \text { Return } v \text { if }(x, v) \text { is in dictionary, or NULL otherwise. } \\
\text { delete }(x) & \text { Remove pair }(x, v) \text { (assuming }(x, v) \text { is in the dictionary). }
\end{array}
$$

What happens if we add more operations?

We also want our data structure to support:
predecessor (k) - returns the (unique) element (x, v) in the dictionary with the largest key, x such that $x \leqslant k$
$\operatorname{successor}(k)$ - returns the (unique) element (x, v) in the dictionary with the smallest key, x such that $x \geqslant k$

Supporting more operations

In a dynamic dictionary data structure we store (key, value)-pairs
such that for any key there is at most one pair (key, value) in the dictionary.
Three operations are supported:

$$
\begin{array}{ll}
\operatorname{add}(x, v) & \text { Add the the pair }(x, v) \text { where } x \in U \text { - the universe } \\
\text { lookup }(x) & \text { Return } v \text { if }(x, v) \text { is in dictionary, or NuLL otherwise. } \\
\text { delete }(x) & \text { Remove pair }(x, v) \text { (assuming }(x, v) \text { is in the dictionary). }
\end{array}
$$

What happens if we add more operations?

We also want our data structure to support:
predecessor (k) - returns the (unique) element (x, v) in the dictionary with the largest key, x such that $x \leqslant k$
successor (k) - returns the (unique) element (x, v) in the dictionary
with the smallest key, x such that $x \geqslant k$

These are very natural operations that the Hashing-based solutions
that we have seen are very unsuited to

We could use a self-balancing binary search tree... like a 2-3-4 tree, a red-black tree or an AVL tree

We could use a self-balancing binary search tree. . . like a 2-3-4 tree, a red-black tree or an AVL tree

All three of these data structures support:

$$
\operatorname{add}(x, v) \text {,lookup }(x) \text {, delete }(x) \text {, predecessor }(k) \text { and } \operatorname{successor}(k)
$$

What could we use instead?

We could use a self-balancing binary search tree... like a 2-3-4 tree, a red-black tree or an AVL tree

All three of these data structures support:

$$
\operatorname{add}(x, v) \text {,lookup }(x), \text { delete }(x) \text {, predecessor }(k) \text { and } \operatorname{successor}(k)
$$ each in $O(\log n)$ worst case time and $O(n)$ space

We could use a self-balancing binary search tree. . . like a 2-3-4 tree, a red-black tree or an AVL tree

All three of these data structures support:

$$
\operatorname{add}(x, v) \text {,lookup }(x), \text { delete }(x) \text {,predecessor }(k) \text { and } \operatorname{successor}(k)
$$ each in $O(\log n)$ worst case time and $O(n)$ space

We could use a self-balancing binary search tree. . . like a 2-3-4 tree, a red-black tree or an AVL tree

All three of these data structures support:
 $\operatorname{add}(x, v)$,lookup (x), delete (x), predecessor (k) and $\operatorname{successor}(k)$ each in $O(\log n)$ worst case time and $O(n)$ space where n is the number of elements stored they are also deterministic

van Emde Boas Trees

In this lecture, we will see the van Emde Boas (vEB) tree
which stores a set S of integer keys from a universe $U=\{1,2,3,4 \ldots u\}$ (i.e. $u=|U|$).
Five operations will be supported:

$\operatorname{add}(x)$	Insert the integer x into S (where $x \in U$)
lookup (x)	Return yes if x is in S, or no otherwise.
delete (x)	Remove x from S
predecessor (k)	Return the largest integer x in S such that $x \leqslant k$
successor (k)	Return the smallest integer x in S such that $x \geqslant k$

van Emde Boas Trees

In this lecture, we will see the van Emde Boas (vEB) tree
which stores a set S of integer keys from a universe $U=\{1,2,3,4 \ldots u\}$ (i.e. $u=|U|$).
Five operations will be supported:

$\operatorname{add}(x)$	Insert the integer x into S (where $x \in U$)
lookup (x)	Return yes if x is in S, or no otherwise.
delete (x)	Remove x from S
predecessor (k)	Return the largest integer x in S such that $x \leqslant k$
successor (k)	Return the smallest integer x in S such that $x \geqslant k$

Warning: As stated the operations do not store any data (values) with the integers (keys)

van Emde Boas Trees

In this lecture, we will see the van Emde Boas (vEB) tree which stores a set S of integer keys from a universe $U=\{1,2,3,4 \ldots u\}$ (i.e. $u=|U|$).

Five operations will be supported:

$\operatorname{add}(x)$	Insert the integer x into S (where $x \in U$)
lookup (x)	Return yes if x is in S, or no otherwise.
delete (x)	Remove x from S
predecessor (k)	Return the largest integer x in S such that $x \leqslant k$
successor (k)	Return the smallest integer x in S such that $x \geqslant k$

Warning: As stated the operations do not store any data (values) with the integers (keys)
It is straightforward to extend the van Emde Boas tree to store (key, value) pairs when the keys are integers from U

van Emde Boas Trees

In this lecture, we will see the van Emde Boas (vEB) tree which stores a set S of integer keys from a universe $U=\{1,2,3,4 \ldots u\}$ (i.e. $u=|U|$).

Five operations will be supported:

$\operatorname{add}(x)$	Insert the integer x into S (where $x \in U$)
lookup (x)	Return yes if x is in S, or no otherwise.
delete (x)	Remove x from S
predecessor (k)	Return the largest integer x in S such that $x \leqslant k$
successor (k)	Return the smallest integer x in S such that $x \geqslant k$

Warning: As stated the operations do not store any data (values) with the integers (keys)
It is straightforward to extend the van Emde Boas tree to store (key, value) pairs when the keys are integers from U

van Emde Boas Trees

In this lecture, we will see the van Emde Boas (vEB) tree
which stores a set S of integer keys from a universe $U=\{1,2,3,4 \ldots u\}$ (i.e. $u=|U|$).
Five operations will be supported:

$\operatorname{add}(x)$	Insert the integer x into S (where $x \in U$)
lookup (x)	Return yes if x is in S, or no otherwise.
delete (x)	Remove x from S
predecessor (k)	Return the largest integer x in S such that $x \leqslant k$
successor (k)	Return the smallest integer x in S such that $x \geqslant k$

van Emde Boas Trees

In this lecture, we will see the van Emde Boas (vEB) tree
which stores a set S of integer keys from a universe $U=\{1,2,3,4 \ldots u\}$ (i.e. $u=|U|$).
Five operations will be supported:

$\operatorname{add}(x)$	Insert the integer x into S (where $x \in U$)
lookup (x)	Return yes if x is in S, or no otherwise.
delete (x)	Remove x from S
predecessor (k)	Return the largest integer x in S such that $x \leqslant k$
successor (k)	Return the smallest integer x in S such that $x \geqslant k$

All operations will take $O(\log \log u)$ worst case time and the space used is $O(u)$

van Emde Boas Trees

In this lecture, we will see the van Emde Boas (vEB) tree which stores a set S of integer keys from a universe $U=\{1,2,3,4 \ldots u\}$ (i.e. $u=|U|$).

Five operations will be supported:

$\operatorname{add}(x)$	Insert the integer x into S (where $x \in U$)
$\operatorname{lookup}(x)$	Return yes if x is in S, or no otherwise.
delete (x)	Remove x from S
predecessor (k)	Return the largest integer x in S such that $x \leqslant k$
successor (k)	Return the smallest integer x in S such that $x \geqslant k$

All operations will take $O(\log \log u)$ worst case time and the space used is $O(u)$ and it is a deterministic data structure

van Emde Boas Trees

In this lecture, we will see the van Emde Boas (vEB) tree which stores a set S of integer keys from a universe $U=\{1,2,3,4 \ldots u\}$ (i.e. $u=|U|$).

Five operations will be supported:

$\operatorname{add}(x)$	Insert the integer x into S (where $x \in U$)
$\operatorname{lookup}(x)$	Return yes if x is in S, or no otherwise.
delete (x)	Remove x from S
predecessor (k)	Return the largest integer x in S such that $x \leqslant k$
successor (k)	Return the smallest integer x in S such that $x \geqslant k$

All operations will take $O(\log \log u)$ worst case time and the space used is $O(u)$ and it is a deterministic data structure

Example: If $U=\{1,2,3,4 \ldots 100 \cdot n\}$, you get $O(\log \log n)$ time and $O(n)$ space

van Emde Boas Trees

In this lecture, we will see the van Emde Boas (vEB) tree which stores a set S of integer keys from a universe $U=\{1,2,3,4 \ldots u\}$ (i.e. $u=|U|$).

Five operations will be supported:

$\operatorname{add}(x)$	Insert the integer x into S (where $x \in U$)
lookup (x)	Return yes if x is in S, or no otherwise.
delete (x)	Remove x from S
predecessor (k)	Return the largest integer x in S such that $x \leqslant k$
successor (k)	Return the smallest integer x in S such that $x \geqslant k$

All operations will take $O(\log \log u)$ worst case time and the space used is $O(u)$ and it is a deterministic data structure

Example: If $U=\left\{1,2,3,4 \ldots n^{2}\right\}$, you get $O(\log \log n)$ time and $O\left(n^{2}\right)$ space

van Emde Boas Trees

In this lecture, we will see the van Emde Boas (vEB) tree which stores a set S of integer keys from a universe $U=\{1,2,3,4 \ldots u\}$ (i.e. $u=|U|$).

Five operations will be supported:

$\operatorname{add}(x)$	Insert the integer x into S (where $x \in U$)
lookup (x)	Return yes if x is in S, or no otherwise.
delete (x)	Remove x from S
predecessor (k)	Return the largest integer x in S such that $x \leqslant k$
successor (k)	Return the smallest integer x in S such that $x \geqslant k$

All operations will take $O(\log \log u)$ worst case time and the space used is $O(u)$ and it is a deterministic data structure

Example: If $U=\left\{1,2,3,4 \ldots n^{3}\right\}$, you get $O(\log \log n)$ time and $O\left(n^{3}\right)$ space

Attempt 1: a big array

Build an array of length $u \ldots$

A| 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

Attempt 1: a big array

Build an array of length $u \ldots$

Attempt 1: a big array

Build an array of length $u \ldots$

The operations add, delete and lookup all take $O(1)$ time.

Attempt 1: a big array

Build an array of length $u \ldots$

$$
\operatorname{add}(12)
$$

The operations add, delete and lookup all take $O(1)$ time.

Attempt 1: a big array

Build an array of length $u \ldots$

$$
\operatorname{add}(12)
$$

The operations add, delete and lookup all take $O(1)$ time.

Attempt 1: a big array

Build an array of length $u \ldots$

$$
\operatorname{add}(12)
$$

The operations add, delete and lookup all take $O(1)$ time.

Attempt 1: a big array

Build an array of length u...

The operations add, delete and lookup all take $O(1)$ time.

Attempt 1: a big array

Build an array of length $u \ldots$

delete(14)

The operations add, delete and lookup all take $O(1)$ time.

Attempt 1: a big array

Build an array of length $u \ldots$

$$
\text { delete }(14)
$$

The operations add, delete and lookup all take $O(1)$ time.

Attempt 1: a big array

Build an array of length $u \ldots$

delete(14)

The operations add, delete and lookup all take $O(1)$ time.

Attempt 1: a big array

Build an array of length u...

The operations add, delete and lookup all take $O(1)$ time.

Attempt 1: a big array

Build an array of length $u \ldots$

lookup(11)

The operations add, delete and lookup all take $O(1)$ time.

Attempt 1: a big array

Build an array of length $u \ldots$

lookup(11)

The operations add, delete and lookup all take $O(1)$ time.

Attempt 1: a big array

Build an array of length u...

The operations add, delete and lookup all take $O(1)$ time.

Attempt 1: a big array

Build an array of length $u \ldots$

The operations add, delete and lookup all take $O(1)$ time.
... looks good so far!

Attempt 1: a big array

Build an array of length $u \ldots$

The operations add, delete and lookup all take $O(1)$ time.
... looks good so far!
What about the predecessor operation?

Attempt 1: a big array
Build an array of length $u \ldots$

predecessor(11)

The operations add, delete and lookup all take $O(1)$ time.
... looks good so far!
What about the predecessor operation?

Attempt 1: a big array
Build an array of length $u \ldots$

predecessor(11)

The operations add, delete and lookup all take $O(1)$ time.
... looks good so far!
What about the predecessor operation?

Attempt 1: a big array
Build an array of length $u \ldots$

predecessor(11)

The operations add, delete and lookup all take $O(1)$ time.
... looks good so far!
What about the predecessor operation?

Attempt 1: a big array

Build an array of length $u \ldots$

predecessor(11)

The operations add, delete and lookup all take $O(1)$ time.
... looks good so far!

Attempt 1: a big array
Build an array of length $u \ldots$

predecessor(11)

The operations add, delete and lookup all take $O(1)$ time.
... looks good so far!

Attempt 1: a big array
Build an array of length $u \ldots$

predecessor(11)

The operations add, delete and lookup all take $O(1)$ time.
... looks good so far!

Attempt 1: a big array
Build an array of length $u \ldots$

predecessor(11)

The operations add, delete and lookup all take $O(1)$ time.
... looks good so far!

The predecessor and successor operations take $O(u)$ time

Attempt 1: a big array

Build an array of length $u \ldots$

The operations add, delete and lookup all take $O(1)$ time.
... looks good so far!

The predecessor and successor operations take $O(u)$ time

Attempt 1: a big array

Build an array of length $u \ldots$

The operations add, delete and lookup all take $O(1)$ time.
... looks good so far!

The predecessor and successor operations take $O(u)$ time

Attempt 2: a constant height tree

(on top of a big array)

A| 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

Attempt 2: a constant height tree

(on top of a big array)

A| 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

Split A into \sqrt{u} blocks each containing \sqrt{u} bits

Attempt 2: a constant height tree

(on top of a big array)

Split A into \sqrt{u} blocks each containing \sqrt{u} bits

Attempt 2: a constant height tree

(on top of a big array)

Split A into \sqrt{u} blocks each containing \sqrt{u} bits

Attempt 2: a constant height tree

(on top of a big array)
C is called the

```
summary of }
```


Split A into \sqrt{u} blocks each containing \sqrt{u} bits

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A

Split A into \sqrt{u} blocks each containing \sqrt{u} bits

Attempt 2: a constant height tree

(on top of a big array)
C is called the summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits

Attempt 2: a constant height tree

(on top of a big array)
C is called the summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the

$$
\text { summary of } A
$$

this is 1 if
any bit in the child block is 1
 you have to look through this block

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the
summary of A
this is 1 if
any bit in the child block is 1

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the summary of A
this is 1 if
any bit in the child block is 1

In the worst case we look at all of C and all of two blocks

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

Attempt 2: a constant height tree

(on top of a big array)
C is called the summary of A
this is 1 if
any bit in the child block is 1

In the worst case we look at
all of C and all of two blocks
(successor is the same)

Split A into \sqrt{u} blocks each containing \sqrt{u} bits The lookup and add operations take $O(1)$ time.

The operations delete, predecessor and successor take $O(\sqrt{u})$ time.

An abstract view
Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

An abstract view
Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

An abstract view
Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

An abstract view
Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements
we can think of each block

An abstract view
Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements
we can think of each block

An abstract view
Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

For block i, we build a data structure $B[i]$
which stores elements from $\{1,2,3, \ldots \sqrt{u}\}$

An abstract view
Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

For block i, we build a data structure $B[i]$
which stores elements from $\{1,2,3, \ldots \sqrt{u}\}$

An abstract view
Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

For block i, we build a data structure $B[i]$
which stores elements from $\{1,2,3, \ldots \sqrt{u}\}$

$$
x \text { is stored in } B[i] \text { iff }(x+(i-1) \sqrt{u}) \in S
$$

An abstract view
Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

we can think of each block

For block i, we build a data structure $B[i]$
which stores elements from $\{1,2,3, \ldots \sqrt{u}\}$

$$
x \text { is stored in } B[i] \text { iff }(x+(i-1) \sqrt{u}) \in S
$$

(this is just to deal with the offset from the start of the real universe)

An abstract view
Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

For block i, we build a data structure $B[i]$ which stores elements from $\{1,2,3, \ldots \sqrt{u}\}$ x is stored in $B[i]$ iff $(x+(i-1) \sqrt{u}) \in S$
(this is just to deal with the offset from the start of the real universe)

An abstract view
Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

For block i, we build a data structure $B[i]$
which stores elements from $\{1,2,3, \ldots \sqrt{u}\}$

$$
x \text { is stored in } B[i] \text { iff }(x+(i-1) \sqrt{u}) \in S
$$

An abstract view

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

For block i, we build a data structure $B[i]$
which stores elements from $\{1,2,3, \ldots \sqrt{u}\}$ x is stored in $B[i]$ iff $(x+(i-1) \sqrt{u}) \in S$

We also build a summary data structure C which stores elements from $\{1,2,3, \ldots \sqrt{u}\}$
i is stored in C iff $B[i]$ is non-empty

An abstract view

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

For block i, we build a data structure $B[i]$
which stores elements from $\{1,2,3, \ldots \sqrt{u}\}$
x is stored in $B[i]$ iff $(x+(i-1) \sqrt{u}) \in S$

We also build a summary data structure C which stores elements from $\{1,2,3, \ldots \sqrt{u}\}$
i is stored in C iff $B[i]$ is non-empty

An abstract view

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

How should we build $B[1], B[2], \ldots B[\sqrt{u}]$ and C ?

An abstract view

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

How should we build $B[1], B[2], \ldots B[\sqrt{u}]$ and C ?
Recursion!

An abstract view

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

How should we build $B[1], B[2], \ldots B[\sqrt{u}]$ and C ?
Recursion!
Each $B[i]$ has universe $\{1,2,3, \ldots \sqrt{u}\}$

An abstract view
Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

How should we build $B[1], B[2], \ldots B[\sqrt{u}]$ and C ? Recursion!

Each $B[i]$ has universe $\{1,2,3, \ldots \sqrt{u}\}$
We recursively split this into $\sqrt[4]{u}$ blocks each associated with $\sqrt[4]{u}$ elements. . .

An abstract view
Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

How should we build $B[1], B[2], \ldots B[\sqrt{u}]$ and C ? Recursion!

Each $B[i]$ has universe $\{1,2,3, \ldots \sqrt{u}\}$
We recursively split this into $\sqrt[4]{u}$ blocks each associated with $\sqrt[4]{u}$ elements. . . eventually (after some more work), this will lead to an $O(\log \log u)$ time solution

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

How do we perform the operations?

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

To perform add (x):
Step 1 Determine which $B[i]$ the element x belongs in (this takes $O(1)$ time with a little bit twiddling)
Step $\mathbf{2}$ If $B[i]$ is empty, add i to C
Step 3 add x to $B[i]$
(suitably adjusting the offset from the start of $B[i]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

To perform $\operatorname{add}(x)$:
Step 1 Determine which $B[i]$ the element x belongs in (this takes $O(1)$ time with a little bit twiddling)
Step $\mathbf{2}$ If $B[i]$ is empty, add i to C
Step 3 add x to $B[i]$
(suitably adjusting the offset from the start of $B[i]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

To perform $\operatorname{add}(x)$:
Step 1 Determine which $B[i]$ the element x belongs in (this takes $O(1)$ time with a little bit twiddling)
Step $\mathbf{2}$ If $B[i]$ is empty, add i to C
Step 3 add x to $B[i]$
(suitably adjusting the offset from the start of $B[i]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

To perform $\operatorname{add}(x)$:
Step 1 Determine which $B[i]$ the element x belongs in (this takes $O(1)$ time with a little bit twiddling)
Step $\mathbf{2}$ If $B[i]$ is empty, add i to C
Step 3 add x to $B[i]$
(suitably adjusting the offset from the start of $B[i]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

To perform $\operatorname{add}(x)$:
Step 1 Determine which $B[i]$ the element x belongs in (this takes $O(1)$ time with a little bit twiddling)
Step $\mathbf{2}$ If $B[i]$ is empty, add i to C
Step 3 add x to $B[i]$
(suitably adjusting the offset from the start of $B[i]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

To perform $\operatorname{add}(x)$:
Step 1 Determine which $B[i]$ the element x belongs in (this takes $O(1)$ time with a little bit twiddling)
Step $\mathbf{2}$ If $B[i]$ is empty, add i to C
Step 3 add x to $B[i]$
(suitably adjusting the offset from the start of $B[i]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

To perform add (x):
Step 1 Determine which $B[i]$ the element x belongs in (this takes $O(1)$ time with a little bit twiddling)
Step 2 If $B[i]$ is empty, add i to C
Step 3 add x to $B[i]$
(suitably adjusting the offset from the start of $B[i]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

To perform $\operatorname{add}(x)$:
Step 1 Determine which $B[i]$ the element x belongs in (this takes $O(1)$ time with a little bit twiddling)
Step $\mathbf{2}$ If $B[i]$ is empty, add i to C
Step 3 add x to $B[i]$
(suitably adjusting the offset from the start of $B[i]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

To perform add (x):
Step 1 Determine which $B[i]$ the element x belongs in (this takes $O(1)$ time with a little bit twiddling)
Step $\mathbf{2}$ If $B[i]$ is empty, add i to C
Step 3 add x to $B[i]$
(suitably adjusting the offset from the start of $B[i]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

To perform predecessor (x) :
Step 1 Determine which $B[i]$ the element x belongs in
Step 2 Compute the predecessor of x in $B[i]$
(suitably adjusting the offset from the start of $B[i]$)
Step 3 If x has no predecessor in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Compute the predecessor of x in $B[j]$
(suitably adjusting the offset from the start of $B[j]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 Compute the predecessor of x in $B[i]$
(suitably adjusting the offset from the start of $B[i]$)
Step 3 If x has no predecessor in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Compute the predecessor of x in $B[j]$
(suitably adjusting the offset from the start of $B[j]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 Compute the predecessor of x in $B[i]$
(suitably adjusting the offset from the start of $B[i]$)
Step 3 If x has no predecessor in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Compute the predecessor of x in $B[j]$
(suitably adjusting the offset from the start of $B[j]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 Compute the predecessor of x in $B[i]$
(suitably adjusting the offset from the start of $B[i]$)
Step 3 If x has no predecessor in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Compute the predecessor of x in $B[j]$
(suitably adjusting the offset from the start of $B[j]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 Compute the predecessor of x in $B[i]$
(suitably adjusting the offset from the start of $B[i]$)
Step 3 If x has no predecessor in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Compute the predecessor of x in $B[j]$
(suitably adjusting the offset from the start of $B[j]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

To perform predecessor (x) :
Step 1 Determine which $B[i]$ the element x belongs in
Step 2 Compute the predecessor of x in $B[i]$
(suitably adjusting the offset from the start of $B[i]$)
Step 3 If x has no predecessor in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Compute the predecessor of x in $B[j]$
(suitably adjusting the offset from the start of $B[j]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 Compute the predecessor of x in $B[i]$
(suitably adjusting the offset from the start of $B[i]$)
Step 3 If x has no predecessor in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Compute the predecessor of x in $B[j]$
(suitably adjusting the offset from the start of $B[j]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 Compute the predecessor of x in $B[i]$
(suitably adjusting the offset from the start of $B[i]$)
Step 3 If x has no predecessor in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Compute the predecessor of x in $B[j]$
(suitably adjusting the offset from the start of $B[j]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 Compute the predecessor of x in $B[i]$
(suitably adjusting the offset from the start of $B[i]$)
Step 3 If x has no predecessor in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Compute the predecessor of x in $B[j]$
(suitably adjusting the offset from the start of $B[j]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 Compute the predecessor of x in $B[i]$
(suitably adjusting the offset from the start of $B[i]$)
Step 3 If x has no predecessor in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Compute the predecessor of x in $B[j]$
(suitably adjusting the offset from the start of $B[j]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 Compute the predecessor of x in $B[i]$
(suitably adjusting the offset from the start of $B[i]$)
Step 3 If x has no predecessor in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Compute the predecessor of x in $B[j]$
(suitably adjusting the offset from the start of $B[j]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 Compute the predecessor of x in $B[i]$
(suitably adjusting the offset from the start of $B[i]$)
Step 3 If x has no predecessor in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Compute the predecessor of x in $B[j]$
(suitably adjusting the offset from the start of $B[j]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 Compute the predecessor of x in $B[i]$
(suitably adjusting the offset from the start of $B[i]$)
Step 3 If x has no predecessor in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Compute the predecessor of x in $B[j]$
(suitably adjusting the offset from the start of $B[j]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

The operations lookup, delete and successor can
all also be defined in a similar, recursive manner

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

The operations lookup, delete and successor can
all also be defined in a similar, recursive manner
How efficient are the operations?

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

To perform add (x):
Step 1 Determine which $B[i]$ the element x belongs in (this takes $O(1)$ time with a little bit twiddling)
Step $\mathbf{2}$ If $B[i]$ is empty, add i to C
Step 3 add x to $B[i]$
(suitably adjusting the offset from the start of $B[i]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

To perform add (x):
add makes
up to two recursive calls
Step 1 Determine which $B[i]$ the element x belongs in

$$
\text { (this takes } O(1) \text { time with a little bit twiddling) }
$$

Step 2 If $B[i]$ is empty, add i to C
Step 3 add x to $B[i]$
(suitably adjusting the offset from the start of $B[i]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

To perform add (x):
add makes
up to two recursive calls
Step 1 Determine which $B[i]$ the element x belongs in

$$
\text { (this takes } O(1) \text { time with a little bit twiddling) }
$$

Step 2 If $B[i]$ is empty, add i to C
Step 3 add x to $B[i]$
(suitably adjusting the offset from the start of $B[i]$)

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

To perform predecessor (x) :
Step 1 Determine which $B[i]$ the element x belongs in
Step 2 Compute the predecessor of x in $B[i]$
(suitably adjusting the offset from the start of $B[i]$)
Step 3 If x has no predecessor in $B[i]$:
Compute $j=$ predecessor (i) in C Compute the predecessor of x in $B[j]$

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

The operations lookup, delete and successor can
all also be defined in a similar, recursive manner
How efficient are the operations?

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

The operations lookup, delete and successor can
all also be defined in a similar, recursive manner
How efficient are the operations?
The add operation makes up to two recursive calls and the predecessor operation makes up to three

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

The operations lookup, delete and successor can
all also be defined in a similar, recursive manner
How efficient are the operations?
The add operation makes up to two recursive calls and the predecessor operation makes up to three

Each recursive call could in turn make multiple recursive calls. . .

Attempt 3: Recursion

Split the universe U into \sqrt{u} blocks each associated with \sqrt{u} elements

The operations lookup, delete and successor can
all also be defined in a similar, recursive manner
How efficient are the operations?
The add operation makes up to two recursive calls and the predecessor operation makes up to three

Each recursive call could in turn make multiple recursive calls. . .

A closer look at predecessor

Step 1 Determine which $B[i]$ the element x belongs in Step 2 Compute the predecessor of x in $B[i]$

Step 3 If x has no predecessor in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Return the predecessor of x in $B[j]$

A closer look at predecessor

Observation 1: if x has a predecessor in $B[i]$ we only make one recursive call

Step 1 Determine which $B[i]$ the element x belongs in Step 2 Compute the predecessor of x in $B[i]$

Step 3 If x has no predecessor in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Return the predecessor of x in $B[j]$

A closer look at predecessor

Observation 1: if x has a predecessor in $B[i]$ we only make one recursive call

Step 1 Determine which $B[i]$ the element x belongs in Step 2 Compute the predecessor of x in $B[i]$

Step 3 If x has no predecessor in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Return the predecessor of x in $B[j]$

A closer look at predecessor

Observation 1: if x has a predecessor in $B[i]$ we only make one recursive call

Step 1 Determine which $B[i]$ the element x belongs in Step 2 Compute the predecessor of x in $B[i]$

Step 3 If x has no predecessor in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Return the predecessor of x in $B[j]$

A closer look at predecessor

Observation 1: if x has a predecessor in $B[i]$ we only make one recursive call

Step 1 Determine which $B[i]$ the element x belongs in Step 2 Compute the predecessor of x in $B[i]$

Step 3 If $x<$ the minimum in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Return the predecessor of x in $B[j]$

A closer look at predecessor

Observation 1: if x has a predecessor in $B[i]$ we only make one recursive call

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 If $x \geqslant$ the minimum in $B[i]$:
Return the predecessor of x in $B[i]$
Step 3 If $x<$ the minimum in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Return the predecessor of x in $B[j]$

A closer look at predecessor
Observation 1: if x has a predecessor in $B[i]$ we only make one recursive call

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 If $x \geqslant$ the minimum in $B[i]$:
Return the predecessor of x in $B[i]$
Step 3 If $x<$ the minimum in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Return the predecessor of x in $B[j]$

A closer look at predecessor

Observation 1: if x has a predecessor in $B[i]$ we only make one recursive call

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 If $x \geqslant$ the minimum in $B[i]$:
Return the predecessor of x in $B[i]$
Now we make at most
Step 3 If $x<$ the minimum in $B[i]$: two recursive calls
Compute $j=$ predecessor (i) in C (ignoring finding the minimum)
Return the predecessor of x in $B[j]$

A closer look at predecessor

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 If $x \geqslant$ the minimum in $B[i]$:
Return the predecessor of x in $B[i]$
Step 3 If $x<$ the minimum in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Return the predecessor of x in $B[j]$

A closer look at predecessor

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 If $x \geqslant$ the minimum in $B[i]$:
Return the predecessor of x in $B[i]$
Step 3 If $x<$ the minimum in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Return the predecessor of x in $B[j]$

A closer look at predecessor

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 If $x \geqslant$ the minimum in $B[i]$:
Return the predecessor of x in $B[i]$
Step 3 If $x<$ the minimum in $B[i]$:
Compute $j=\operatorname{predecessor}(i)$ in C
Return the predecessor of x in $B[j]$

A closer look at predecessor

Observation 2: In Step 3, the predecessor of x in $B[j]$ is the maximum in $B[j]$

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 If $x \geqslant$ the minimum in $B[i]$:
Return the predecessor of x in $B[i]$
Step 3 If $x<$ the minimum in $B[i]$:
Compute $j=$ predecessor (i) in C
Return the predecessor of x in $B[j]$

A closer look at predecessor

Observation 2: In Step 3, the predecessor of x in $B[j]$ is the maximum in $B[j]$

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 If $x \geqslant$ the minimum in $B[i]$:
Return the predecessor of x in $B[i]$
Step 3 If $x<$ the minimum in $B[i]$:
Compute $j=$ predecessor (i) in C
Return the predecessor of x in $B[j]$

A closer look at predecessor

Observation 2: In Step 3, the predecessor of x in $B[j]$ is the maximum in $B[j]$

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 If $x \geqslant$ the minimum in $B[i]$:
Return the predecessor of x in $B[i]$
Step 3 If $x<$ the minimum in $B[i]$:
Compute $j=$ predecessor (i) in C
Return the maximum in $B[j]$

A closer look at predecessor

Observation 2: In Step 3, the predecessor of x in $B[j]$ is the maximum in $B[j]$

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 If $x \geqslant$ the minimum in $B[i]$:
Return the predecessor of x in $B[i]$
Now we make exactly
Step 3 If $x<$ the minimum in $B[i]$:
one recursive call
Compute $j=$ predecessor (i) in C
Return the maximum in $B[j]$

Finally: van Emde Boas Trees

So that we can find the min/max quickly we store them seperately...

Finally: van Emde Boas Trees

So that we can find the min/max quickly we store them seperately...

Finally: van Emde Boas Trees

So that we can find the min/max quickly we store them seperately...

Remember that each $B[i]$ and C are also vEB (van Emde Boas) trees each over the universe $\{1,2,3, \ldots \sqrt{u}\}$

Finally: van Emde Boas Trees

So that we can find the min/max quickly we store them seperately...

Remember that each $B[i]$ and C are also vEB (van Emde Boas) trees each over the universe $\{1,2,3, \ldots \sqrt{u}\}$

In particular $B[i]$ also stores it's min/max elements seperately
so recovering the minimum or maximum in $B[i]$ (or C) takes $O(1)$ time

Finally: van Emde Boas Trees

So that we can find the min/max quickly we store them seperately...

Remember that each $B[i]$ and C are also vEB (van Emde Boas) trees each over the universe $\{1,2,3, \ldots \sqrt{u}\}$

In particular $B[i]$ also stores it's min/max elements seperately
so recovering the minimum or maximum in $B[i]$ (or C) takes $O(1)$ time
There is one more important thing, the minimum is not also stored in $B[i]$

Finally: van Emde Boas Trees

So that we can find the min/max quickly we store them seperately...

Remember that each $B[i]$ and C are also vEB (van Emde Boas) trees each over the universe $\{1,2,3, \ldots \sqrt{u}\}$

In particular $B[i]$ also stores it's min/max elements seperately
so recovering the minimum or maximum in $B[i]$ (or C) takes $O(1)$ time
There is one more important thing, the minimum is not also stored in $B[i]$

Finally: van Emde Boas Trees

So that we can find the min/max quickly we store them seperately...

Remember that each $B[i]$ and C are also vEB (van Emde Boas) trees each over the universe $\{1,2,3, \ldots \sqrt{u}\}$

In particular $B[i]$ also stores it's min/max elements seperately
so recovering the minimum or maximum in $B[i]$ (or C) takes $O(1)$ time
There is one more important thing, the minimum is not also stored in $B[i]$

Finally: van Emde Boas Trees

So that we can find the min/max quickly we store them seperately...

Remember that each $B[i]$ and C are also vEB (van Emde Boas) trees each over the universe $\{1,2,3, \ldots \sqrt{u}\}$

In particular $B[i]$ also stores it's min/max elements seperately
so recovering the minimum or maximum in $B[i]$ (or C) takes $O(1)$ time
There is one more important thing, the minimum is not also stored in $B[i]$ this allows us to avoid making multiple recursive calls when adding an element

Another look at add

To perform add (x) :

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 If $B[i]$ is empty, add i to C
and set the min and max in $B[i]$ to x (adjusting the offset)
Step 3 If $B[i]$ is not empty, add x to $B[i]$

Another look at add

To perform add (x):

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 If $B[i]$ is empty, add i to C
and set the min and max in $B[i]$ to x (adjusting the offset)
Step 3 If $B[i]$ is not empty, add x to $B[i]$

Another look at add

Another look at add

Another look at add

To perform add (x):

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 If $B[i]$ is empty, add i to C
and set the min and max in $B[i]$ to x (adjusting the offset)
Step 3 If $B[i]$ is not empty, add x to $B[i]$

Another look at add

To perform add (x) :

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 If $B[i]$ is empty, add i to C
and set the min and max in $B[i]$ to x (adjusting the offset)
Step 3 If $B[i]$ is not empty, add x to $B[i]$

Another look at add

To perform $\operatorname{add}(x)$:

Step 1 Determine which $B[i]$ the element x belongs in
we make
one recursive call
Step 2 If $B[i]$ is empty, add i to C
and set the min and max in $B[i]$ to x (adjusting the offset)
Step 3 If $B[i]$ is not empty, add x to $B[i]$

Another look at add

To perform $\operatorname{add}(x)$:

Step 1 Determine which $B[i]$ the element x belongs in
we make
one recursive call
Step 2 If $B[i]$ is empty, add i to C
and set the min and max in $B[i]$ to x (adjusting the offset)
Step 3 If $B[i]$ is not empty, add x to $B[i]$

Another look at add

To perform $\operatorname{add}(x)$:

Step 1 Determine which $B[i]$ the element x belongs in
we make
one recursive call
Step 2 If $B[i]$ is empty, add i to C
and set the min and max in $B[i]$ to x (adjusting the offset)
Step 3 If $B[i]$ is not empty, add x to $B[i]$

Another look at add

To perform $\operatorname{add}(x)$:

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 If $B[i]$ is empty, add i to C
and set the min and max in $B[i]$ to x (adjusting the offset)
Step 3 If $B[i]$ is not empty, add x to $B[i]$

Another look at add

To perform $\operatorname{add}(x)$:

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 If $B[i]$ is empty, add i to C
and set the min and max in $B[i]$ to x (adjusting the offset)
Step 3 If $B[i]$ is not empty, add x to $B[i]$

Another look at add

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 If $B[i]$ is empty, add i to C
and set the min and max in $B[i]$ to x (adjusting the offset)
Step 3 If $B[i]$ is not empty, add x to $B[i]$

Another look at add

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 If $B[i]$ is empty, add i to C
and set the min and max in $B[i]$ to x (adjusting the offset)
Step 3 If $B[i]$ is not empty, add x to $B[i]$

Another look at add

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 If $B[i]$ is empty, add i to C
and set the min and max in $B[i]$ to x (adjusting the offset)
Step 3 If $B[i]$ is not empty, add x to $B[i]$

Another look at add

Step 1 Determine which $B[i]$ the element x belongs in
Step 2 If $B[i]$ is empty, add i to C
and set the min and max in $B[i]$ to x (adjusting the offset)
Step 3 If $B[i]$ is not empty, add x to $B[i]$

Another look at add

Step 0 If $x<$ min then swap x and min
Step 1 Determine which $B[i]$ the element x belongs in
Step 2 If $B[i]$ is empty, add i to C
and set the min and max in $B[i]$ to x (adjusting the offset)
Step 3 If $B[i]$ is not empty, add x to $B[i]$
Step 4 Update the max

Time Complexity

Time Complexity

Time Complexity

We have seen that the operations add and predecessor can be defined so that they make only one recursive call

The operations lookup, delete and successor can all also be defined in a similar, recursive manner so that they make only one recursive call

Time Complexity

We have seen that the operations add and predecessor can be defined so that they make only one recursive call

The operations lookup, delete and successor can all also be defined in a similar, recursive manner so that they make only one recursive call

How long do the operations take?

Time Complexity

Time Complexity

Let $T(u)$ be the time complexity of the add operation
(where u is the universe size)

Time Complexity

Let $T(u)$ be the time complexity of the add operation
(where u is the universe size)
We have that, $T(u)=T(\sqrt{u})+O(1)$

Time Complexity

Let $T(u)$ be the time complexity of the add operation
(where u is the universe size)
We have that, $T(u)=T(\sqrt{u})+O(1)$

Using substitution and the master method you can show that... $\quad T(u)=O(\log \log u)$

Time Complexity

Let $T(u)$ be the time complexity of the predecessor operation
(where u is the universe size)
We have that, $T(u)=T(\sqrt{u})+O(1)$

Using substitution and the master method you can show that... $\quad T(u)=O(\log \log u)$

Time Complexity

Let $T(u)$ be the time complexity of the predecessor operation
(where u is the universe size)
We have that, $T(u)=T(\sqrt{u})+O(1)$

Using substitution and the master method you can show that... $\quad T(u)=O(\log \log u)$

Space Complexity
the \min is
only stored here

Space Complexity

Let $Z(u)$ be the space used by a vEB tree over a universe of size u

Space Complexity

Let $Z(u)$ be the space used by a vEB tree over a universe of size u

We have that, $Z(u)=(\sqrt{u}+1) \cdot Z(\sqrt{u})+O(1)$

Space Complexity

Let $Z(u)$ be the space used by a vEB tree over a universe of size u

We have that, $Z(u)=(\sqrt{u}+1) \cdot Z(\sqrt{u})+O(1)$

If you solve this you get that... $Z(u)=O(u)$

van Emde Boas Trees

The van Emde Boas (vEB) tree

stores a set S of integer keys from a universe $U=\{1,2,3,4 \ldots u\}$ (i.e. $u=|U|$).
Five operations are supported:

$\operatorname{add}(x)$	Insert the integer x into S (where $x \in U$)
lookup (x)	Return yes if x is in S, or no otherwise.
delete (x)	Remove x from S
predecessor (k)	Return the largest integer x in S such that $x \leqslant k$
successor (k)	Return the smallest integer x in S such that $x \geqslant k$

All operations take $O(\log \log u)$ worst case time and the space used is $O(u)$

van Emde Boas Trees

The van Emde Boas (vEB) tree

stores a set S of integer keys from a universe $U=\{1,2,3,4 \ldots u\}$ (i.e. $u=|U|$).
Five operations are supported:

$\operatorname{add}(x)$	Insert the integer x into S (where $x \in U$)
lookup (x)	Return yes if x is in S, or no otherwise.
delete (x)	Remove x from S
predecessor (k)	Return the largest integer x in S such that $x \leqslant k$
successor (k)	Return the smallest integer x in S such that $x \geqslant k$

All operations take $O(\log \log u)$ worst case time and the space used is $O(u)$

The space can be improved to $O(n)$ using hashing (see y-fast trees)

