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Three operations are supported:
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In previous lectures we have focussed on solutions using Hashing

such that for any key there is at most one pair (key, value) in the dictionary.
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predecessor(k) - returns the (unique) element (x, v) in the dictionary
with the largest key, x such that x 6 k

We also want our data structure to support:

Three operations are supported:

In a dynamic dictionary data structure we store (key, value)-pairs

� add(x, v) Add the the pair (x, v) where x ∈ U - the universe

� lookup(x) Return v if (x, v) is in dictionary, or NULL otherwise.

� delete(x) Remove pair (x, v) (assuming (x, v) is in the dictionary).

such that for any key there is at most one pair (key, value) in the dictionary.

What happens if we add more operations?

successor(k) - returns the (unique) element (x, v) in the dictionary
with the smallest key, x such that x > k

These are very natural operations that the Hashing-based solutions
that we have seen are very unsuited to
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All three of these data structures support:

add(x, v),lookup(x), delete(x),predecessor(k) and successor(k)

each in O(logn) worst case time and O(n) space
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they are also deterministic
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Five operations will be supported:

In this lecture, we will see the van Emde Boas (vEB) tree

� add(x) Insert the integer x into S (where x ∈ U )
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successor(k) Return the smallest integer x in S such that x > k
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Now we make exactly
one recursive call

(ignoring finding the min/max)
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In particular B[i] also stores it’s min/max elements seperately
so recovering the minimum or maximum in B[i] (or C) takes O(1) time

There is one more important thing, the minimum is not also stored in B[i]

the min is
only stored here

this allows us to avoid making multiple recursive calls when adding an element
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Another look at add

To perform add(x):

Step 1 Determine which B[i] the element x belongs in

Step 3 If B[i] is not empty, add x to B[i]
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the min is
only stored here

and set the min and max in B[i] to x (adjusting the offset)

Now we always make exactly one recursive call

Step 0 If x < min then swap x and min

x

but what happens when the min/max change?

Step 4 Update the max
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We have seen that the operations add and predecessor can be defined
so that they make only one recursive call

so that they make only one recursive call

How long do the operations take?
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Let T (u) be the time complexity of the add operation
(where u is the universe size)
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Let T (u) be the time complexity of the add operation

We have that, T (u) = T (
√
u)+O(1)

Using substitution and the master method you can show that. . . T (u) = O(log log u)

(where u is the universe size)
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We have that, T (u) = T (
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Using substitution and the master method you can show that. . . T (u) = O(log log u)

Let T (u) be the time complexity of the predecessor operation
(where u is the universe size)
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We have that, T (u) = T (
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u)+O(1)

Using substitution and the master method you can show that. . . T (u) = O(log log u)

Let T (u) be the time complexity of the predecessor operation
(where u is the universe size)

this holds for all the operations
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Let Z(u) be the space used by a vEB tree over a universe of size u
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Let Z(u) be the space used by a vEB tree over a universe of size u

We have that, Z(u) = (
√
u+ 1)·Z(

√
u)+O(1)

If you solve this you get that. . . Z(u) = O(u)



van Emde Boas Trees

Five operations are supported:

The van Emde Boas (vEB) tree

� add(x) Insert the integer x into S (where x ∈ U )

� lookup(x) Return yes if x is in S, or no otherwise.

� delete(x) Remove x from S

stores a set S of integer keys from a universe U = {1, 2, 3, 4 . . . u} (i.e. u = |U |).

predecessor(k) Return the largest integer x in S such that x 6 k

successor(k) Return the smallest integer x in S such that x > k

k

successor(k)predecessor(k)

1 2 3 4 . . . u

All operations take O(log log u) worst case time

and the space used is O(u)
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� add(x) Insert the integer x into S (where x ∈ U )

� lookup(x) Return yes if x is in S, or no otherwise.

� delete(x) Remove x from S
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predecessor(k) Return the largest integer x in S such that x 6 k

successor(k) Return the smallest integer x in S such that x > k
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All operations take O(log log u) worst case time

and the space used is O(u)

The space can be improved to O(n) using hashing (see y-fast trees)
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