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Dictionaries

Often we want to perform the following three operations:

In a dictionary data structure we store (key, value)-pairs

� add(x, v) Add the the pair (x, v).

� lookup(x) Return v if (x, v) is in dictionary, or NULL otherwise.

� delete(x) Remove pair (x, v) (assuming (x, v) is in dictionary).

such that for any key there is at most one pair (key, value) in the dictionary.
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� Linked lists

� Binary search trees

� (2,3,4)-trees

In a dictionary data structure we store (key, value)-pairs

� add(x, v) Add the the pair (x, v).

� lookup(x) Return v if (x, v) is in dictionary, or NULL otherwise.

� delete(x) Remove pair (x, v) (assuming (x, v) is in dictionary).

There are many data structures that will do this job, e.g.:

� Red-black trees

� Skip lists

� van Emde Boas trees (later in this course)

such that for any key there is at most one pair (key, value) in the dictionary.

these data structures all support extra operations beyond the three above

but none of them take O(1) worst case time for all operations. . .

so maybe there is room for improvement?
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We want to store n elements from the universe, U in a dictionary.

Array T of size m.

A hash function h : U → [m] maps a key to a position in T .

x

h(x)

We want to avoid collisions, i.e. h(x) = h(y) for x 6= y.

y

w

z (x, vx) (y, vy) (z, vz) (w, vw)

� Collisions can be resolved

with chaining, i.e. linked list.

We write [m] to denote the set {0, . . . ,m− 1}.

Typically u = |U | is much, much larger than n.

T is called a hash table.

m



Time complexity

We cannot avoid collisions entirely since u� m;

Operation Worst case time Comment

Simply add item to the list link if

necessary.

We might have to search through the

whole list containing x.

Only O(1) to perform the actual

delete. . . but you have to find x first

add(x, v) O(1)

O(length of chain containing x)lookup(x)

delete(x)

some keys from the universe are bound to be mapped to the same position.

O(length of chain containing x)

By building a hash table with chaining, we get the following time complexities:

(remember u is the size of the universe and m is the size of the table)



Time complexity

We cannot avoid collisions entirely since u� m;

Operation Worst case time Comment
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necessary.

We might have to search through the

whole list containing x.

Only O(1) to perform the actual

delete. . . but you have to find x first

add(x, v) O(1)

O(length of chain containing x)lookup(x)

delete(x)

some keys from the universe are bound to be mapped to the same position.

So how long are these chains?

O(length of chain containing x)

By building a hash table with chaining, we get the following time complexities:

(remember u is the size of the universe and m is the size of the table)
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THEOREM
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True randomness
THEOREM

Consider any n fixed inputs to the hash table (which has size m),

PROOF

Observe that Nx =
∑
y∈T

Ix,y

.

iff means if and only if.

linearity of expectation.

Let x, y be two distinct keys from U .

Let indicator r.v. Ix,y be 1 iff h(x) = h(y).
We have that, E(Ix,y) = 1

m .

Let Nx be the number of keys stored in T that are hashed to h(x)

so, in the worst case it takes Nx time to look up x in T .

Finally, we have that E(Nx) = E

∑
y∈T

Ix,y

 =
∑
y∈T

E(Ix,y) = n·
1

m
=

n

m
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i.e. any sequence of n add/lookup/delete operations.

The expected run-time per operation is O(1 + n
m ), or simply O(1) if m > n.

Pick h uniformly at random from the set of all functions U → [m].



Specifying the hash function

Problem: how do we specify an arbitrary (e.g. a truly random) hash function?



Specifying the hash function

Problem: how do we specify an arbitrary (e.g. a truly random) hash function?

For each key in U we need to specify an arbitrary position in T ,

this is a number in [m], so requires≈ log2 m bits.



Specifying the hash function

Problem: how do we specify an arbitrary (e.g. a truly random) hash function?

For each key in U we need to specify an arbitrary position in T ,

this is a number in [m], so requires≈ log2 m bits.

So in total we need≈ u log2 m bits, which is a ridiculous amount of space!



Specifying the hash function

Problem: how do we specify an arbitrary (e.g. a truly random) hash function?

For each key in U we need to specify an arbitrary position in T ,

this is a number in [m], so requires≈ log2 m bits.

So in total we need≈ u log2 m bits, which is a ridiculous amount of space!

(in particular, it’s much bigger than the table :s)



Specifying the hash function

Problem: how do we specify an arbitrary (e.g. a truly random) hash function?

For each key in U we need to specify an arbitrary position in T ,

Why not pick the hash function as we go?

this is a number in [m], so requires≈ log2 m bits.

So in total we need≈ u log2 m bits, which is a ridiculous amount of space!

(in particular, it’s much bigger than the table :s)



Specifying the hash function

Problem: how do we specify an arbitrary (e.g. a truly random) hash function?

For each key in U we need to specify an arbitrary position in T ,

Why not pick the hash function as we go?

this is a number in [m], so requires≈ log2 m bits.

So in total we need≈ u log2 m bits, which is a ridiculous amount of space!

(in particular, it’s much bigger than the table :s)

Couldn’t we generate h(x) when we first see x?



Specifying the hash function

Problem: how do we specify an arbitrary (e.g. a truly random) hash function?

For each key in U we need to specify an arbitrary position in T ,

Why not pick the hash function as we go?

this is a number in [m], so requires≈ log2 m bits.

So in total we need≈ u log2 m bits, which is a ridiculous amount of space!

(in particular, it’s much bigger than the table :s)

Couldn’t we generate h(x) when we first see x?

Wouldn’t we only use n log2 m bits? (one per key we actually store)



Specifying the hash function

Problem: how do we specify an arbitrary (e.g. a truly random) hash function?

For each key in U we need to specify an arbitrary position in T ,

Why not pick the hash function as we go?

this is a number in [m], so requires≈ log2 m bits.

So in total we need≈ u log2 m bits, which is a ridiculous amount of space!

(in particular, it’s much bigger than the table :s)

Couldn’t we generate h(x) when we first see x?

Wouldn’t we only use n log2 m bits? (one per key we actually store)

The problem with this approach is recalling h(x) the next time we see x



Specifying the hash function

Problem: how do we specify an arbitrary (e.g. a truly random) hash function?

For each key in U we need to specify an arbitrary position in T ,

Why not pick the hash function as we go?

this is a number in [m], so requires≈ log2 m bits.

So in total we need≈ u log2 m bits, which is a ridiculous amount of space!

(in particular, it’s much bigger than the table :s)

Couldn’t we generate h(x) when we first see x?

Wouldn’t we only use n log2 m bits? (one per key we actually store)

The problem with this approach is recalling h(x) the next time we see x

Essentially we’d need to build a dictionary to solve the dictionary problem!



Specifying the hash function

Problem: how do we specify an arbitrary (e.g. a truly random) hash function?

For each key in U we need to specify an arbitrary position in T ,

Why not pick the hash function as we go?

this is a number in [m], so requires≈ log2 m bits.

So in total we need≈ u log2 m bits, which is a ridiculous amount of space!

(in particular, it’s much bigger than the table :s)

Couldn’t we generate h(x) when we first see x?

Wouldn’t we only use n log2 m bits? (one per key we actually store)

The problem with this approach is recalling h(x) the next time we see x

Essentially we’d need to build a dictionary to solve the dictionary problem!

This has become rather cyclic... let’s try something else!
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Problem: how do we specify an arbitrary (e.g. a truly random) hash function?

For each key in U we need to specify an arbitrary position in T ,

Instead, we define a set, or family of hash functions: H = {h1, h2, . . . }.

How should we specify the hash functions in H and how do we pick one at random?

this is a number in [m], so requires≈ log2 m bits.

So in total we need≈ u log2 m bits, which is a ridiculous amount of space!

(in particular, it’s much bigger than the table :s)

As part of initialising the hash table,

we choose the hash function h from H randomly.
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� A set H of hash functions is weakly universal if for any two distinct keys x, y ∈ U ,

Pr
(
h(x) = h(y)

)
6

1

m

where h is chosen uniformly at random from H .

PROOF

The proof we used for true randomness works here too (which is nice)

OBSERVE

The randomness here comes from the fact that h is picked randomly.

THEOREM

Consider any n fixed inputs to the hash table (which has size m),
i.e. any sequence of n add/lookup/delete operations.
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Constructing a weakly universal family of hash functions

� Suppose U = [u], i.e. the keys in the universe are integers 0 to u−1.

� Let p be any prime bigger than u.

� For a, b ∈ [p], let

ha,b(x) = ((ax+ b) mod p) mod m,

Hp,m = {ha,b | a ∈ {1, . . . , p− 1}, b ∈ {0, . . . , p− 1}}.

THEOREM

Hp,m is a weakly universal set of hash functions.

PROOF

See CLRS, Theorem 11.5, (page 267 in 3rd edition).

OBSERVE

� ax+ b is a linear transformation which “spreads the keys” over p values when

taken modulo p. This does not cause any collisions.

� Only when taken modulo m do we get collisions.
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True randomness vs. weakly universal hashing

Since constructing a weakly universal set of hash functions seems much easier

What about the length of the longest chain? (the longest linked list)

isn’t it?

If it is very long, some lookups could take a very long time. . .

the expected lookup time in the hash table is O(1).
we have seen that when m > n,
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Longest chain – true randomness

If h is selected uniformly at random from all functions U → [m] then,

Pr (any chain has length > 3 logm ) 6
1

m
.

LEMMA

OBSERVE

In this lemma we insert m keys, i.e. n = m.

PROOF

The problem is equivalent to showing that if we randomly throw m balls into m bins, the

probability of having a bin with at least 3 logm balls is at most 1
m .

· · ·

over m fixed inputs,
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Let V1, . . . , Vq be q events. Then

THEOREM

Pr
( q⋃
i=1

Vi

)
6

q∑
i=1

Pr(Vi).
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and we are done.

Pr(at least one bin receives at least k balls) 6 m · Pr(X1>k) 6
m
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By using the union bound again, we have that

Number of subsets of size k.

Choose any k of the m balls (we’ll pick k in a bit)

the probability that all of these k balls go into the first bin is 1
mk .

So, the union bound gives us

Why is m
k! 6 1

m? (when k = 3 logm)

k! = k × (k − 1)× (k − 2) . . .× 2× 1

k terms

k! > 2× 2 × 2 . . .× 2× 1 = 2k−1

Let k = 3 logm . . .

k! > 2(3 logm−1) > 22 logm = (2logm)2 = m2

so m
k! 6 m

m2 = 1
m
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Longest chain – weakly universal hashing

The conclusion from previous slides is that with true randomness,

If h is picked uniformly at random from a weakly universal set of hash functions then,

over m fixed inputs,

Pr
(

any chain has length > 1 +
√
2m

)
6

1

2
.

LEMMA

OBSERVE

This rubbish upper bound of 1
2 does not necessarily rule out the possibility that the

tightest upper bound is indeed very small. However, the upper bound of 12 is in fact tight!

the longest chain is very short (at most 3 logm) with high probability.
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By rearranging, we have that Pr
(
L > 1 +

√
2m
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6 1

2 , and we are done.



Conclusions

the expected lookup time in a hash table with chaining is O(1).
we have seen that when m > n,

For both,

true randomness (h is picked uniformly from the set of all possible hash functions)

and weakly universal hashing

(h is picked uniformly from a weakly universal set of hash functions)

If h is selected uniformly at random from all functions U → [m] then,

Pr (any chain has length > 3 logm ) 6
1

m
.

LEMMA

LEMMA

(both Lemmas hold for m any fixed inputs)

If h is picked uniformly at random from a weakly universal set of hash functions,

Pr
(

any chain has length > 1 +
√
2m

)
6

1

2
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