
Advanced Algorithms – COMS31900

Pattern Matching part one

Suffix Trees

Raphaël Clifford

Slides by Benjamin Sach



Exact pattern matching

T

Input A text string T (length n) and a pattern string P (length m)

P

ba b c

a b a

a b a cb a

Goal: Find all the locations where P matches in T

P matches at location i iff

a b a

n

m

for all 0 6 j 6 m we have that P [j] = T [i+ j]

(our strings are zero-indexed)



Exact pattern matching

T

Input A text string T (length n) and a pattern string P (length m)

P

ba b c

a b a

a b a cb a

Goal: Find all the locations where P matches in T

P matches at location i iff

a b a

n

m

4

for all 0 6 j 6 m we have that P [j] = T [i+ j]

(our strings are zero-indexed)



Exact pattern matching

T

Input A text string T (length n) and a pattern string P (length m)

P

ba b c a b a cb a

Goal: Find all the locations where P matches in T

P matches at location i iff

a b a

n

a b a

m

6

for all 0 6 j 6 m we have that P [j] = T [i+ j]

(our strings are zero-indexed)



Exact pattern matching

T

Input A text string T (length n) and a pattern string P (length m)

P

ba b c a b a cb a

Goal: Find all the locations where P matches in T

P matches at location i iff

a b a

n

a b a

m

10

for all 0 6 j 6 m we have that P [j] = T [i+ j]

(our strings are zero-indexed)



Exact pattern matching

T

Input A text string T (length n) and a pattern string P (length m)

P

ba b c a b a cb a

Goal: Find all the locations where P matches in T

P matches at location i iff

a b a

n

a b a

m

6

for all 0 6 j 6 m we have that P [j] = T [i+ j]

(our strings are zero-indexed)



Exact pattern matching

T

Input A text string T (length n) and a pattern string P (length m)

P

ba b c a b a cb a

Goal: Find all the locations where P matches in T

P matches at location i iff

a b a

n

a b a

m

6

for all 0 6 j 6 m we have that P [j] = T [i+ j]

(our strings are zero-indexed)

• A naive algorithm takes O(nm) time



Exact pattern matching

T

Input A text string T (length n) and a pattern string P (length m)

P

ba b c a b a cb a

Goal: Find all the locations where P matches in T

P matches at location i iff

a b a

n

a b a

m

6

for all 0 6 j 6 m we have that P [j] = T [i+ j]

(our strings are zero-indexed)

• A naive algorithm takes O(nm) time

• Many O(n) time algorithms are known (for example KMP)



Text indexing

T

Preprocess a text string T (length n) to answer pattern matching queries. . .

ba b c a b a cb a a b a

n



Text indexing

T

Preprocess a text string T (length n) to answer pattern matching queries. . .

ba b c a b a cb a a b a

n

After preprocessing, a query is a pattern P (length m),

P a b a

m



Text indexing

T

Preprocess a text string T (length n) to answer pattern matching queries. . .

ba b c a b a cb a a b a

n

After preprocessing, a query is a pattern P (length m),

P a b a

m

the output is a list of all matches in T .



Text indexing

T

Preprocess a text string T (length n) to answer pattern matching queries. . .

ba b c a b a cb a a b a

n

After preprocessing, a query is a pattern P (length m),

P a b a

m

the output is a list of all matches in T .

e.g. 4, 6, 10

4 6 10



Text indexing

T

Preprocess a text string T (length n) to answer pattern matching queries. . .

ba b c a b a cb a a b a

n

After preprocessing, a query is a pattern P (length m),

P a b a

m

the output is a list of all matches in T .

• A naive algorithm takes O(n) query time (using KMP)

e.g. 4, 6, 10

4 6 10



Text indexing

T

Preprocess a text string T (length n) to answer pattern matching queries. . .

ba b c a b a cb a a b a

n

After preprocessing, a query is a pattern P (length m),

P a b a

m

the output is a list of all matches in T .

• A naive algorithm takes O(n) query time (using KMP)

• We want a query time which depends only on m and occ

- occ is the number of occurences (matches)

e.g. 4, 6, 10

4 6 10



Text indexing

T

Preprocess a text string T (length n) to answer pattern matching queries. . .

ba b c a b a cb a a b a

n

After preprocessing, a query is a pattern P (length m),

P a b a

m

the output is a list of all matches in T .

• A naive algorithm takes O(n) query time (using KMP)

• We want a query time which depends only on m and occ

- occ is the number of occurences (matches)

• We also want O(n) space and fast preprocessing (prep.) time

e.g. 4, 6, 10

4 6 10



The atomic suffix tree

TT b n aaa sn

n



The atomic suffix tree

TT b n aaa sn

n

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes



The atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

a
s

b n

a

sn

a

n

a

s

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

suffix tree



The atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

a
s

b n

a

sn

a

n

a

s

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

suffix tree



The atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

a
s

b n

a

sn

a

n

a

s

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

suffix tree



The atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

a
s

b n

a

sn

a

n

a

s

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

suffix tree



The atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

a
s

b n

a

sn

a

n

a

s

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

suffix tree



The atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

a
s

b n

a

sn

a

n

a

s

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

suffix tree



The atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

a
s

b n

a

sn

a

n

a

s

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

suffix tree



The atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

a
s

b n

a

sn

a

n

a

s

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

suffix tree



The atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

a
s

b n

a

sn

a

n

a

s

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

suffix tree



The atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

a
s

b n

a

sn

a

n

a

s

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

suffix tree

0

1

2

3

4

5

6

0

1

2

3

4

5

6



The atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

a
s

b n

a

sn

a

n

a

s

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

suffix tree

0

1

2

3

4

5

6

0

1

2

3

4

5

6

• The suffix tree contains every suffix of T as a root to leaf path



The atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

a
s

b n

a

sn

a

n

a

s

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

suffix tree

0

1

2

3

4

5

6

0

1

2

3

4

5

6

• The suffix tree contains every suffix of T as a root to leaf path

• Every edge is labelled with a character from T



The atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

a
s

b n

a

sn

a

n

a

s

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

suffix tree

0

1

2

3

4

5

6

0

1

2

3

4

5

6

• The suffix tree contains every suffix of T as a root to leaf path

• Every edge is labelled with a character from T

• No two edges leaving the same node have the same label



The atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

a
s

b n

a

sn

a

n

a

s

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

suffix tree

0

1

2

3

4

5

6

0

1

2

3

4

5

6

• The suffix tree contains every suffix of T as a root to leaf path

• Each leaf corresponds to a suffix (so there are n leaves)

• Every edge is labelled with a character from T

• No two edges leaving the same node have the same label



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

0

1

2

3

4

5

a 6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

a 6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

a 6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a 6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a 6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a 6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a 6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a 6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a

. . . matches occur at the leaves of the subtree

6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a

. . . matches occur at the leaves of the subtree

6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a

. . . matches occur at the leaves of the subtree

1

6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a

. . . matches occur at the leaves of the subtree

3

6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a

. . . matches occur at the leaves of the subtree

6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a

. . . matches occur at the leaves of the subtree

P ′ bn a

6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a

. . . matches occur at the leaves of the subtree

P ′ bn a

6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a

. . . matches occur at the leaves of the subtree

P ′ bn a

6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a

. . . matches occur at the leaves of the subtree

P ′ bn a

6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a

. . . matches occur at the leaves of the subtree

P ′ bn a

6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a

. . . matches occur at the leaves of the subtree

P ′ bn a

6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a

. . . matches occur at the leaves of the subtree

P ′ bn a

6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a

. . . matches occur at the leaves of the subtree

We can decide whether P matches somewhere in O(m) time

P ′ bn a

6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a

. . . matches occur at the leaves of the subtree

We can decide whether P matches somewhere in O(m) time

(we’ll worry about outputting the matches later)

P ′ bn a

6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a

. . . matches occur at the leaves of the subtree

We can decide whether P matches somewhere in O(m) time

(we’ll worry about outputting the matches later)

WARNING! How long does it take to find the correct child?
There could be n edges here!

In this lecture we assume the alphabet size is a constant

P ′ bn a

6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a

. . . matches occur at the leaves of the subtree

We can decide whether P matches somewhere in O(m) time

(we’ll worry about outputting the matches later)

WARNING! How long does it take to find the correct child?
There could be n edges here!

In this lecture we assume the alphabet size is a constant

This may be fine in some applications
(English text or DNA for example)

We can remove the assumption via the magic of hashing

P ′ bn a

6



Searching in an atomic suffix tree

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

How do you find a pattern?
0

1

2

3

4

5

P aa n

m

start at the root and walk down the tree

a

. . . matches occur at the leaves of the subtree

We can decide whether P matches somewhere in O(m) time

(we’ll worry about outputting the matches later)

P ′ bn a

6



how large is the atomic suffix tree?

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

There are at most n leaves
0

1

2

3

4

5

a 6



how large is the atomic suffix tree?

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

There are at most n leaves
0

1

2

3

4

5

a

that’s good right?

6



how large is the atomic suffix tree?

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

There are at most n leaves
0

1

2

3

4

5

a

that’s good right?

Unfortunately there can be lots of internal nodes

6



how large is the atomic suffix tree?

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

There are at most n leaves
0

1

2

3

4

5

a

that’s good right?

Unfortunately there can be lots of internal nodes

this path is pretty long. . .

6



how large is the atomic suffix tree?

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

There are at most n leaves
0

1

2

3

4

5

a

that’s good right?

Unfortunately there can be lots of internal nodes

this path is pretty long. . .

6



how large is the atomic suffix tree?

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

There are at most n leaves
0

1

2

3

4

5

a

that’s good right?

Unfortunately there can be lots of internal nodes

this path is pretty long. . .

7 characters

6



how large is the atomic suffix tree?

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

There are at most n leaves
0

1

2

3

4

5

a

that’s good right?

Unfortunately there can be lots of internal nodes

this path is pretty long. . .

7 characters 23 nodes

6



how large is the atomic suffix tree?

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

There are at most n leaves
0

1

2

3

4

5

a

that’s good right?

Unfortunately there can be lots of internal nodes

this path is pretty long. . .

7 characters 23 nodes that’s not so bad, right?

6



how large is the atomic suffix tree?



how large is the atomic suffix tree?

T a b

2



how large is the atomic suffix tree?

T a b

2

a b

b



how large is the atomic suffix tree?

T a b

2

a b

b

4 nodes



how large is the atomic suffix tree?

T a b a b baT

2 4

a b b

b b

a

b

b

a

b

b
4 nodes

9 nodes



how large is the atomic suffix tree?

T a b a b ba a b baa bT T

2 4 6

a b b

b b

a

b

b

a

b

b

b

b

a

b

b

a

b

b

b

b

b

a

b

b

b

4 nodes

9 nodes 16 nodes



how large is the atomic suffix tree?

T a b a b ba a b baa b

a b baa ba bT

T T

2 4 6

8

a b b

b b

a

b

b

a

b

b

b

b

a

b

b

a

b

b

b

b

b

a

b

b

b

4 nodes

9 nodes 16 nodes

b

b

a

b

b

a

b

b

b

b

b

a

b

b

b

25 nodes

b

b

b

b

a

b

b

b

b



how large is the atomic suffix tree?

T a b a b ba a b baa b

a b baa b

a b baa b

a b

aa b b

T

T T

T

2 4 6

8

10

a b b

b b

a

b

b

a

b

b

b

b

a

b

b

a

b

b

b

b

b

a

b

b

b

4 nodes

9 nodes 16 nodes

b

b

a

b

b

a

b

b

b

b

b

a

b

b

b

25 nodes

b

b

b

b

a

b

b

b

b

b

b

a

b

b

a

b

b

b

b

b

a

b

b

b

36 nodes

b

b

b

b

a

b

b

b

b

b

b

b

b

b

a

b

b

b

b

b



how large is the atomic suffix tree?

T a b a b ba a b baa b

a b baa b

a b baa b

a b

aa b b

T

T T

T

2 4 6

8

10

a b b

b b

a

b

b

a

b

b

b

b

a

b

b

a

b

b

b

b

b

a

b

b

b

4 nodes

9 nodes 16 nodes

b

b

a

b

b

a

b

b

b

b

b

a

b

b

b

25 nodes

b

b

b

b

a

b

b

b

b

b

b

a

b

b

a

b

b

b

b

b

a

b

b

b

36 nodes

b

b

b

b

a

b

b

b

b

b

b

b

b

b

a

b

b

b

b

b

An atomic suffix tree can have

((n/2) + 1)2 nodes



how large is the atomic suffix tree?

T a b a b ba a b baa b

a b baa b

a b baa b

a b

aa b b

T

T T

T

2 4 6

8

10

a b b

b b

a

b

b

a

b

b

b

b

a

b

b

a

b

b

b

b

b

a

b

b

b

4 nodes

9 nodes 16 nodes

b

b

a

b

b

a

b

b

b

b

b

a

b

b

b

25 nodes

b

b

b

b

a

b

b

b

b

b

b

a

b

b

a

b

b

b

b

b

a

b

b

b

36 nodes

b

b

b

b

a

b

b

b

b

b

b

b

b

b

a

b

b

b

b

b

An atomic suffix tree can have

((n/2) + 1)2 nodes

this is too big!far



Compacted suffix trees

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

0

1

2

3

4

5

6a

Why is the atomic suffix tree so big?



Compacted suffix trees

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

0

1

2

3

4

5

6a

Why is the atomic suffix tree so big?

because it has long

paths like this one



Compacted suffix trees

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

0

1

2

3

4

5

6a

Why is the atomic suffix tree so big?

because it has long

paths like this one

Main Idea replace each non-branching path with a single edge



Compacted suffix trees

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

0

1

2

3

4

5

6a

Why is the atomic suffix tree so big?

because it has long

paths like this one

Main Idea replace each non-branching path with a single edge

- edges are now labelled with substrings



Compacted suffix trees

sn

a

s

n

a

s

a

n

a

s

TT b n aaa sn

n

s
b n

a

sn

a

n

a

s

0

1

2

3

4

5

6a

Why is the atomic suffix tree so big?

because it has long

paths like this one

Main Idea replace each non-branching path with a single edge

- edges are now labelled with substrings
(instead of single characters)



Compacted suffix trees

TT b n aaa sn

n

Main Idea replace each non-branching path with a single edge

- edges are now labelled with substrings
(instead of single characters)

a

s

na
s

nas

nas s

na
s

bananas

1 3

5

0

2 4

6



Compacted suffix trees

TT b n aaa sn

n

Main Idea replace each non-branching path with a single edge

- edges are now labelled with substrings
(instead of single characters)

a

s

na
s

nas

nas s

na
s

bananas
• There are at most n leaves

1 3

5

0

2 4

6



Compacted suffix trees

TT b n aaa sn

n

Main Idea replace each non-branching path with a single edge

- edges are now labelled with substrings
(instead of single characters)

a

s

na
s

nas

nas s

na
s

bananas
• There are at most n leaves

• Every internal node has

two or more children

1 3

5

0

2 4

6



Compacted suffix trees

TT b n aaa sn

n

Main Idea replace each non-branching path with a single edge

- edges are now labelled with substrings
(instead of single characters)

a

s

na
s

nas

nas s

na
s

bananas
• There are at most n leaves

• Every internal node has

two or more children

so there are O(n) edges

1 3

5

0

2 4

6



Compacted suffix trees

TT b n aaa sn

n

Main Idea replace each non-branching path with a single edge

- edges are now labelled with substrings
(instead of single characters)

a

s

na
s

nas

nas s

na
s

bananas
• There are at most n leaves

• Every internal node has

two or more children

so there are O(n) edges

don’t the edges take up

1 3

5

0

2 4

6

lots of space?



Compacted suffix trees

TT b n aaa sn

n

Main Idea replace each non-branching path with a single edge

- edges are now labelled with substrings
(instead of single characters)

a

s

na
s

nas

nas s

na
s

bananas
• There are at most n leaves

• Every internal node has

two or more children

so there are O(n) edges

don’t the edges take up

we only store the end points
1 3

5

0

2 4

6

lots of space?



Compacted suffix trees

TT b n aaa sn

n

Main Idea replace each non-branching path with a single edge

- edges are now labelled with substrings
(instead of single characters)

a

s

na
s

nas

nas s

na
s

bananas
• There are at most n leaves

• Every internal node has

two or more children

so there are O(n) edges

don’t the edges take up

we only store the end points we actually store (4, 6)

4 6

1 3

5

0

2 4

6

lots of space?



Compacted suffix trees

TT b n aaa sn

n

a

s

na
s

nas

nas s

na
s

bananas

1 3

5

0

2 4

6



Compacted suffix trees

TT b n aaa sn

n

a

s

na
s

nas

nas s

na
s

bananas
Compacted Suffix Tree of T

1 3

5

0

2 4

6



Compacted suffix trees

TT b n aaa sn

n

a

s

na
s

nas

nas s

na
s

bananas
Compacted Suffix Tree of T

• A rooted tree with n leaves

1 3

5

0

2 4

6



Compacted suffix trees

TT b n aaa sn

n

a

s

na
s

nas

nas s

na
s

bananas
Compacted Suffix Tree of T

• A rooted tree with n leaves

• Every internal node has

two or more children

1 3

5

0

2 4

6



Compacted suffix trees

TT b n aaa sn

n

a

s

na
s

nas

nas s

na
s

bananas
Compacted Suffix Tree of T

• A rooted tree with n leaves

• Every internal node has

two or more children

• Every edge is labelled

with a substring 1 3

5

0

2 4

6



Compacted suffix trees

TT b n aaa sn

n

a

s

na
s

nas

nas s

na
s

bananas
Compacted Suffix Tree of T

• A rooted tree with n leaves

• Every internal node has

two or more children

• Every edge is labelled

with a substring

• No two edges leaving the same node have the same first character

1 3

5

0

2 4

6



Compacted suffix trees

TT b n aaa sn

n

a

s

na
s

nas

nas s

na
s

bananas
Compacted Suffix Tree of T

• A rooted tree with n leaves

• Every internal node has

two or more children

• Every edge is labelled

with a substring

• No two edges leaving the same node have the same first character

• Each leaf is labelled with a location in T

1 3

5

0

2 4

6



Compacted suffix trees

TT b n aaa sn

n

a

s

na
s

nas

nas s

na
s

bananas
Compacted Suffix Tree of T

• A rooted tree with n leaves

• Every internal node has

two or more children

• Every edge is labelled

with a substring

• No two edges leaving the same node have the same first character

• Each leaf is labelled with a location in T

• Any root-to-leaf path spells out the corresponding suffix

1 3

5

0

2 4

6



Compacted suffix trees

TT b n aaa sn

n

a

s

na
s

nas

nas s

na
s

bananas
Compacted Suffix Tree of T

Uses O(n) space

• A rooted tree with n leaves

• Every internal node has

two or more children

• Every edge is labelled

with a substring

• No two edges leaving the same node have the same first character

• Each leaf is labelled with a location in T

• Any root-to-leaf path spells out the corresponding suffix

1 3

5

0

2 4

6



Compacted suffix trees

TT b n aaa sn

n

a

s

na
s

nas

nas s

na
s

bananas
Compacted Suffix Tree of T

Uses O(n) space

• A rooted tree with n leaves

• Every internal node has

two or more children

• Every edge is labelled

with a substring

• No two edges leaving the same node have the same first character

• Each leaf is labelled with a location in T

• Any root-to-leaf path spells out the corresponding suffix

1 3

5

0

2 4

6

Sanity Check

Does the compacted suffix tree always exist?



Compacted suffix trees

TT b n aaa sn

n

a

s

na
s

nas

nas s

na
s

bananas
Compacted Suffix Tree of T

Uses O(n) space

• A rooted tree with n leaves

• Every internal node has

two or more children

• Every edge is labelled

with a substring

• No two edges leaving the same node have the same first character

• Each leaf is labelled with a location in T

• Any root-to-leaf path spells out the corresponding suffix

1 3

5

0

2 4

6

Sanity Check

Does the compacted suffix tree always exist?

TT b b this doesn’t have

n leavesbb



Compacted suffix trees

TT b n aaa sn

n

a

s

na
s

nas

nas s

na
s

bananas
Compacted Suffix Tree of T

Uses O(n) space

• A rooted tree with n leaves

• Every internal node has

two or more children

• Every edge is labelled

with a substring

• No two edges leaving the same node have the same first character

• Each leaf is labelled with a location in T

• Any root-to-leaf path spells out the corresponding suffix

1 3

5

0

2 4

6

Sanity Check

Does the compacted suffix tree always exist?

TT b b this doesn’t have

n leavesbb

TT b b $ b$

$ b$

this has n

leaves



Compacted suffix trees

TT b n aaa sn

n

a

s

na
s

nas

nas s

na
s

bananas
Compacted Suffix Tree of T

Uses O(n) space

• A rooted tree with n leaves

• Every internal node has

two or more children

• Every edge is labelled

with a substring

• No two edges leaving the same node have the same first character

• Each leaf is labelled with a location in T

• Any root-to-leaf path spells out the corresponding suffix

1 3

5

0

2 4

6



Compacted suffix trees

TT b n aaa sn

n

a

s

na
s

nas

nas s

na
s

bananas
Compacted Suffix Tree of T

Uses O(n) space

• A rooted tree with n leaves

• Every internal node has

two or more children

• Every edge is labelled

with a substring

• No two edges leaving the same node have the same first character

• Each leaf is labelled with a location in T

• Any root-to-leaf path spells out the corresponding suffix

1 3

5

0

2 4

6

Step one: Add a $ (unique symbol) to T



Compacted suffix trees

a

s

na
s

nas

nas s

na
s

bananas
Compacted Suffix Tree of T

Uses O(n) space

• A rooted tree with n leaves

• Every internal node has

two or more children

• Every edge is labelled

with a substring

• No two edges leaving the same node have the same first character

• Each leaf is labelled with a location in T

• Any root-to-leaf path spells out the corresponding suffix

1 3

5

0

2 4

6

Step one: Add a $ (unique symbol) to T

TT b n aaa sn

n
$



Compacted suffix trees

Compacted Suffix Tree of T

Uses O(n) space

• A rooted tree with n leaves

• Every internal node has

two or more children

• Every edge is labelled

with a substring

• No two edges leaving the same node have the same first character

• Each leaf is labelled with a location in T

• Any root-to-leaf path spells out the corresponding suffix

Step one: Add a $ (unique symbol) to T

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

1 3

5

0

2 4

6



Compacted suffix trees

Compacted Suffix Tree of T

Uses O(n) space

• A rooted tree with n leaves

• Every internal node has

two or more children

• Every edge is labelled

with a substring

• No two edges leaving the same node have the same first character

• Each leaf is labelled with a location in T

• Any root-to-leaf path spells out the corresponding suffix

Step one: Add a $ (unique symbol) to T

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

This is normally just called1 3

5

0

2 4

6

a suffix tree



Searching in a compacted suffix tree

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

an

1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

an

1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

an

1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

a

an

1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

a

naan

1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

a

naan

1 3

5

0

2 4

6

remember that an edge is

actually stored as a pair

we’re actually looking in T



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

a

naan

na
1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

a

naan

na

nas$
1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

a

naan

na

nas$
nas$
1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree
. . . matches occur at the leaves of the subtree

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

a

naan

na

nas$
nas$
1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree
. . . matches occur at the leaves of the subtree

1

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

a

naan

na

nas$
nas$
1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree
. . . matches occur at the leaves of the subtree

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

an

1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree
. . . matches occur at the leaves of the subtree

P ′ n a

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

an

1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree
. . . matches occur at the leaves of the subtree

P ′ n a

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

an

1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree
. . . matches occur at the leaves of the subtree

P ′ n a

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

an

na

1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree
. . . matches occur at the leaves of the subtree

P ′ n a

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

an

nana

1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree
. . . matches occur at the leaves of the subtree

P ′ n a

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

an

nana

1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree
. . . matches occur at the leaves of the subtree

P ′ n a

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

an

nana

1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree
. . . matches occur at the leaves of the subtree

P ′ n a

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

an

nana

2

1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree
. . . matches occur at the leaves of the subtree

P ′ n a

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

an

nana

4

1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree
. . . matches occur at the leaves of the subtree

P ′ n a

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

an

nana

how big is this subtree?1 3

5

0

2 4

6



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree
. . . matches occur at the leaves of the subtree

P ′ n a

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

an

nana

how big is this subtree?

O(occ) because it has occ leaves

1 3

5

0

2 4

6

(and each internal node has
at least two children)



Searching in a compacted suffix tree

How do you find a pattern?

P aa n

m

start at the root and walk down the tree
. . . matches occur at the leaves of the subtree

We can find all the matches in O(m+ occ) time (by looking at the whole subtree)

P ′ n a

TT b n aaa sn

n
$ a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

7$

an

nana

how big is this subtree?

O(occ) because it has occ leaves

1 3

5

0

2 4

6

(and each internal node has
at least two children)



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

we actually store this as (0, 7)

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

1

ananas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

1

ananas$

this is stored as (1, 7)

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

1

ananas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

1

ananas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

1

ananas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

1

ananas$

2

nanas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

1

ananas$

2

nanas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

1

ananas$

2

nanas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

1

ananas$

2

nanas$

ananas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

1

ananas$

2

nanas$

ananas$

ananas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

1

ananas$

2

nanas$

ananas$

ananas$

ananas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

1

ananas$

2

nanas$

ananas$

ananas$

ananas$

ananas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

2

nanas$

nas$

1

ana
nas$

ana

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

2

nanas$

nas$

1

ana
nas$

ana

ananas$ was stored as (1, 7)

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

2

nanas$

nas$

1

ana
nas$

ana

ananas$ was stored as (1, 7)

ana is stored as (1, 3)

nas$ is stored as (4, 7)

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

2

nanas$

nas$

1

ana
nas$

ana

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

2

nanas$

s$

nas$

1 3

ana

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

2

nanas$

s$

nas$

1 3

ana

stored as (6, 7)

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

2

nanas$

s$

nas$

1 3

ana

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

2

nanas$

s$

nas$

1 3

ana

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

2

nanas$

s$

nas$

1 3

ana nanas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

2

nanas$

s$

nas$

1 3

ana nanas$
nanas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

2

nanas$

s$

nas$

1 3

ana nanas$
nanas$
nanas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$ na

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

2

s$

nas$

1 3

ana

na
nas$
nas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

s$

na

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

2 4

s$

nas$

1 3

ana

nas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

s$

na

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

2 4

s$

nas$

1 3

ana

nas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

s$

na

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

2 4

s$

nas$

1 3

ana

nas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

s$

na

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

2 4

s$

nas$

1 3

ana
ana

nas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$

s$

na

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7

0

2 4

s$

nas$

1 3

ana
ana
ana

nas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$ a

na
s$

nas$

s$

na

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7 1 3

0

2 4

nas$

a

na

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$ a

s$

na
s$

nas$

s$

na

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7 1 3

5

0

2 4

nas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$ a

s$

na
s$

nas$

s$

na

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7 1 3

5

0

2 4

nas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$ a

s$

na
s$

nas$

s$

na

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7 1 3

5

0

2 4

nas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$ a

s$

na
s$

nas$

s$

na
s$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7 1 3

5

0

2 4

6

nas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$ a

s$

na
s$

nas$

s$

na
s$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7 1 3

5

0

2 4

6

nas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$ a

s$

na
s$

nas$

s$

na
s$

bananas$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7 1 3

5

0

2 4

6

nas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$ a

s$

na
s$

nas$

s$

na
s$

bananas$

7$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7 1 3

5

0

2 4

6

nas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$ a

s$

na
s$

nas$

s$

na
s$

bananas$

7$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7 1 3

5

0

2 4

6

nas$

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$ a

s$

na
s$

nas$

s$

na
s$

bananas$

7$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7 1 3

5

0

2 4

6

nas$

This takes O(n) time per suffix . . .

never actually
do it like this

you should



Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)

• Search for the new suffix in the partial suffix tree
(as if you were matching a pattern)

• Add a new edge and leaf for the new suffix
(this may require you to break an edge in two)

TT b n aaa sn

n
$ a

s$

na
s$

nas$

s$

na
s$

bananas$

7$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7 1 3

5

0

2 4

6

nas$

This takes O(n) time per suffix . . .

so O(n2) time in total

never actually
do it like this

you should



Suffix tree summary

TT b n aaa sn

n
$

a

s$

na
s$

nas$

s$

na

s$

bananas$

7$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7 1 3

5

0

2 4

6
nas$

• The (compacted) suffix tree of a (length n) text uses O(n) space

• Finding all matches of a pattern P of length m takes O(m+ occ)

where occ is the number of matches

we assumed that the alphabet contained a constant number of symbols

• Suffix trees can be built in O(n) time

but we have only seen the O(n2) time method
actually

do it like this (or build a suffix array instead)

you should



Multiple text indexing

T1 b n aaa sn

n1

T2 a p slp e

n2

How can we index multiple texts?



Multiple text indexing

T1 b n aaa sn

n1

T2 a p slp e

n2

$

&
two distinct unique symbols

How can we index multiple texts?



Multiple text indexing

TT

T1 b n aaa sn

n1

T2 a p slp e

n2

$

&
two distinct unique symbols

b n aaa sn $ a p slp e &

n

How can we index multiple texts?



Multiple text indexing

TT

T1 b n aaa sn

n1

T2 a p slp e

n2

$

&

b n aaa sn $ a p slp e &

n

How can we index multiple texts?



Multiple text indexing

6$

13
&

TT

a

s$

na
s$

nas$

s$

na

s

bananas$

7$

1 3

5

0

2 4

nas$

T1 b n aaa sn

n1

T2 a p slp e

n2

$

&

b n aaa sn $ a p slp e &

n
14

&

12

es&
les&11

8

pples&

p

10 les&

9

ples&

How can we index multiple texts?



Multiple text indexing

6$

13
&

TT

a

s$

na
s$

nas$

s$

na

s

bananas$

7$

1 3

5

0

2 4

nas$

T1 b n aaa sn

n1

T2 a p slp e

n2

$

&

b n aaa sn $ a p slp e &

n

• Build a generalised suffix tree in O(n1 + n2) space

14
&

12

es&
les&11

8

pples&

p

10 les&

9

ples&

How can we index multiple texts?



Multiple text indexing

6$

13
&

TT

a

s$

na
s$

nas$

s$

na

s

bananas$

7$

1 3

5

0

2 4

nas$

T1 b n aaa sn

n1

T2 a p slp e

n2

$

&

b n aaa sn $ a p slp e &

n

• Build a generalised suffix tree in O(n1 + n2) space

• Using the linear time method (which we omitted), this takes O(n1 + n2) time

14
&

12

es&
les&11

8

pples&

p

10 les&

9

ples&

How can we index multiple texts?



Multiple text indexing

6$

13
&

TT

a

s$

na
s$

nas$

s$

na

s

bananas$

7$

1 3

5

0

2 4

nas$

T1 b n aaa sn

n1

T2 a p slp e

n2

$

&

b n aaa sn $ a p slp e &

n

• Build a generalised suffix tree in O(n1 + n2) space

• Using the linear time method (which we omitted), this takes O(n1 + n2) time

• Finding all matches of a pattern P of length m still takes O(m+ occ) time

14
&

12

es&
les&11

8

pples&

p

10 les&

9

ples&

How can we index multiple texts?

where occ is the number of matches



The suffix array - a sneak preview

T b n aaT a sn

n



The suffix array - a sneak preview

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn



The suffix array - a sneak preview

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa snsuffix

1



The suffix array - a sneak preview

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn



The suffix array - a sneak preview

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn



The suffix array - a sneak preview

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order



The suffix array - a sneak preview

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:



The suffix array - a sneak preview

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a



The suffix array - a sneak preview

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a



The suffix array - a sneak preview

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a



The suffix array - a sneak preview

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c<



The suffix array - a sneak preview

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c<



The suffix array - a sneak preview

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c<



The suffix array - a sneak preview

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c< b c< a



The suffix array - a sneak preview

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c< b c< a



The suffix array - a sneak preview

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c< b c< a

(in a ‘tie’, the shorter string is smaller)



The suffix array - a sneak preview

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c< b c< a

(in a ‘tie’, the shorter string is smaller)



The suffix array - a sneak preview

T b n aaT a sn

n

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c< b c< a

(in a ‘tie’, the shorter string is smaller)



The suffix array - a sneak preview

T b n aaT a sn

n

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c< b c< a

(in a ‘tie’, the shorter string is smaller)



The suffix array - a sneak preview

T b n aaT a sn

n

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c< b c< a

(in a ‘tie’, the shorter string is smaller)



The suffix array - a sneak preview

T b n aaT a sn

n

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c< b c< a

(in a ‘tie’, the shorter string is smaller)



The suffix array - a sneak preview

T b n aaT a sn

n

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

b a<a a b c< b c< a

(in a ‘tie’, the shorter string is smaller)

just a fancy name for the order the strings would appear in a dictionary

In lexicographical ordering we sort strings based on the first symbol that differs:



The suffix array - a sneak preview

T b n aaT a sn

n

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

If the symbols don’t have a natural order, we use their binary representation in memory

b a<a a b c< b c< a

(in a ‘tie’, the shorter string is smaller)

just a fancy name for the order the strings would appear in a dictionary

In lexicographical ordering we sort strings based on the first symbol that differs:



The suffix array - a sneak preview

T b n aaT a sn

n

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn



The suffix array - a sneak preview

T b n aaT a sn

n

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

10 2 3 4 5 6



The suffix array - a sneak preview

T b n aaT a sn

n

Suffix Array 1 0 625 4

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

3

n

10 2 3 4 5 6



The suffix array - a sneak preview

T b n aaT a sn

n

Suffix Array 1 0 625 4

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

3

n

10 2 3 4 5 6



The suffix array - a sneak preview

T b n aaT a sn

n

Suffix Array 1 0 625 4

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

3

n

10 2 3 4 5 6



The suffix array - a sneak preview

T b n aaT a sn

n

Suffix Array 1 0 625 4

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

3

n

The suffix array is much smaller than the suffix tree (in terms of constants)

10 2 3 4 5 6



The suffix array - a sneak preview

T b n aaT a sn

n

Suffix Array 1 0 625 4

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

3

n

The suffix array is much smaller than the suffix tree (in terms of constants)

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

Suffix Tree

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

Suffix Tree

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1 3

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1 3

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1 3

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1 3

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1 3

5

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1 3

5

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1 3

5

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1 3

5

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1 3

5

0

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1 3

5

0

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1 3

5

0

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1 3

5

0

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1 3

5

0

2

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1 3

5

0

2

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1 3

5

0

2

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1 3

5

0

2 4

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1 3

5

0

2 4

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1 3

5

0

2 4

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1 3

5

0

2 4

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1 3

5

0

2 4

6

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

1 3

5

0

2 4

6

10 2 3 4 5 6



Constructing the Suffix Array from the Suffix Tree

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

recall that we added a unique symbol $ to make sure the tree exists

- the $ is the smallest symbol in the alphabet

1 0 625 43

n

To get the Suffix array perform a depth-first search (in lexicographical order)

this takes O(n) time

1 3

5

0

2 4

6

10 2 3 4 5 6



Suffix tree summary

TT b n aaa sn

n
$

a

s$

na
s$

nas$

s$

na

s$

bananas$

7$

b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s

s

suffixes

$

$

$

$

$

$

$

0

1

2

3

4

5

6

$ 7 1 3

5

0

2 4

6
nas$

• The (compacted) suffix tree of a (length n) text uses O(n) space

• Finding all matches of a pattern P of length m takes O(m+ occ)

where occ is the number of matches

we assumed that the alphabet contains a constant number of symbols

• Suffix trees can be built in O(n) time

but we have only seen the O(n2) time method


