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for all 0 6 j 6 m we have that P [j] = T [i+ j]

(our strings are zero-indexed)

• A naive algorithm takes O(nm) time

• Many O(n) time algorithms are known (for example KMP)
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After preprocessing, a query is a pattern P (length m),
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m

the output is a list of all matches in T .

• A naive algorithm takes O(n) query time (using KMP)

• We want a query time which depends only on m and occ

- occ is the number of occurences (matches)

• We also want O(n) space and fast preprocessing (prep.) time

e.g. 4, 6, 10

4 6 10
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• The (compacted) suffix tree of a (length n) text uses O(n) space

• Finding all matches of a pattern P of length m takes O(m+ occ)

where occ is the number of matches

we assumed that the alphabet contained a constant number of symbols

• Suffix trees can be built in O(n) time

but we have only seen the O(n2) time method
actually

do it like this (or build a suffix array instead)

you should
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• Build a generalised suffix tree in O(n1 + n2) space

• Using the linear time method (which we omitted), this takes O(n1 + n2) time

• Finding all matches of a pattern P of length m still takes O(m+ occ) time
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where occ is the number of matches
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Suffix tree summary

TT b n aaa sn

n
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b n aaa sn

n aaa sn

n aa sn

aa sn

a sn

a s
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suffixes
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$
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$
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6
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nas$

• The (compacted) suffix tree of a (length n) text uses O(n) space

• Finding all matches of a pattern P of length m takes O(m+ occ)

where occ is the number of matches

we assumed that the alphabet contains a constant number of symbols

• Suffix trees can be built in O(n) time

but we have only seen the O(n2) time method


