
Advanced Algorithms – COMS31900

Pattern Matching part two

Suffix Arrays

Raphaël Clifford

Slides by Benjamin Sach

Text indexing

T

Preprocess a text string T (length n) to answer pattern matching queries. . .

ba b c a b a cb a a b a

n

Text indexing

T

Preprocess a text string T (length n) to answer pattern matching queries. . .

ba b c a b a cb a a b a

n

After preprocessing, a query is a pattern P (length m),

P a b a

m

Text indexing

T

Preprocess a text string T (length n) to answer pattern matching queries. . .

ba b c a b a cb a a b a

n

After preprocessing, a query is a pattern P (length m),

P a b a

m

the output is a list of all matches in T .

Text indexing

T

Preprocess a text string T (length n) to answer pattern matching queries. . .

ba b c a b a cb a a b a

n

After preprocessing, a query is a pattern P (length m),

P a b a

m

the output is a list of all matches in T .

e.g. 4, 6, 10

4 6 10

Text indexing

T

Preprocess a text string T (length n) to answer pattern matching queries. . .

ba b c a b a cb a a b a

n

After preprocessing, a query is a pattern P (length m),

P a b a

m

the output is a list of all matches in T .

• Last lecture we saw the that text indexing problem can be solved using a suffix tree

e.g. 4, 6, 10

4 6 10

which uses O(n) space (when it’s stored compacted)

Text indexing

T

Preprocess a text string T (length n) to answer pattern matching queries. . .

ba b c a b a cb a a b a

n

After preprocessing, a query is a pattern P (length m),

P a b a

m

the output is a list of all matches in T .

• Last lecture we saw the that text indexing problem can be solved using a suffix tree

• Queries take O(m+ occ) time when the alphabet size is constant

- occ is the number of occurences (matches)

e.g. 4, 6, 10

4 6 10

which uses O(n) space (when it’s stored compacted)

Text indexing

T

Preprocess a text string T (length n) to answer pattern matching queries. . .

ba b c a b a cb a a b a

n

After preprocessing, a query is a pattern P (length m),

P a b a

m

the output is a list of all matches in T .

• Last lecture we saw the that text indexing problem can be solved using a suffix tree

• Queries take O(m+ occ) time when the alphabet size is constant

- occ is the number of occurences (matches)

• Suffix trees can be constructed in O(n) time (but we only saw how to achieve O(n2) time)

e.g. 4, 6, 10

4 6 10

which uses O(n) space (when it’s stored compacted)

The suffix array

T b n aaT a sn

n

The suffix array

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

The suffix array

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa snsuffix

1

The suffix array

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

The suffix array

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

The suffix array

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

The suffix array

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

The suffix array

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a

The suffix array

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a

The suffix array

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a

The suffix array

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c<

The suffix array

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c<

The suffix array

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c<

The suffix array

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c< b c< a

The suffix array

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c< b c< a

The suffix array

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c< b c< a

(in a ‘tie’, the shorter string is smaller)

The suffix array

T b n aaT a sn

n 0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

Sort the suffixes

lexicographically

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c< b c< a

(in a ‘tie’, the shorter string is smaller)

The suffix array

T b n aaT a sn

n

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c< b c< a

(in a ‘tie’, the shorter string is smaller)

The suffix array

T b n aaT a sn

n

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c< b c< a

(in a ‘tie’, the shorter string is smaller)

The suffix array

T b n aaT a sn

n

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c< b c< a

(in a ‘tie’, the shorter string is smaller)

The suffix array

T b n aaT a sn

n

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

In lexicographical ordering we sort strings based on the first symbol that differs:

b a<a a b c< b c< a

(in a ‘tie’, the shorter string is smaller)

The suffix array

T b n aaT a sn

n

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

b a<a a b c< b c< a

(in a ‘tie’, the shorter string is smaller)

just a fancy name for the order the strings would appear in the dictionary

In lexicographical ordering we sort strings based on the first symbol that differs:

The suffix array

T b n aaT a sn

n

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

• The symbols themselves must have an order

throughout we will use alphabetical order

If the symbols don’t have a natural order, we use their binary representation in memory

b a<a a b c< b c< a

(in a ‘tie’, the shorter string is smaller)

just a fancy name for the order the strings would appear in the dictionary

In lexicographical ordering we sort strings based on the first symbol that differs:

The suffix array

T b n aaT a sn

n

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

The suffix array

T b n aaT a sn

n

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

10 2 3 4 5 6

The suffix array

T b n aaT a sn

n

Suffix Array 1 0 625 4

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

3

n

10 2 3 4 5 6

The suffix array

T b n aaT a sn

n

Suffix Array 1 0 625 4

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

3

n

10 2 3 4 5 6

The suffix array

T b n aaT a sn

n

Suffix Array 1 0 625 4

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

3

n

10 2 3 4 5 6

The suffix array

T b n aaT a sn

n

Suffix Array 1 0 625 4

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

3

n

The suffix array is much smaller than the suffix tree (in terms of constants)

10 2 3 4 5 6

The suffix array

T b n aaT a sn

n

Suffix Array 1 0 625 4

Sort the suffixes

lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

3

n

The suffix array is much smaller than the suffix tree (in terms of constants)

10 2 3 4 5 6

From Suffix Trees to Suffix Arrays

a

s$

na
s$

nas$

nas$

s$

na
s$

bananas$

1 3

5

0

2 4

6

T b n aaT a sn

n

Suffix Array

Suffix Tree

1 0 625 43

n

Recall that we can get get the Suffix Array from the Suffix Tree

1 3

5

0

2 4

6

10 2 3 4 5 6

using depth-first search in O(n) time

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

157 100 1 43 112 1396 1485 12

c db cb a c bc c d adb

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

c db cb a c bc c d adb

m

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

c db cb a c bc c d adb

m

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

c db cb a c bc c d adb

m
occurences could start anywhere

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

c db cb a c bc c d adb

m
occurences could start anywhere

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

c db cb a c bc c d adb

m
occurences could start anywhere

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

c d adb>
c db cb a c bc c d adb

m

c db cb

occurences could start anywhere

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

c d adb>
c db cb a c bc c d adb

m

c db cb

occurences could start anywhere

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

c d adb>
c db cb a c bc c d adb

m

c db cb

occurences could start anywhere

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

c d adb>
c db cb a c bc c d adb

m

c db cb

occurences must start in here

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

c db cb a c bc c d adb

m
occurences must start in here

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

c db cb a c bc c d adb

m
occurences must start in here

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

c db cb a c bc c d adb

m
occurences must start in here

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

c db cb < c bc db
c db cb a c bc c d adb

m
occurences must start in here

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

c db cb < c bc db
c db cb a c bc c d adb

m
occurences must start in here

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

c db cb < c bc db
c db cb a c bc c d adb

m
occurences must start in here

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

c db cb a c bc c d adb

m
occurences must start in here

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

c db cb a c bc c d adb

m
occurences must start in here

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

=
c db cb a c bc c d adb

c db cb

m

c db cb

occurences must start in here

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

=
c db cb a c bc c d adb

c db cb

m

c db cb

occurences must start in here

we found a match!

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

c db cb a c bc c d adb

m

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

c db cb a c bc c d adb

How long does this take?

m

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

c db cb a c bc c d adb

How long does this take?

O(m) time to compare two strings

m

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

c db cb a c bc c d adb

How long does this take?

O(m) time to compare two strings

so O(m logn) time in total

m

Find an occurence of P
using binary search

Searching in the Suffix Array

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

4

b c dba cb a c dbc cb d a

c dba cb a c bc c d adb

db cb a c bc c d adb

d cb a c bc c d adb

d c a c bc c d adb

c a c bc c d adb

a c bc c d adb

c bc c d adb

c b c d adb

c d a

d a

a

c d ad

c d adb

b c d adb

2

5

6

8

9

12

13

14

d c a c bc c d adb

c a c bc c d adb

c b c d adb

c d a

d a

c d ad

b c dbT a cb a c dbc cb d a

n

15 7 100Suffix Array 1 43 11 2 1396 148 5 12

c db cbP

157 100 1 43 112 1396 1485 12

find

Key Idea:

c db cb a c bc c d adb

How long does this take?

O(m) time to compare two strings

so O(m logn) time in total

This method generalises to O(m logn+ occ) time

m

to find all occ occurences.

Find an occurence of P
using binary search

by continuing the binary search
(we will skip the details)

The suffix array

T b n aaT a sn

n

Suffix Array 1 0 625 4

Sort the suffixes lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

3

n

P aa n

m

an

Finding an occurrence of a pattern (length m) takes O(m logn) time

Finding all occurrences takes O(m logn+ occ) time

where occ is the number of occurences

The suffix array

T b n aaT a sn

n

Suffix Array 1 0 625 4

Sort the suffixes lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

3

n

P aa n

m

an

Finding an occurrence of a pattern (length m) takes O(m logn) time

Finding all occurrences takes O(m logn+ occ) time

where occ is the number of occurences

This can be further improved to O(m+ logn+ occ) time

(using LCP queries which we will see in a future lecture)

The suffix array

T b n aaT a sn

n

Suffix Array 1 0 625 4

Sort the suffixes lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

3

n

P aa n

m

an

Finding an occurrence of a pattern (length m) takes O(m logn) time

Finding all occurrences takes O(m logn+ occ) time

where occ is the number of occurences

Do we really need to build the suffix tree to construct the suffix array?

This can be further improved to O(m+ logn+ occ) time

(using LCP queries which we will see in a future lecture)

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =
Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =
Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

R1 is split into blocks of length 3

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =
Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

R2 is also split into blocks of length 3

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 3

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 5

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

we assume that the bit representation of each symbol uses O(logn) bits.

(which is a common and realistic assumption)

This can be done by sorting the blocks in O(n) time using radix sort

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

let R′ = 1 2 4 34 56 7

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

let R′ = 1 2 4 34 56 7

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

let R′ = 1 2 4 34 56 7

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

let R′ = 1 2 4 34 56 7

compute the suffix array of R′:

1 2 3 4 5 6 70

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

let R′ = 1 2 4 34 56 7

compute the suffix array of R′:

1 2 3 4 5 6 70

0 1 6 4 2 5 3 7

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

let R′ = 1 2 4 34 56 7

compute the suffix array of R′:

1 2 3 4 5 6 70

0 1 6 4 2 5 3 7

How do we compute the suffix array for R′?

Recursion!
(Notice that R′ has length 2n/3)

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

let R′ = 1 2 4 34 56 7

compute the suffix array of R′:

1 2 3 4 5 6 70

0 1 6 4 2 5 3 7

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

let R′ = 1 2 4 34 56 7

compute the suffix array of R′:

what use1 2 3 4 5 6 70

0 1 6 4 2 5 3 7
is this?!

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

let R′ = 1 2 4 34 56 7

compute the suffix array of R′:

what use1 2 3 4 5 6 70

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

is this?!

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

is this?!

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2

is this?!

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2

a b d ob a a b b a d

d oa b b a d

is this?!

1

5

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

a b d ob a a b b a d

d oa b b a d

is this?!

1

5

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

a b d ob a a b b a d

d oa b b a d

is this?!

1

5

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

a b d ob a a b b a d

d oa b b a d

a b d ob a a b b a d $ b d ob a a b b a d $ $

is this?!

1

5

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

a b d ob a a b b a d

d oa b b a d

a b d ob a a b b a d $ b d ob a a b b a d $ $

is this?!

1

5

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

a b d ob a a b b a d

d oa b b a d

a b d ob a a b b a d $ b d ob a a b b a d $ $

d oa b b a d $ $

is this?!

1

5

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

a b d ob a a b b a d

d oa b b a d

a b d ob a a b b a d $ b d ob a a b b a d $ $

d oa b b a d $ $

their order is given by the suffix array of R′:

is this?!

1

5

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

a b d ob a a b b a d

d oa b b a d

a b d ob a a b b a d $ b d ob a a b b a d $ $

d oa b b a d $ $

their order is given by the suffix array of R′:

is this?!

1

5

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

a b d ob a a b b a d

d oa b b a d

a b d ob a a b b a d $ b d ob a a b b a d $ $

d oa b b a d $ $

their order is given by the suffix array of R′:

is this?!

1

5

Suffix is smaller

than suffix

1

55

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

ob b a d7

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

ob b a d7

ob b a d $ b d ob a a b b a d $ $

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

ob b a d7

d oa b b a d $ $

ob b a d $ b d ob a a b b a d $ $

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

ob b a d7

d oa b b a d $ $

ob b a d $ b d ob a a b b a d $ $

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

ob b a d7

d oa b b a d $ $

ob b a d $ b d ob a a b b a d $ $

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

ob b a d7

d oa b b a d $ $

ob b a d $ b d ob a a b b a d $ $

Suffix is smaller

than suffix

7

5

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

b d ob a a b b a d2

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

b d ob a a b b a d2

d oa b b a d $ $

b d ob a a b b a d $ $

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

b d ob a a b b a d2

d oa b b a d $ $

b d ob a a b b a d $ $

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

b d ob a a b b a d2

d oa b b a d $ $

b d ob a a b b a d $ $

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

b d ob a a b b a d2

d oa b b a d $ $

b d ob a a b b a d $ $

Suffix is smaller

than suffix

2

5

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

is this?!

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

0 1 2 3 4 5 6 7

The suffix array of R′: 0 1 6 4 2 5 3 7

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

0 1 2 3 4 5 6 7

The suffix array of R′: 0 1 6 4 2 5 3 7

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

0 1 2 3 4 5 6 7

The suffix array of R′: 0 1 6 4 2 5 3 7

after relabelling,

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

0 1 2 3 4 5 6 7

The suffix array of R′: 0 1 6 4 2 5 3 7

after relabelling, 1 24 111058 7

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

0 1 2 3 4 5 6 7

The suffix array of R′: 0 1 6 4 2 5 3 7

after relabelling,

we have the suffix array of just the suffixes from B1 ∪B2

1 24 111058 7

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

0 1 2 3 4 5 6 7

The suffix array of R′: 0 1 6 4 2 5 3 7

after relabelling,

we have the suffix array of just the suffixes from B1 ∪B2

1 24 111058 7

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

0 1 2 3 4 5 6 7

The suffix array of R′: 0 1 6 4 2 5 3 7

after relabelling,

we have the suffix array of just the suffixes from B1 ∪B2

1 24 111058 7

How do we find the ordering of the suffixes from B0? (where i mod 3 = 0)

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

How do we find the ordering of the suffixes from B0? (where i mod 3 = 0)

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

How do we find the ordering of the suffixes from B0? (where i mod 3 = 0)

Suffix array for just B1 ∪B2 1 24 111058 7

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

How do we find the ordering of the suffixes from B0? (where i mod 3 = 0)

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

1 24 111058 7

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

How do we find the ordering of the suffixes from B0? (where i mod 3 = 0)

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

y a b d ob a a b b a d

d ob a a b b a d

oa b b a d

oa d

0

3

6

9

1 24 111058 7

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

How do we find the ordering of the suffixes from B0? (where i mod 3 = 0)

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

y a b d ob a a b b a d

d ob a a b b a d

oa b b a d

oa d

0

3

6

9

= + 1y

1 24 111058 7

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

How do we find the ordering of the suffixes from B0? (where i mod 3 = 0)

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

y a b d ob a a b b a d

d ob a a b b a d

oa b b a d

oa d

0

3

6

9

= + 1y

suffix 0 is a y

1 24 111058 7

followed by suffix 1

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

How do we find the ordering of the suffixes from B0? (where i mod 3 = 0)

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

y a b d ob a a b b a d

d ob a a b b a d

oa b b a d

oa d

0

3

6

9

= + 1y

1 24 111058 7

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

How do we find the ordering of the suffixes from B0? (where i mod 3 = 0)

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

y a b d ob a a b b a d

d ob a a b b a d

oa b b a d

oa d

0

3

6

9

= + 1y

= + 4b

= + 7a

= +a 10

1 24 111058 7

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

How do we find the ordering of the suffixes from B0? (where i mod 3 = 0)

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

y a b d ob a a b b a d

d ob a a b b a d

oa b b a d

oa d

0

3

6

9

= + 1y

= + 4b

= + 7a

= +a 10

Each suffix i ∈ B0 is represented by (T [i], r) where r is the rank of suffix (i+ 1)

1 24 111058 7

(the ranks are given by the array below)

rank:

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

How do we find the ordering of the suffixes from B0? (where i mod 3 = 0)

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

y a b d ob a a b b a d

d ob a a b b a d

oa b b a d

oa d

0

3

6

9

= + 1y

= + 4b

= + 7a

= +a 10

(y, 0)

(b, 1)

(a, 4)

(a, 6)

Each suffix i ∈ B0 is represented by (T [i], r) where r is the rank of suffix (i+ 1)

1 24 111058 7

(the ranks are given by the array below)

rank:

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

How do we find the ordering of the suffixes from B0? (where i mod 3 = 0)

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

y a b d ob a a b b a d

d ob a a b b a d

oa b b a d

oa d

0

3

6

9

= + 1y

= + 4b

= + 7a

= +a 10

(y, 0)

(b, 1)

(a, 4)

(a, 6)

Each suffix i ∈ B0 is represented by (T [i], r) where r is the rank of suffix (i+ 1)

1 24 111058 7

(the ranks are given by the array below)

rank:

We then sort in O(n) time using radix sort

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

How do we find the ordering of the suffixes from B0? (where i mod 3 = 0)

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

Each suffix i ∈ B0 is represented by (T [i], r) where r is the rank of suffix (i+ 1)

1 24 111058 7

(the ranks are given by the array below)

rank:

We then sort in O(n) time using radix sort

y a b d ob a a b b a d

d ob a a b b a d

oa b b a d

oa d

0

3

6

9

= + 1y

= + 4b

= + 7a

= +a 10

(y, 0)

(b, 1)

(a, 4)

(a, 6)

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

How do we find the ordering of the suffixes from B0? (where i mod 3 = 0)

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

Each suffix i ∈ B0 is represented by (T [i], r) where r is the rank of suffix (i+ 1)

1 24 111058 7

(the ranks are given by the array below)

rank:

We then sort in O(n) time using radix sort

y a b d ob a a b b a d

d ob a a b b a d

oa b b a d

oa d

0

3

6

9

= + 1y

= + 4b

= + 7a

= +a 10

(y, 0)

(b, 1)

(a, 4)

(a, 6)

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

Each suffix i ∈ B0 is represented by (T [i], r) where r is the rank of suffix (i+ 1)

1 24 111058 7

(the ranks are given by the array below)

rank:

We then sort in O(n) time using radix sort

y a b d ob a a b b a d

d ob a a b b a d

oa b b a d

oa d

0

3

6

9

= + 1y

= + 4b

= + 7a

= +a 10

(y, 0)

(b, 1)

(a, 4)

(a, 6)

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

Each suffix i ∈ B0 is represented by (T [i], r) where r is the rank of suffix (i+ 1)

1 24 111058 7

(the ranks are given by the array below)

rank:

We then sort in O(n) time using radix sort

y a b d ob a a b b a d

d ob a a b b a d

oa b b a d

oa d

0

3

6

9

= + 1y

= + 4b

= + 7a

= +a 10

(y, 0)

(b, 1)

(a, 4)

(a, 6)

Suffix array for just B0 6 09 3

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

Each suffix i ∈ B0 is represented by (T [i], r) where r is the rank of suffix (i+ 1)

1 24 111058 7

(the ranks are given by the array below)

rank:

We then sort in O(n) time using radix sort

y a b d ob a a b b a d

d ob a a b b a d

oa b b a d

oa d

0

3

6

9

= + 1y

= + 4b

= + 7a

= +a 10

(y, 0)

(b, 1)

(a, 4)

(a, 6)

Suffix array for just B0 6 09 3 How do we merge these?

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

1 24 111058 7

Suffix array for just B0 6 09 3 How do we merge these?

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

1 24 111058 7

Suffix array for just B0 6 09 3 How do we merge these?

Merge them like in mergesort. . .

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

1 24 111058 7

Suffix array for just B0 6 09 3 How do we merge these?

Merge them like in mergesort. . .

which is smaller, suffix or ?1 6

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

1 24 111058 7

Suffix array for just B0 6 09 3 How do we merge these?

Merge them like in mergesort. . .

which is smaller, suffix or ?

+ 7a=

1 6

6

1 +a= 2

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

1 24 111058 7

Suffix array for just B0 6 09 3 How do we merge these?

Merge them like in mergesort. . .

which is smaller, suffix or ?

+ 7a=

1 6

6

1 +a= 2

(a, 4)

(a, 3)

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

1 24 111058 7

Suffix array for just B0 6 09 3 How do we merge these?

Merge them like in mergesort. . .

which is smaller, suffix or ?

+ 7a=

1 6

6

1 +a= 2

(a, 4)

(a, 3)
It takes O(1) time to decide

that 1 is smaller

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

1 24 111058 7

Suffix array for just B0 6 09 3 How do we merge these?

Merge them like in mergesort. . .

which is smaller, suffix or ?

+ 7a=

1 6

6

1 +a= 2

(a, 4)

(a, 3)
It takes O(1) time to decide

that 1 is smaller

1

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

1 24 111058 7

Suffix array for just B0 6 09 3 How do we merge these?

Merge them like in mergesort. . . 1

which is smaller, suffix or4 6 ?

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

1 24 111058 7

Suffix array for just B0 6 09 3 How do we merge these?

Merge them like in mergesort. . . 1

which is smaller, suffix or4 6

+ 7a=6

4 +a= 5

?

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

1 24 111058 7

Suffix array for just B0 6 09 3 How do we merge these?

Merge them like in mergesort. . . 1

which is smaller, suffix or4 6

+ 7a=6

4 +a= 5

(a, 4)

(a, 5)

?

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

1 24 111058 7

Suffix array for just B0 6 09 3 How do we merge these?

Merge them like in mergesort. . . 1

which is smaller, suffix or4 6

+ 7a=6

4 +a= 5

(a, 4)

(a, 5)
Again, it takes O(1) time to decide

that is smaller6

?

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

1 24 111058 7

Suffix array for just B0 6 09 3 How do we merge these?

Merge them like in mergesort. . . 1 6

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

1 24 111058 7

Suffix array for just B0 6 09 3 How do we merge these?

Merge them like in mergesort. . . 1 6

which is smaller, suffix or4 9 ?

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

1 24 111058 7

Suffix array for just B0 6 09 3 How do we merge these?

Merge them like in mergesort. . . 1 6

)4(which is smaller, suffix or4 9 ? is smaller

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

1 24 111058 7

Suffix array for just B0 6 09 3 How do we merge these?

Merge them like in mergesort. . . 1 6 4

)4(which is smaller, suffix or4 9 ? is smaller

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

1 24 111058 7

Suffix array for just B0 6 09 3 How do we merge these?

Merge them like in mergesort. . . 1 6 4

8which is smaller, suffix or 9 ?

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

1 24 111058 7

Suffix array for just B0 6 09 3 How do we merge these?

Merge them like in mergesort. . . 1 6 4

8

+a=

+b=

9 10

8 9

which is smaller, suffix or 9 ?

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

1 24 111058 7

Suffix array for just B0 6 09 3 How do we merge these?

Merge them like in mergesort. . . 1 6 4

8

+a=

+b=

9 10

8 9

Uh oh! how do we compare 9 10to ?

which is smaller, suffix or 9 ?

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

1 24 111058 7

Suffix array for just B0 6 09 3 How do we merge these?

Merge them like in mergesort. . . 1 6 4

8

Uh oh! how do we compare 9 10to ?

+a=

+b=

9

8

d

a

+

+

11

10

It still takes O(1) time to decide

that is smaller9

which is smaller, suffix or 9 ?

The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2

Suffix array for just B1 ∪B2

1 2 3 4 5 6 70

1 24 111058 7

Suffix array for just B0 6 09 3 How do we merge these?

Merge them like in mergesort. . . 1 6 4

Overall this merging phase takes O(n) time

(because processing each suffix takes O(1) time)

The DC3 method

Theorem

The DC3 algorithm constructs a suffix array in O(n) time.

The DC3 method

Theorem

The DC3 algorithm constructs a suffix array in O(n) time.

Proof

Suppose T (n) is the running time. We have

T (n) = T (2n/3) +O(n)

The DC3 method

Theorem

The DC3 algorithm constructs a suffix array in O(n) time.

Proof

Suppose T (n) is the running time. We have

T (n) = T (2n/3) +O(n)

radix sorting and merging

recursion to construct
a suffix array of size 2n/3

The DC3 method

Theorem

The DC3 algorithm constructs a suffix array in O(n) time.

Proof

Suppose T (n) is the running time. We have

T (n) = T (2n/3) +O(n)

Solving this recurrence gives T (n) ∈ O(n).

radix sorting and merging

recursion to construct
a suffix array of size 2n/3

The suffix array

T b n aaT a sn

n

Suffix Array 1 0 625 4

Sort the suffixes lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

3

n

P aa n

m

an

Finding an occurrence of a pattern (length m) takes O(m logn) time

Finding all occurrences takes O(m logn+ occ) time

where occ is the number of occurences

We can construct the suffix array in O(n) time

This can be further improved to O(m+ logn+ occ) time

(using LCP queries which we will see in a future lecture)

