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the output is a list of all matches in T .

• Last lecture we saw the that text indexing problem can be solved using a suffix tree

• Queries take O(m+ occ) time when the alphabet size is constant

- occ is the number of occurences (matches)

• Suffix trees can be constructed in O(n) time (but we only saw how to achieve O(n2) time)
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Recall that we can get get the Suffix Array from the Suffix Tree
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using depth-first search in O(n) time
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by continuing the binary search
(we will skip the details)
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Finding an occurrence of a pattern (length m) takes O(m logn) time

Finding all occurrences takes O(m logn+ occ) time

where occ is the number of occurences

Do we really need to build the suffix tree to construct the suffix array?

This can be further improved to O(m+ logn+ occ) time

(using LCP queries which we will see in a future lecture)



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

B2 contains indices with

i mod 3 = 2



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =
Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =
Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

R1 is split into blocks of length 3



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =
Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

R2 is also split into blocks of length 3



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 3



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 5



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

we assume that the bit representation of each symbol uses O(logn) bits.

(which is a common and realistic assumption)

This can be done by sorting the blocks in O(n) time using radix sort



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

let R′ = 1 2 4 34 56 7



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

let R′ = 1 2 4 34 56 7



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

let R′ = 1 2 4 34 56 7



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

let R′ = 1 2 4 34 56 7

compute the suffix array of R′:

1 2 3 4 5 6 70



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

let R′ = 1 2 4 34 56 7

compute the suffix array of R′:

1 2 3 4 5 6 70

0 1 6 4 2 5 3 7



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

let R′ = 1 2 4 34 56 7

compute the suffix array of R′:

1 2 3 4 5 6 70

0 1 6 4 2 5 3 7

How do we compute the suffix array for R′?

Recursion!
(Notice that R′ has length 2n/3)



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

let R′ = 1 2 4 34 56 7

compute the suffix array of R′:

1 2 3 4 5 6 70

0 1 6 4 2 5 3 7



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

let R′ = 1 2 4 34 56 7

compute the suffix array of R′:

what use1 2 3 4 5 6 70

0 1 6 4 2 5 3 7
is this?!



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $R1 =

b d ob a a b b a d $R2 = $

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

Introduce a new

“filler symbol” $.

B2 contains indices with

i mod 3 = 2

Number the blocks in lexicographical order ($ is the smallest symbol)

1 2 4 34 56 7

let R′ = 1 2 4 34 56 7

compute the suffix array of R′:

what use1 2 3 4 5 6 70

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

is this?!



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

is this?!



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2

is this?!



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2

a b d ob a a b b a d

d oa b b a d

is this?!

1

5



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

a b d ob a a b b a d

d oa b b a d

is this?!

1

5



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

a b d ob a a b b a d

d oa b b a d

is this?!

1

5



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

a b d ob a a b b a d

d oa b b a d

a b d ob a a b b a d $ b d ob a a b b a d $ $

is this?!

1

5



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

a b d ob a a b b a d

d oa b b a d

a b d ob a a b b a d $ b d ob a a b b a d $ $

is this?!

1

5



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

a b d ob a a b b a d

d oa b b a d

a b d ob a a b b a d $ b d ob a a b b a d $ $

d oa b b a d $ $

is this?!

1

5



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

a b d ob a a b b a d

d oa b b a d

a b d ob a a b b a d $ b d ob a a b b a d $ $

d oa b b a d $ $

their order is given by the suffix array of R′:

is this?!

1

5



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

a b d ob a a b b a d

d oa b b a d

a b d ob a a b b a d $ b d ob a a b b a d $ $

d oa b b a d $ $

their order is given by the suffix array of R′:

is this?!

1

5



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

a b d ob a a b b a d

d oa b b a d

a b d ob a a b b a d $ b d ob a a b b a d $ $

d oa b b a d $ $

their order is given by the suffix array of R′:

is this?!

1

5

Suffix is smaller

than suffix

1

55



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

ob b a d7



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

ob b a d7

ob b a d $ b d ob a a b b a d $ $



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

ob b a d7

d oa b b a d $ $

ob b a d $ b d ob a a b b a d $ $



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

ob b a d7

d oa b b a d $ $

ob b a d $ b d ob a a b b a d $ $



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

ob b a d7

d oa b b a d $ $

ob b a d $ b d ob a a b b a d $ $



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

ob b a d7

d oa b b a d $ $

ob b a d $ b d ob a a b b a d $ $

Suffix is smaller

than suffix

7

5



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

b d ob a a b b a d2



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

b d ob a a b b a d2

d oa b b a d $ $

b d ob a a b b a d $ $



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

b d ob a a b b a d2

d oa b b a d $ $

b d ob a a b b a d $ $



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

b d ob a a b b a d2

d oa b b a d $ $

b d ob a a b b a d $ $



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

Take any two suffixes in B1 ∪B2 and find them in R

their order is given by the suffix array of R′:

is this?!

d oa b b a d5

b d ob a a b b a d2

d oa b b a d $ $

b d ob a a b b a d $ $

Suffix is smaller

than suffix

2

5



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

compute the suffix array of R′:

what use

0 1 6 4 2 5 3 7

0 1 2 3 4 5 6 7

is this?!



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

0 1 2 3 4 5 6 7

The suffix array of R′: 0 1 6 4 2 5 3 7



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

0 1 2 3 4 5 6 7

The suffix array of R′: 0 1 6 4 2 5 3 7



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

0 1 2 3 4 5 6 7

The suffix array of R′: 0 1 6 4 2 5 3 7

after relabelling,



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

0 1 2 3 4 5 6 7

The suffix array of R′: 0 1 6 4 2 5 3 7

after relabelling, 1 24 111058 7



The DC3 method

y a b d ob a a b b a d

1 2 3 4 5 6 7 8 9 10 110

T =

B1 contains indices with

i mod 3 = 1

a b d ob a a b b a d $ b d ob a a b b a d $ $

Concatenate R1 and R2 to obtain R:

B2 contains indices with

i mod 3 = 2

0 1 2 3 4 5 6 7

The suffix array of R′: 0 1 6 4 2 5 3 7

after relabelling,

we have the suffix array of just the suffixes from B1 ∪B2

1 24 111058 7



The DC3 method

y a b d ob a a b b a d
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Overall this merging phase takes O(n) time

(because processing each suffix takes O(1) time)
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The DC3 method

Theorem

The DC3 algorithm constructs a suffix array in O(n) time.

Proof

Suppose T (n) is the running time. We have

T (n) = T (2n/3) +O(n)

Solving this recurrence gives T (n) ∈ O(n).

radix sorting and merging

recursion to construct
a suffix array of size 2n/3



The suffix array

T b n aaT a sn

n

Suffix Array 1 0 625 4

Sort the suffixes lexicographically

0 b n aaa sn

n aa1 a sn

2 n aa sn

4 a sn

5 a s

6 s

3 aa sn

3

n

P aa n

m

an

Finding an occurrence of a pattern (length m) takes O(m logn) time

Finding all occurrences takes O(m logn+ occ) time

where occ is the number of occurences

We can construct the suffix array in O(n) time

This can be further improved to O(m+ logn+ occ) time

(using LCP queries which we will see in a future lecture)


