Advanced Algorithms — COMS31900

Hashing part two

Static Perfect Hashing

Raphaéel Clifford

Slides by Benjamin Sach

B BRiSToT
Dictionaries and Hashing recap

» A dynamic dictionary stores (key, va/ue)-pairs and supports:

add(key, value), lookup(key) (which returns value) and delete (key)

Collisions were fixed by chaining
(building linked lists)

A hash function maps a key x to position h.(x)
-i.e T'|h(x)] = (key, value).

A set H of hash functions is weakly universal if for any Using weakly universal hashing:
two keys x, y € U (with x # y), For any n operations, the expected
1 run-time is O (1) per operation.
Pr(h(z) = h(y) < — (1) per op
But this doesn’t tell us much about the
(h is picked uniformly at random from H) worst-case behaviour

B s

Static Dictionaries and Perfect hashing

» A static dictionary stores (key, va/ue)-pairs and supports:

lookup (key) (which returns value) - no inserts or deletes are allowed

Collisions were fixed by chaining
(building linked lists)

A hash function maps a key x to position h.(x)
-i.e T'|h(x)] = (key, value).

- THEOREM
The FKS hashing scheme:

The rest of this lecture is devoted to the

- FKS scheme
 Has no collisions
- Every lookup takes O (1) worst-case time, The construction is based on weak
- Uses O(n) space, universal hashing

Can be built in O(n) expected time. (with an O(1) time hash function)

B s

Perfect hashing - a first attempt

A set H of hash functions is weakly universal if for any two keys =,y € U (x # v),

1
Pr (h(z) = h(y)) < — where /v is picked uniformly at random from
m
o9 ®
- o °
e o . Step 1: Insert everything into a hash table of size m = n
%, ® o, using a weakly universal hash function
mn [) Y
L) Step 2: Check for collisions
1 Step 3: Repeat if necessary
How many collisions do we get on average?
number of linearity of definition of
collisions expectation expectation < n2/2

\ ! { ¥

E

where indicator random variable [= 1iff h(z) = h(y).

B s

Perfect hashing - a second attempt

A set H of hash functions is weakly universal if for any two keys =,y € U (x # v),

1
— where h is picked uniformly at random from /1
m

Pr (h(z) = h(y)) <

RN

»l

Step 1: Insert everything into a hash table of size m = n?
using a weakly universal hastfuriction

Step 2: Check for collisions

Step 3: Repeat if necessary

How many collisions do we get on average?

number of linearity of definition of

collisions expectation expectation < n2 /2

v v v K

much
where indicator random variable [= 1iff h(z) = h(y). better!

B s

Expected construction time

Step 1: Insert everything into a hash table of size m = n?2
using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if there was a collision

How many times do we repeat on average?

. Markov’s inequality
The expected number of collisions: [£(C') < 5 f

The probability of at least one collision: Pr(C' > 1) <

DO|—

The probability of zero collisions is at least %

I.e. at least as good as tossing a heads on a fair coin

...and then the look-up time is always O (1)
(because any h(x) can be computed in O(1) time)

B s

Expected construction time

Step 1: Insert everything into a hash table of size m = n
using a weakly universal hash function

Step 2: Check for collisions

This looks rubbish but

it will be useful in a bit!

Step 3: Repeat if there are more than n collisions

How many times do we repeat on average?

The expected number of collisions: [£(C') < 5

The probability of at least 7 collisions: Pr(C' > n) < %

The probability of at most 7 collisions is at least %

I.e. at least as good as tossing a heads on a fair coin

... but the look-up time could be rubbish (lots of collisions)

B s

Perfect hashing - attempt three

Step 1: Insert everything into a hash table, I, of size n.

using a weakly universal hash function, h

/ ... but don’t use chaining
- = | | |
o [® Let n; be the number of items in 7[¢]
o o Step 2: The n; items in T[] are inserted into
another hash table 7; of size an
n 1® 1o using another weakly universal hash function
denoted h; (there is one for each 1)
(Step 3) Immediately repeat a step if either
a) 7" has more than 7 collisions
b) some I; has a collision
[
T

The look-up time is always O(1)

1. Compute 7 = h(x) (x is the key)
2. Compute j = h;(x)

3. The item is in 77 []

Two questions remain:
What is the expected construction time?

What is the space usage?

B s

Perfect Hashing - Space usage

%--- e Step 1: Insert everything into a hash table, I, of size n
using a weakly universal (w.u.) hash function, A

Step 2: The n; items in 7"[7] are inserted into another hash table 7
2

1

of size % using w.u hash function h;

(Step 3) Immediately repeat if either
a) 7" has more than n collisions
4 L b) some I; has a collision

How much space does this use?
The size of T"is O(n)
The size of T}; is O (n;?)

Storing h; uses O(1) space
how big is this?

So the total space is. .. ¥

C

B SRisTor
Perfect Hashing - Space usage

%--- e Step 1: Insert everything into a hash table, I, of size n
using a weakly universal (w.u.) hash function, A
T . ®
5 able T,L'
n Lo Howbigis » ; n:?
There are ('5’) collisions in 77[i] so there are > _; ('57) collisions in T
1L but we know that there are at most n. collisions in'l" . ..

How mu N\ N\
Z or ¢
The s
The s
Storing h; uses O(1) space
how big is this?
So the total space is. .. ¥

C

B s

Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, 7", of size n
T . using a weakly universal (w.u.) hash function, h
o

Step 2: The n; items in 7"[7] are inserted into another hash table 7

2
nlef--------- i ofsize nZQ using w.u hash function /;
Tz' —v (Step 3) Immediately repeat if either
--------------- a) 7" has more than n collisions
[]

L b) some I; has a collision

The expected construction time for 1" is O(n)

(we considered this on a previous slide)

The expected construction time for each T} is O (1;2)

- we insert 12; items into a table of size m = n?
- then repeat if there was a collision

(we also considered this on a previous slide)

The overall expected constuction time is therefore:

E

B s

Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, 7", of size n
T . using a weakly universal (w.u.) hash function, h
o

5 Step 2: The n; items in 7"[7] are inserted into another hash table 7

Tol of=mmmmmmee i ofsize nZQ using w.u hash function 5;
Tz’ —v (Step 3) Immediately repeat if either

a) 7" has more than n collisions
L b) some I; has a collision

The expected construction time for 1" is O(n)
The expected construction time for each T} is O (n;2)

The overall expected construction time is therefore:

E

B BRiSToT
Perfect Hashing - Summary

}---- ® Step 1: Insert everything into a hash table, 1", of size n
e . using a weakly universal (w.u.) hash function, A
o
5 Step 2: The n; items in 7"[7] are inserted into another hash table 7
T ef-""""""- "M of size nZQ using w.u hash function /;
Tz' —v (Step 3) Immediately repeat if either
-------------- a) 1" has more than n collisions
11 1 b) some T; has a collision
- THEOREM

The FKS hashing scheme:
. The look-up time is always O(1)
Has no collisions

1. Compute 7 = h(x) (x is the key)
2. Compute 7 = h;(x)
3. The itemis in 77 |

Every lookup takes O (1) worst-case time,

Uses O(n) space,

Can be built in O(n) expected time.

	Dictionaries and Hashing recap
	Static Dictionaries and Perfect hashing
	Perfect hashing - a first attempt
	Perfect hashing - a second attempt

