

Advanced Algorithms – COMS31900

Hashing part two

Static Perfect Hashing

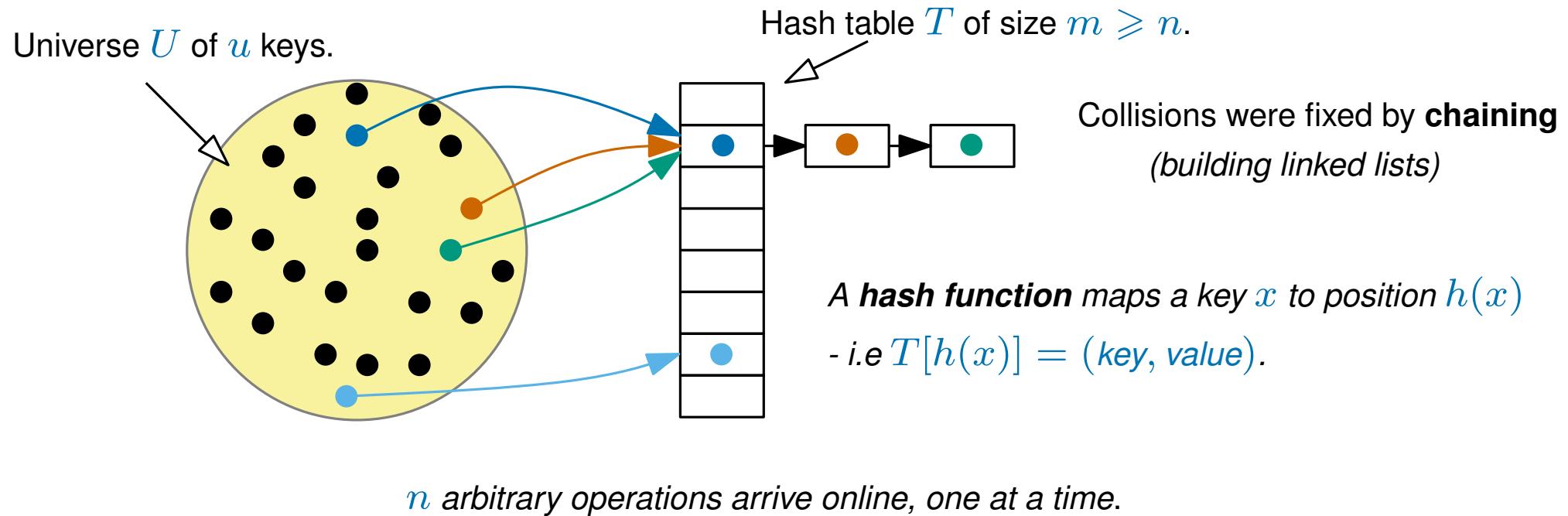
Raphaël Clifford

Slides by Benjamin Sach

Dictionaries and Hashing recap

- A **dynamic dictionary** stores $(key, value)$ -pairs and supports:

`add(key, value)`, `lookup(key)` (which returns `value`) and `delete(key)`



A set H of hash functions is **weakly universal** if for any

two keys $x, y \in U$ (with $x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

(h is picked uniformly at random from H)

Using weakly universal hashing:

For any n operations, the *expected* run-time is $O(1)$ per operation.

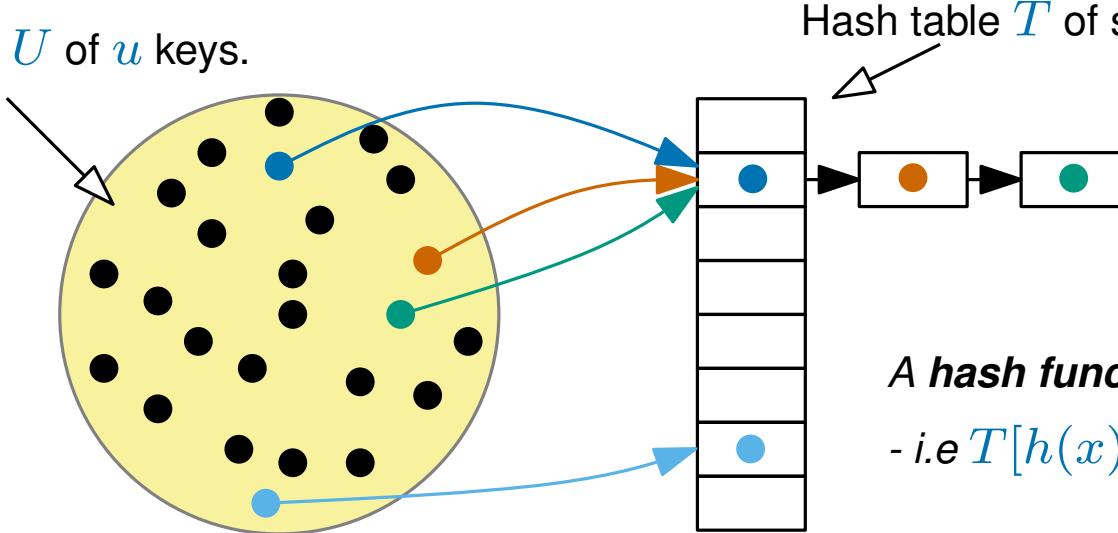
But this doesn't tell us much about the
worst-case behaviour

Static Dictionaries and Perfect hashing

► A **static dictionary** stores $(\text{key}, \text{value})$ -pairs and supports:

$\text{lookup}(\text{key})$ (which returns value) - *no inserts or deletes are allowed*

Universe U of u keys.



Hash table T of size $m \geq n$.

Collisions were fixed by **chaining**
(*building linked lists*)

A **hash function** maps a key x to position $h(x)$
- i.e $T[h(x)] = (\text{key}, \text{value})$.

we are given n different $(\text{key}, \text{value})$ -pairs and want to pick a *good* h

THEOREM

The FKS hashing scheme:

- Has no collisions
- Every lookup takes $O(1)$ worst-case time,
- Uses $O(n)$ space,
- Can be built in $O(n)$ expected time.

The rest of this lecture is devoted to the
FKS scheme

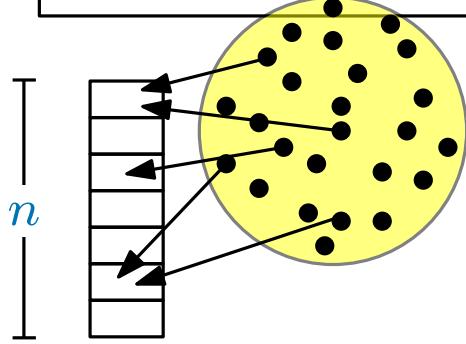
The construction is based on weak
universal hashing

(with an $O(1)$ time hash function)

Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m} \quad \text{where } h \text{ is picked uniformly at random from } H$$



Step 1: Insert everything into a hash table of size $m = n$
using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if necessary

How many collisions do we get on average?

number of
collisions
↓
 \mathbb{E}

linearity of
expectation
↓

definition of
expectation
↓

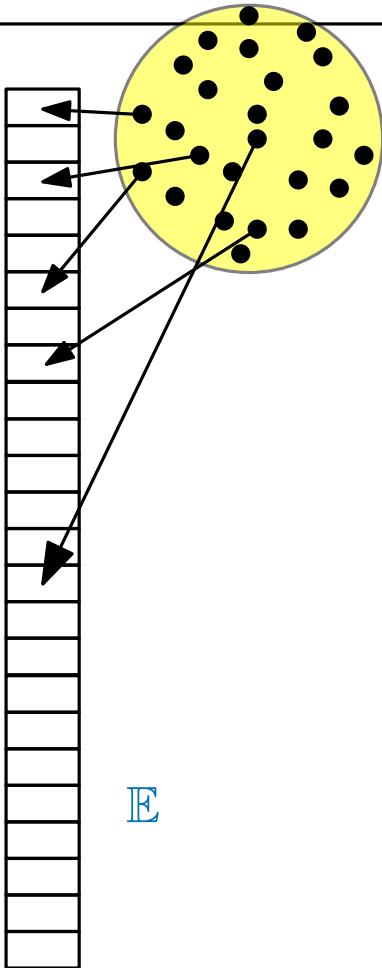
$$\leq n^2/2$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.

Perfect hashing - a second attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m} \quad \text{where } h \text{ is picked uniformly at random from } H$$



Step 1: Insert everything into a hash table of size $m = n^2$ using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if necessary

(except we cheated)

How many collisions do we get on average?

number of
collisions

linearity of
expectation

definition of
expectation

$$\leq n^2 / 2$$

\mathbb{E}

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.

much
better!

Expected construction time

Step 1: Insert everything into a hash table of size $m = n^2$
using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if there was a collision*

How many times do we repeat on average?

The expected number of collisions: $\mathbb{E}(C) \leq \frac{1}{2}$

The probability of at least one collision: $\Pr(C \geq 1) \leq \frac{1}{2}$

The probability of zero collisions is at least $\frac{1}{2}$

i.e. at least as good as tossing a heads on a fair coin

\mathbb{E}

\mathbb{E}

... and then the look-up time is always $O(1)$

(because any $h(x)$ can be computed in $O(1)$ time)

Expected construction time

Step 1: Insert everything into a hash table of size $m = n$
using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if there are more than n collisions*

**This looks rubbish but
it will be useful in a bit!**

How many times do we repeat on average?

The expected number of collisions: $\mathbb{E}(C) \leq \frac{n}{2}$

The probability of *at least n collisions*: $\Pr(C \geq n) \leq \frac{1}{2}$

The probability of *at most n collisions* is at least $\frac{1}{2}$

i.e. at least as good as tossing a heads on a fair coin

\mathbb{E}

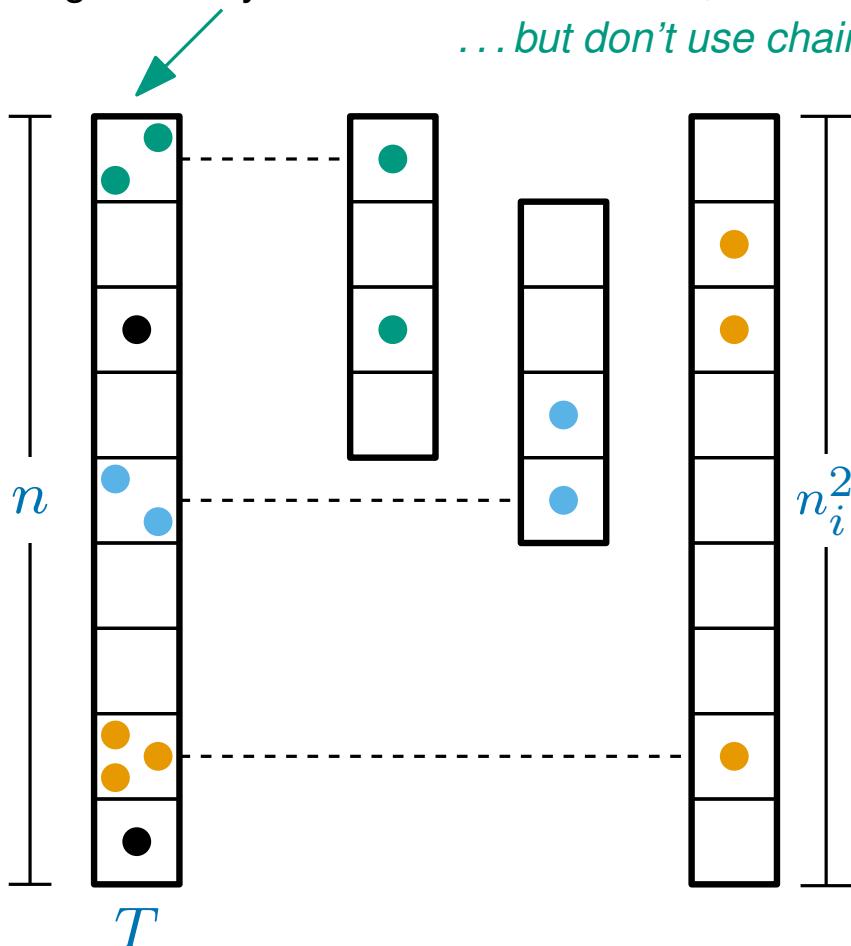
\mathbb{E}

... but the look-up time could be rubbish (lots of collisions)

Perfect hashing - attempt three

Step 1: Insert everything into a hash table, T , of size n
using a weakly universal hash function, h

... but don't use chaining



Let n_i be the number of items in $T[i]$

Step 2: The n_i items in $T[i]$ are inserted into
another hash table T_i of size n_i^2

*using another weakly universal hash function
denoted h_i (there is one for each i)*

(Step 3) Immediately repeat a step if either

- a) T has more than n collisions
- b) some T_i has a collision

The look-up time is always $O(1)$

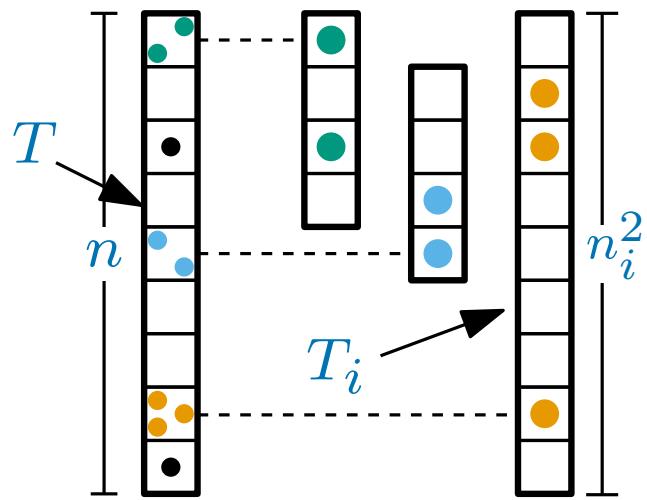
1. Compute $i = h(x)$ (x is the key)
2. Compute $j = h_i(x)$
3. The item is in $T_i[j]$

Two questions remain:

What is the expected construction time?

What is the space usage?

Perfect Hashing - Space usage



Step 1: Insert everything into a hash table, T , of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

(Step 3) Immediately repeat if either

- a) T has more than n collisions
- b) some T_i has a collision

How much space does this use?

The size of T is $O(n)$

The size of T_i is $O(n_i^2)$

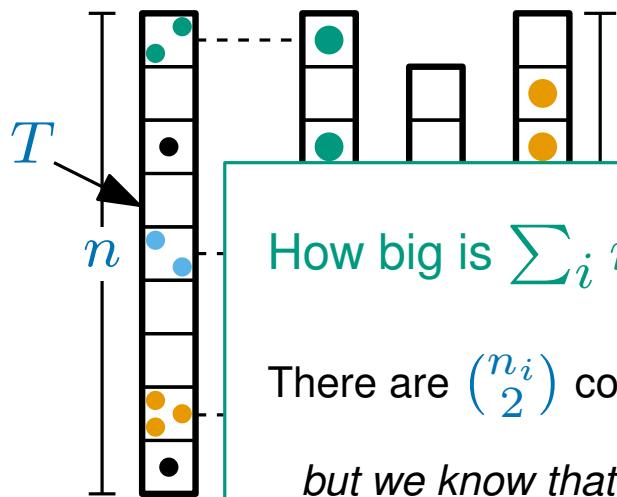
Storing h_i uses $O(1)$ space

So the total space is...

how big is this?

C

Perfect Hashing - Space usage



Step 1: Insert everything into a hash table, T , of size n using a weakly universal (w.u.) hash function, h

How big is $\sum_i n_i^2$?

There are $\binom{n_i}{2}$ collisions in $T[i]$ so there are $\sum_i \binom{n_i}{2}$ collisions in T

but we know that there are at most n collisions in T ...

How mu

\sum

or \sum

The s

The s

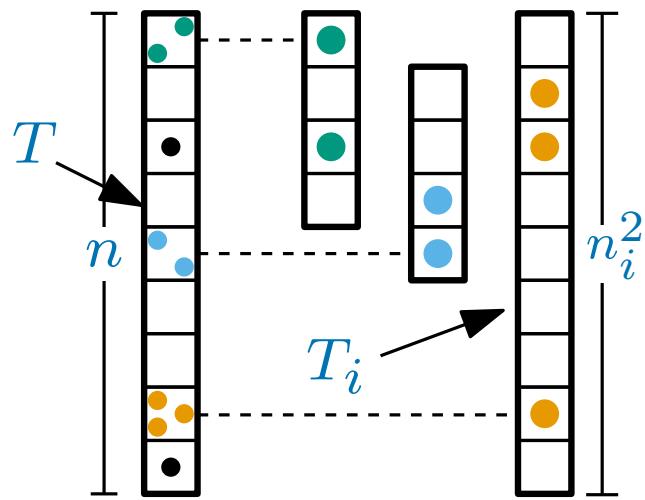
Storing h_i uses $O(1)$ space

So the total space is...

how big is this?

C

Perfect Hashing - Expected construction time



Step 1: Insert everything into a hash table, T , of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

(Step 3) Immediately repeat if either

- a) T has more than n collisions
- b) some T_i has a collision

The expected construction time for T is $O(n)$

(we considered this on a previous slide)

The expected construction time for each T_i is $O(n_i^2)$

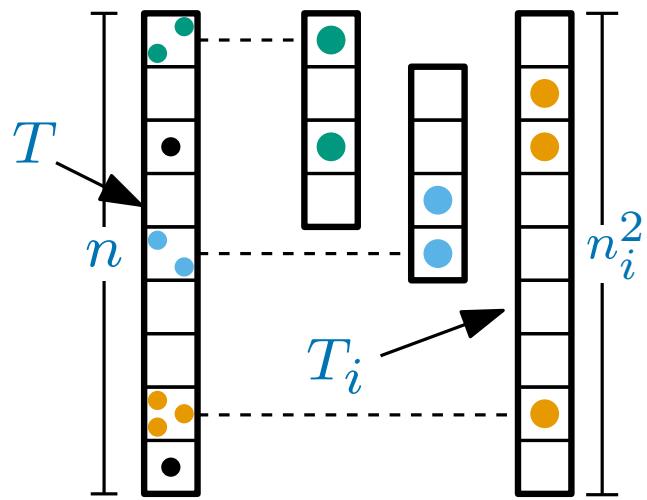
- we insert n_i items into a table of size $m = n_i^2$
- then repeat if there was a collision

(we also considered this on a previous slide)

The overall expected construction time is therefore:

\mathbb{E}

Perfect Hashing - Expected construction time



Step 1: Insert everything into a hash table, T , of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

(Step 3) Immediately repeat if either

- a) T has more than n collisions
- b) some T_i has a collision

The expected construction time for T is $O(n)$

The expected construction time for each T_i is $O(n_i^2)$

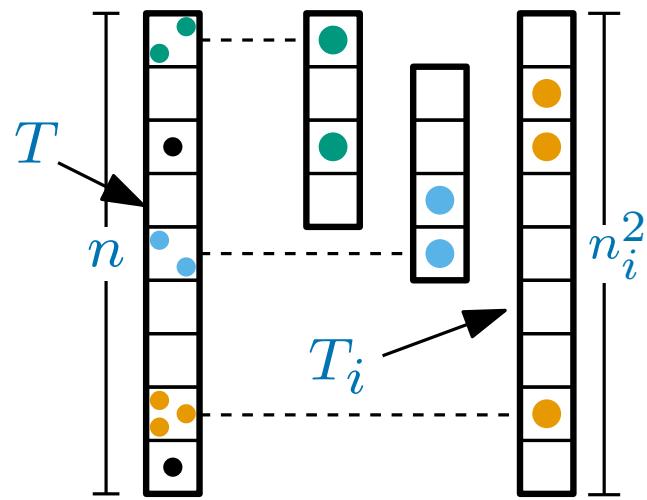
The overall expected construction time is therefore:

\mathbb{E}

=

=

Perfect Hashing - Summary



Step 1: Insert everything into a hash table, T , of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

(Step 3) Immediately repeat if either

- a) T has more than n collisions
- b) some T_i has a collision

THEOREM

The FKS hashing scheme:

- Has no collisions
- Every lookup takes $O(1)$ worst-case time,
- Uses $O(n)$ space,
- Can be built in $O(n)$ expected time.

The look-up time is always $O(1)$

1. Compute $i = h(x)$ (x is the key)
2. Compute $j = h_i(x)$
3. The item is in $T_i[j]$