Advanced Algorithms - COMS31900

Range Minimum Queries

Raphaël Clifford

Slides by Benjamin Sach

Range minimum query

Preprocess an integer array A (length n) to answer range minimum queries...

Range minimum query

Preprocess an integer array A (length n) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\operatorname{RMQ}(i, j)$

Range minimum query

Preprocess an integer array A (length n) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\operatorname{RMQ}(i, j)$
the output is the location of the smallest element in $A[i, j]$

Range minimum query

Preprocess an integer array A (length n) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\mathrm{RMQ}(i, j)$
the output is the location of the smallest element in $A[i, j]$

Range minimum query

Preprocess an integer array A (length n) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\mathrm{RMQ}(i, j)$
the output is the location of the smallest element in $A[i, j]$

Range minimum query

Preprocess an integer array A (length n) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\mathrm{RMQ}(i, j)$
the output is the location of the smallest element in $A[i, j]$

Range minimum query

Preprocess an integer array A (length n) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\mathrm{RMQ}(i, j)$
the output is the location of the smallest element in $A[i, j]$
e.g. $\operatorname{RMQ}(3,7)=6$, which is the location of the smallest element in $A[3,7]$

Range minimum query

Preprocess an integer array A (length n) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\mathrm{RMQ}(i, j)$
the output is the location of the smallest element in $A[i, j]$
e.g. $\mathrm{RMQ}(3,7)=6$, which is the location of the smallest element in $A[3,7]$
e.g. $\operatorname{RMQ}(5,11)=8$, which is the location of the smallest element in $A[5,11]$

Range minimum query

Preprocess an integer array A (length n) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\mathrm{RMQ}(i, j)$
the output is the location of the smallest element in $A[i, j]$
e.g. $\operatorname{RMQ}(3,7)=6$, which is the location of the smallest element in $A[3,7]$
e.g. $\operatorname{RMQ}(5,11)=8$, which is the location of the smallest element in $A[5,11]$

- We will discuss several algorithms which give trade-offs between
space used, prep. time and query time

Range minimum query

Preprocess an integer array A (length n) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\mathrm{RMQ}(i, j)$
the output is the location of the smallest element in $A[i, j]$
e.g. $\operatorname{RMQ}(3,7)=6$, which is the location of the smallest element in $A[3,7]$
e.g. $\operatorname{RMQ}(5,11)=8$, which is the location of the smallest element in $A[5,11]$

- We will discuss several algorithms which give trade-offs between
space used, prep. time and query time
- Ideally we would like $O(n)$ space, $O(n)$ prep. time and $O(1)$ query time

Block decomposition

Block decomposition

smallest from each four

Block decomposition
smallest from each four

Block decomposition

Block decomposition

Block decomposition

Block decomposition

Block decomposition

Block decomposition

Block decomposition

Block decomposition

A_{k} is an array of length $\frac{n}{k}$ so that for all i : $A_{k}[i]=(x, v)$ where v is the minimum in $A[i k,(i+1) k]$ and x is its location in A.

Block decomposition

A_{k} is an array of length $\frac{n}{k}$ so that for all $i: A_{k}[i]=(x, v)$ where v is the minimum in $A[i k,(i+1) k]$ and x is its location in A.

We store A_{k} for all $k=1,2,4,8 \ldots \leqslant n$

Block decomposition

A_{k} is an array of length $\frac{n}{k}$ so that for all $i: A_{k}[i]=(x, v)$ where v is the minimum in $A[i k,(i+1) k]$ and x is its location in A.

We store A_{k} for all $k=1,2,4,8 \ldots \leqslant n$
How much space is this?

Block decomposition

A_{k} is an array of length $\frac{n}{k}$ so that for all $i: A_{k}[i]=(x, v)$
where v is the minimum in $A[i k,(i+1) k]$ and x is its location in A.
We store A_{k} for all $k=1,2,4,8 \ldots \leqslant n$
How much space is this?
$O(n)$ in total

Block decomposition

A_{k} is an array of length $\frac{n}{k}$ so that for all $i: A_{k}[i]=(x, v)$
where v is the minimum in $A[i k,(i+1) k]$ and x is its location in A.
We store A_{k} for all $k=1,2,4,8 \ldots \leqslant n$
How much space is this? $\quad O(n)$ in total

Block decomposition

A_{k} is an array of length $\frac{n}{k}$ so that for all $i: A_{k}[i]=(x, v)$
where v is the minimum in $A[i k,(i+1) k]$ and x is its location in A.
We store A_{k} for all $k=1,2,4,8 \ldots \leqslant n$
How much space is this? $\quad O(n)$ in total

Block decomposition

A_{k} is an array of length $\frac{n}{k}$ so that for all $i: A_{k}[i]=(x, v)$
where v is the minimum in $A[i k,(i+1) k]$ and x is its location in A.
We store A_{k} for all $k=1,2,4,8 \ldots \leqslant n$
How much space is this?
$O(n)$ in total

Block decomposition

A_{k} is an array of length $\frac{n}{k}$ so that for all $i: A_{k}[i]=(x, v)$
where v is the minimum in $A[i k,(i+1) k]$ and x is its location in A.
We store A_{k} for all $k=1,2,4,8 \ldots \leqslant n$
How much space is this? $\quad O(n)$ in total

How quickly can we build them?

Block decomposition

A_{k} is an array of length $\frac{n}{k}$ so that for all $i: A_{k}[i]=(x, v)$
where v is the minimum in $A[i k,(i+1) k]$ and x is its location in A.
We store A_{k} for all $k=1,2,4,8 \ldots \leqslant n$
How much space is this? $\quad O(n)$ in total

How quickly can we build them?

Block decomposition

A_{k} is an array of length $\frac{n}{k}$ so that for all $i: A_{k}[i]=(x, v)$ where v is the minimum in $A[i k,(i+1) k]$ and x is its location in A.

We store A_{k} for all $k=1,2,4,8 \ldots \leqslant n$
How much space is this? $\quad O(n)$ in total

How quickly can we build them?

Block decomposition

A_{k} is an array of length $\frac{n}{k}$ so that for all $i: A_{k}[i]=(x, v)$
where v is the minimum in $A[i k,(i+1) k]$ and x is its location in A.
We store A_{k} for all $k=1,2,4,8 \ldots \leqslant n$
How much space is this? $\quad O(n)$ in total

How quickly can we build them?

$O(n)$ preprocessing time

Block decomposition

A_{k} is an array of length $\frac{n}{k}$ so that for all $i: A_{k}[i]=(x, v)$
where v is the minimum in $A[i k,(i+1) k]$ and x is its location in A.
We store A_{k} for all $k=1,2,4,8 \ldots \leqslant n$
How much space is this? $\quad O(n)$ in total

How quickly can we build them?

$O(n)$ preprocessing time

Block decomposition

Find the largest block which
is completely contained within the query interval

Find the largest block which
is completely contained within the query interval

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before
(break ties arbitrarily)

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Block decomposition

Repeat: Find the largest block which
is completely contained within the query interval
but doesn't overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$
\square

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$
\square

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i

$$
R_{4} \text { stores } \mathrm{RMQ}(i, i+3) \text { for all } i
$$

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i

$$
R_{4} \text { stores } \mathrm{RMQ}(i, i+3) \text { for all } i
$$

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i
R_{4} stores $\mathrm{RMQ}(i, i+3)$ for all i
R_{8} stores $\mathrm{RMQ}(i, i+7)$ for all i

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i
R_{4} stores $\mathrm{RMQ}(i, i+3)$ for all i
R_{8} stores $\mathrm{RMQ}(i, i+7)$ for all i

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i
R_{4} stores $\mathrm{RMQ}(i, i+3)$ for all i
R_{8} stores $\mathrm{RMQ}(i, i+7)$ for all i
R_{k} stores $\mathrm{RMQ}(i, i+k-1)$ for all i

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i

$$
\begin{aligned}
& R_{4} \text { stores } \mathrm{RMQ}(i, i+3) \text { for all } i \\
& R_{8} \text { stores } \mathrm{RMQ}(i, i+7) \text { for all } i \\
& R_{k} \text { stores } \mathrm{RMQ}(i, i+k-1) \text { for all } i
\end{aligned}
$$

We build R_{k} for $k=2,4,8,16 \ldots \leqslant n$

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i

$$
\begin{aligned}
& R_{4} \text { stores } \mathrm{RMQ}(i, i+3) \text { for all } i \\
& R_{8} \text { stores } \mathrm{RMQ}(i, i+7) \text { for all } i \\
& R_{k} \text { stores } \mathrm{RMQ}(i, i+k-1) \text { for all } i
\end{aligned}
$$

We build R_{k} for $k=2,4,8,16 \ldots \leqslant n$
each of the $O(\log n)$ arrays uses $O(n)$ space

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i

$$
\begin{aligned}
& R_{4} \text { stores } \mathrm{RMQ}(i, i+3) \text { for all } i \\
& R_{8} \text { stores } \mathrm{RMQ}(i, i+7) \text { for all } i \\
& R_{k} \text { stores } \mathrm{RMQ}(i, i+k-1) \text { for all } i
\end{aligned}
$$

We build R_{k} for $k=2,4,8,16 \ldots \leqslant n$
each of the $O(\log n)$ arrays uses $O(n)$ space so $O(n \log n)$ total space

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i
We build R_{2} from A in $O(n)$ time

$$
\begin{aligned}
& R_{4} \text { stores } \mathrm{RMQ}(i, i+3) \text { for all } i \\
& R_{8} \text { stores } \mathrm{RMQ}(i, i+7) \text { for all } i \\
& R_{k} \text { stores } \mathrm{RMQ}(i, i+k-1) \text { for all } i
\end{aligned}
$$

We build R_{k} for $k=2,4,8,16 \ldots \leqslant n$
each of the $O(\log n)$ arrays uses $O(n)$ space so $O(n \log n)$ total space

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i
We build R_{2} from A in $O(n)$ time

$$
\begin{aligned}
& R_{4} \text { stores } \mathrm{RMQ}(i, i+3) \text { for all } i \\
& R_{8} \text { stores } \mathrm{RMQ}(i, i+7) \text { for all } i \\
& R_{k} \text { stores } \mathrm{RMQ}(i, i+k-1) \text { for all } i
\end{aligned}
$$

We build R_{k} for $k=2,4,8,16 \ldots \leqslant n$
We build $R_{2 k}$ from R_{k} in $O(n)$ time
each of the $O(\log n)$ arrays uses $O(n)$ space so $O(n \log n)$ total space

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i
We build R_{2} from A in $O(n)$ time

$$
\begin{aligned}
& R_{4} \text { stores } \mathrm{RMQ}(i, i+3) \text { for all } i \\
& R_{8} \text { stores } \mathrm{RMQ}(i, i+7) \text { for all } i \\
& R_{k} \text { stores } \mathrm{RMQ}(i, i+k-1) \text { for all } i
\end{aligned}
$$

We build R_{k} for $k=2,4,8,16 \ldots \leqslant n$

We build $R_{2 k}$ from R_{k} in $O(n)$ time how?
each of the $O(\log n)$ arrays uses $O(n)$ space so $O(n \log n)$ total space

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

$A \longrightarrow$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i
We build R_{2} from A in $O(n)$ time

$$
\begin{aligned}
& R_{4} \text { stores } \mathrm{RMQ}(i, i+3) \text { for all } i \\
& R_{8} \text { stores } \mathrm{RMQ}(i, i+7) \text { for all } i \\
& R_{k} \text { stores } \mathrm{RMQ}(i, i+k-1) \text { for all } i
\end{aligned}
$$

We build R_{k} for $k=2,4,8,16 \ldots \leqslant n$
each of the $O(\log n)$ arrays uses $O(n)$ space so $O(n \log n)$ total space

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i
We build R_{2} from A in $O(n)$ time

$$
\begin{aligned}
& R_{4} \text { stores } \mathrm{RMQ}(i, i+3) \text { for all } i \\
& R_{8} \text { stores } \mathrm{RMQ}(i, i+7) \text { for all } i \\
& R_{k} \text { stores } \mathrm{RMQ}(i, i+k-1) \text { for all } i
\end{aligned}
$$

We build R_{k} for $k=2,4,8,16 \ldots \leqslant n$

We build $R_{2 k}$ from R_{k} in $O(n)$ time how?
each of the $O(\log n)$ arrays uses $O(n)$ space so $O(n \log n)$ total space

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i
We build R_{2} from A in $O(n)$ time

$$
\begin{aligned}
& R_{4} \text { stores } \mathrm{RMQ}(i, i+3) \text { for all } i \\
& R_{8} \text { stores } \mathrm{RMQ}(i, i+7) \text { for all } i \\
& R_{k} \text { stores } \mathrm{RMQ}(i, i+k-1) \text { for all } i
\end{aligned}
$$

We build R_{k} for $k=2,4,8,16 \ldots \leqslant n$

$$
\text { We build } R_{2 k} \text { from } R_{k} \text { in } O(n) \text { time }
$$

each of the $O(\log n)$ arrays uses $O(n)$ space so $O(n \log n)$ total space

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i
We build R_{2} from A in $O(n)$ time

$$
\begin{aligned}
& R_{4} \text { stores } \mathrm{RMQ}(i, i+3) \text { for all } i \\
& R_{8} \text { stores } \mathrm{RMQ}(i, i+7) \text { for all } i \\
& R_{k} \text { stores } \mathrm{RMQ}(i, i+k-1) \text { for all } i
\end{aligned}
$$

We build R_{k} for $k=2,4,8,16 \ldots \leqslant n$
We build $R_{2 k}$ from R_{k} in $O(n)$ time
each of the $O(\log n)$ arrays uses $O(n)$ space so $O(n \log n)$ total space

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

$A \longrightarrow$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i
We build R_{2} from A in $O(n)$ time

$$
\begin{aligned}
& R_{4} \text { stores } \mathrm{RMQ}(i, i+3) \text { for all } i \\
& R_{8} \text { stores } \mathrm{RMQ}(i, i+7) \text { for all } i \\
& R_{k} \text { stores } \mathrm{RMQ}(i, i+k-1) \text { for all } i
\end{aligned}
$$

We build R_{k} for $k=2,4,8,16 \ldots \leqslant n$
each of the $O(\log n)$ arrays uses $O(n)$ space so $O(n \log n)$ total space

More space, faster queries

Key Idea precompute the answers for every interval of length $2,4,8,16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i
We build R_{2} from A in $O(n)$ time

$$
\begin{aligned}
& R_{4} \text { stores } \mathrm{RMQ}(i, i+3) \text { for all } i \\
& R_{8} \text { stores } \mathrm{RMQ}(i, i+7) \text { for all } i \\
& R_{k} \text { stores } \mathrm{RMQ}(i, i+k-1) \text { for all } i
\end{aligned}
$$

We build R_{k} for $k=2,4,8,16 \ldots \leqslant n$

We build $R_{2 k}$ from R_{k} in $O(n)$ time how?
each of the $O(\log n)$ arrays uses $O(n)$ space so $O(n \log n)$ total space

More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, $16 \ldots$

The array R_{2} stores $\mathrm{RMQ}(i, i+1)$ for all i
We build R_{2} from A in $O(n)$ time

$$
\begin{aligned}
& R_{4} \text { stores } \mathrm{RMQ}(i, i+3) \text { for all } i \\
& R_{8} \text { stores } \mathrm{RMQ}(i, i+7) \text { for all } i \\
& R_{k} \text { stores } \mathrm{RMQ}(i, i+k-1) \text { for all } i
\end{aligned}
$$

We build R_{k} for $k=2,4,8,16 \ldots \leqslant n$
We build $R_{2 k}$ from R_{k} in $O(n)$ time
how?
each of the $O(\log n)$ arrays uses $O(n)$ space so $O(n \log n)$ total space

More space, faster queries

R_{k} stores $\mathrm{RMQ}(i, i+k-1)$ for all i,
we build R_{k} for $k=2,4,8,16 \ldots \leqslant n$

How do we compute $\mathrm{RMQ}(i, j)$?

If the interval length, $\ell=(j-i+1)$, is a power-of-two - just look up the answer

More space, faster queries

R_{k} stores $\mathrm{RMQ}(i, i+k-1)$ for all i,
we build R_{k} for $k=2,4,8,16 \ldots \leqslant n$

How do we compute $\mathrm{RMQ}(i, j)$?

If the interval length, $\ell=(j-i+1)$, is a power-of-two - just look up the answer

More space, faster queries

R_{k} stores $\mathrm{RMQ}(i, i+k-1)$ for all i,
we build R_{k} for $k=2,4,8,16 \ldots \leqslant n$

How do we compute $\mathrm{RMQ}(i, j)$?

If the interval length, $\ell=(j-i+1)$, is a power-of-two - just look up the answer these queries take $O(1)$ time

More space, faster queries

R_{k} stores $\mathrm{RMQ}(i, i+k-1)$ for all i,
we build R_{k} for $k=2,4,8,16 \ldots \leqslant n$

How do we compute $\mathrm{RMQ}(i, j)$?

If the interval length, $\ell=(j-i+1)$, is a power-of-two - just look up the answer these queries take $O(1)$ time

Otherwise, find the $k=2,4,8,16 \ldots$ such that $k \leqslant \ell<2 k$

More space, faster queries

R_{k} stores $\mathrm{RMQ}(i, i+k-1)$ for all i,
we build R_{k} for $k=2,4,8,16 \ldots \leqslant n$

How do we compute $\mathrm{RMQ}(i, j)$?

If the interval length, $\ell=(j-i+1)$, is a power-of-two - just look up the answer these queries take $O(1)$ time

Otherwise, find the $k=2,4,8,16 \ldots$ such that $k \leqslant \ell<2 k$

More space, faster queries

R_{k} stores $\mathrm{RMQ}(i, i+k-1)$ for all i,
we build R_{k} for $k=2,4,8,16 \ldots \leqslant n$

How do we compute $\mathrm{RMQ}(i, j)$?

If the interval length, $\ell=(j-i+1)$, is a power-of-two - just look up the answer these queries take $O(1)$ time

Otherwise, find the $k=2,4,8,16 \ldots$ such that $k \leqslant \ell<2 k$
Compute the minimum of $\operatorname{RMQ}(i, i+k-1)$ and $\operatorname{RMQ}(j-k+1, j)$

More space, faster queries

How do we compute $\operatorname{RMQ}(i, j)$?

If the interval length, $\ell=(j-i+1)$, is a power-of-two - just look up the answer these queries take $O(1)$ time

Otherwise, find the $k=2,4,8,16 \ldots$ such that $k \leqslant \ell<2 k$
Compute the minimum of $\operatorname{RMQ}(i, i+k-1)$ and $\operatorname{RMQ}(j-k+1, j)$ (these two queries take $O(1)$ time)

More space, faster queries

How do we compute $\operatorname{RMQ}(i, j)$?

If the interval length, $\ell=(j-i+1)$, is a power-of-two - just look up the answer these queries take $O(1)$ time

Otherwise, find the $k=2,4,8,16 \ldots$ such that $k \leqslant \ell<2 k$
Compute the minimum of $\operatorname{RMQ}(i, i+k-1)$ and $\operatorname{RMQ}(j-k+1, j)$ (these two queries take $O(1)$ time)

More space, faster queries

How do we compute $\operatorname{RMQ}(i, j)$?

If the interval length, $\ell=(j-i+1)$, is a power-of-two - just look up the answer these queries take $O(1)$ time

Otherwise, find the $k=2,4,8,16 \ldots$ such that $k \leqslant \ell<2 k$
Compute the minimum of $\operatorname{RMQ}(i, i+k-1)$ and $\operatorname{RMQ}(j-k+1, j)$ (these two queries take $O(1)$ time)

This takes $O(1)$ time but why does it work?

More space, faster queries

R_{k} stores $\mathrm{RMQ}(i, i+k-1)$ for all i, we build R_{k} for $k=2,4,8,16 \ldots \leqslant n$

$A \square$

How do we compute $\mathrm{RMQ}(i, j)$?

If the interval length, $\ell=(j-i+1)$, is a power-of-two - just look up the answer these queries take $O(1)$ time

Otherwise, find the $k=2,4,8,16 \ldots$ such that $k \leqslant \ell<2 k$
Compute the minimum of $\operatorname{RMQ}(i, i+k-1)$ and $\operatorname{RMQ}(j-k+1, j)$
(these two queries take $O(1)$ time)
This takes $O(1)$ time but why does it work?

More space, faster queries

R_{k} stores $\mathrm{RMQ}(i, i+k-1)$ for all i, we build R_{k} for $k=2,4,8,16 \ldots \leqslant n$

How do we compute $\mathrm{RMQ}(i, j)$?

If the interval length, $\ell=(j-i+1)$, is a power-of-two - just look up the answer these queries take $O(1)$ time

Otherwise, find the $k=2,4,8,16 \ldots$ such that $k \leqslant \ell<2 k$
Compute the minimum of $\operatorname{RMQ}(i, i+k-1)$ and $\operatorname{RMQ}(j-k+1, j)$ (these two queries take $O(1)$ time)

This takes $O(1)$ time but why does it work?

More space, faster queries

R_{k} stores $\mathrm{RMQ}(i, i+k-1)$ for all i, we build R_{k} for $k=2,4,8,16 \ldots \leqslant n$

How do we compute $\mathrm{RMQ}(i, j)$?

If the interval length, $\ell=(j-i+1)$, is a power-of-two - just look up the answer these queries take $O(1)$ time

Otherwise, find the $k=2,4,8,16 \ldots$ such that $k \leqslant \ell<2 k$
Compute the minimum of $\operatorname{RMQ}(i, i+k-1)$ and $\operatorname{RMQ}(j-k+1, j)$ (these two queries take $O(1)$ time)

This takes $O(1)$ time but why does it work?

More space, faster queries

R_{k} stores $\mathrm{RMQ}(i, i+k-1)$ for all i, we build R_{k} for $k=2,4,8,16 \ldots \leqslant n$

How do we compute $\operatorname{RMQ}(i, j)$?

If the interval length, $\ell=(j-i+1)$, is a power-of-two - just look up the answer these queries take $O(1)$ time

Otherwise, find the $k=2,4,8,16 \ldots$ such that $k \leqslant \ell<2 k$
Compute the minimum of $\operatorname{RMQ}(i, i+k-1)$ and $\operatorname{RMQ}(j-k+1, j)$ (these two queries take $O(1)$ time)

This takes $O(1)$ time but why does it work?

More space, faster queries

How do we compute $\mathrm{RMQ}(i, j)$?

If the interval length, $\ell=(j-i+1)$, is a power-of-two - just look up the answer these queries take $O(1)$ time

Otherwise, find the $k=2,4,8,16 \ldots$ such that $k \leqslant \ell<2 k$
Compute the minimum of $\operatorname{RMQ}(i, i+k-1)$ and $\operatorname{RMQ}(j-k+1, j)$ (these two queries take $O(1)$ time)

This takes $O(1)$ time but why does it work?

Range minimum query (intermediate) summary

Preprocess an integer array A (length n) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\mathrm{RMQ}(i, j)$
the output is the location of the smallest element in $A[i, j]$

Range minimum query (intermediate) summary

Preprocess an integer array A (length n) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\mathrm{RMQ}(i, j)$
the output is the location of the smallest element in $A[i, j]$

Solution 1

$O(n)$ space
$O(n)$ prep time
$O(\log n)$ query time

Solution 2

$O(n \log n)$ space
$O(n \log n)$ prep time
$O(1)$ query time

Range minimum query (intermediate) summary

Preprocess an integer array A (length n) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\mathrm{RMQ}(i, j)$
the output is the location of the smallest element in $A[i, j]$

Solution 1

$O(n)$ space
$O(n)$ prep time
$O(\log n)$ query time

Can we do better?

Solution 2

$O(n \log n)$ space
$O(n \log n)$ prep time
$O(1)$ query time

Range minimum query (intermediate) summary

Preprocess an integer array A (length n) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\mathrm{RMQ}(i, j)$
the output is the location of the smallest element in $A[i, j]$

Solution 1

$O(n)$ space
$O(n)$ prep time
$O(\log n)$ query time

Can we do better?

Solution 2

$O(n \log n)$ space
$O(n \log n)$ prep time
$O(1)$ query time

Low-resolution RMQ

Key Idea replace A with a smaller, ‘Iow resolution' array H

Low-resolution RMQ
Key Idea replace A with a smaller, 'Iow resolution' array H

A

H

Low-resolution RMQ
Key Idea replace A with a smaller, 'Iow resolution' array H

A

H

Low-resolution RMQ
Key Idea replace A with a smaller, ‘Iow resolution' array H

Low-resolution RMQ
Key Idea replace A with a smaller, 'Iow resolution' array H

$$
\tilde{n}=\frac{n}{\log n}
$$

Low-resolution RMQ
Key Idea replace A with a smaller, 'Iow resolution' array H

A

H

Key Idea replace A with a smaller, 'low resolution' array H

$$
\tilde{n}=\frac{n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

A

H

Key Idea replace A with a smaller, 'low resolution' array H

$$
\tilde{n}=\frac{n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

A

H

Key Idea replace A with a smaller, 'low resolution' array H

$$
\tilde{n}=\frac{n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

Key Idea replace A with a smaller, 'low resolution' array H

$$
\tilde{n}=\frac{n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

A

H

Key Idea replace A with a smaller, 'Iow resolution' array H and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

H

Preprocess the array H (which has length $\tilde{n}=\frac{n}{\log n}$) to answer RMQs...

Key Idea replace A with a smaller, 'Iow resolution' array H and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

H

Preprocess the array H (which has length $\tilde{n}=\frac{n}{\log n}$) to answer RMQs... using Solution 2

$$
\tilde{n}=\frac{n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

H

Preprocess the array H (which has length $\tilde{n}=\frac{n}{\log n}$) to answer RMQs... Recall...

Solution 2 on A
$O(n \log n)$ space
$O(n \log n)$ prep time
$O(1)$ query time

$$
\tilde{n}=\frac{n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

H

Preprocess the array H (which has length $\tilde{n}=\frac{n}{\log n}$) to answer RMQs...
Recall. . .
using Solution 2

Solution 2 on A
$O(n \log n)$ space
$O(n \log n)$ prep time
$O(1)$ query time

$$
\tilde{n}=\frac{n}{\log n}
$$ and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

H

Preprocess the array H (which has length $\tilde{n}=\frac{n}{\log n}$) to answer RMQs... Recall...
using Solution 2

Solution 2 on A
$O(n \log n)$ space
$O(n \log n)$ prep time
$O(1)$ query time

Solution 2 on H
$O(\tilde{n} \log \tilde{n})$ space
$O(\tilde{n} \log \tilde{n})$ prep time
$O(1)$ query time

$$
\tilde{n}=\frac{n}{\log n}
$$ and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

H

Preprocess the array H (which has length $\tilde{n}=\frac{n}{\log n}$) to answer RMQs... Recall...

using Solution 2

Solution 2 on A
$O(n \log n)$ space
$O(n \log n)$ prep time
$O(1)$ query time

Solution 2 on H
$O(\tilde{n} \log \tilde{n})$ space $=O\left(\left(\frac{n}{\log n}\right) \log \left(\frac{n}{\log n}\right)\right)$
$O(\tilde{n} \log \tilde{n})$ prep time
$O(1)$ query time

Key Idea replace A with a smaller, 'low resolution' array H and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

H

Preprocess the array H (which has length $\tilde{n}=\frac{n}{\log n}$) to answer RMQs... Recall...

using Solution 2

Solution 2 on A
$O(n \log n)$ space
$O(n \log n)$ prep time
$O(1)$ query time

Solution 2 on H
$O(\tilde{n} \log \tilde{n})$ space $=O\left(\left(\frac{n}{\log n}\right) \log \left(\frac{n}{\log n}\right)\right)=O(n)$
$O(\tilde{n} \log \tilde{n})$ prep time
$O(1)$ query time

Key Idea replace A with a smaller, 'low resolution' array H and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

H

Preprocess the array H (which has length $\tilde{n}=\frac{n}{\log n}$) to answer RMQs... Recall...

using Solution 2

Solution 2 on A
$O(n \log n)$ space
$O(n \log n)$ prep time
$O(1)$ query time

Solution 2 on H
$O(\tilde{n} \log \tilde{n})$ space $=O\left(\left(\frac{n}{\log n}\right) \log \left(\frac{n}{\log n}\right)\right)=O(n)$
$O(\tilde{n} \log \tilde{n})$ prep time $=O(n)$
$O(1)$ query time

Key Idea replace A with a smaller, 'low resolution' array H
Key ldea replace A with a smaller, $l o w r e s o l u t i o n ~ a r r a y ~ H ~$ and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

H

Preprocess the array H (which has length $\tilde{n}=\frac{n}{\log n}$) to answer RMQs...
Recall...
using Solution 2 in $O(n)$ space/prep time

Solution 2 on A
$O(n \log n)$ space
$O(n \log n)$ prep time
$O(1)$ query time

Solution 2 on H
$O(\tilde{n} \log \tilde{n})$ space $=O\left(\left(\frac{n}{\log n}\right) \log \left(\frac{n}{\log n}\right)\right)=O(n)$
$O(\tilde{n} \log \tilde{n})$ prep time $=O(n)$
$O(1)$ query time

Key Idea replace A with a smaller, 'Iow resolution' array H and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

H

Preprocess the array H (which has length $\tilde{n}=\frac{n}{\log n}$) to answer RMQs... using Solution 2 in $O(n)$ space/prep time

Key Idea replace A with a smaller, 'low resolution' array H

Key Idea replace A with a smaller, 'Iow resolution' array H and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

H

Preprocess the array H (which has length $\tilde{n}=\frac{n}{\log n}$) to answer RMQs... using Solution $\mathbf{2}$ in $O(n)$ space/prep time

Preprocess each array L_{i} (which has length $\log n$) to answer RMQs...
using Solution 2

Solution 2 on L_{i}
$O((\log n) \log \log n))$ space/prep time $\quad O(1)$ query time

Key Idea replace A with a smaller, 'Iow resolution' array H and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

H

Preprocess the array H (which has length $\tilde{n}=\frac{n}{\log n}$) to answer RMQs... using Solution 2 in $O(n)$ space/prep time

Preprocess each array L_{i} (which has length $\log n$) to answer RMQs... using Solution 2 in $O(\log n \log \log n)$ space/prep time

Solution 2 on L_{i}
$O((\log n) \log \log n))$ space/prep time $\quad O(1)$ query time

Key Idea replace A with a smaller, 'Iow resolution' array H and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

H

Preprocess the array H (which has length $\tilde{n}=\frac{n}{\log n}$) to answer RMQs... using Solution 2 in $O(n)$ space/prep time

Preprocess each array L_{i} (which has length $\log n$) to answer RMQs... using Solution 2 in $O(\log n \log \log n)$ space/prep time

Total space $=O(n)+O(\tilde{n} \log n \log \log n)$

Key Idea replace A with a smaller, 'Iow resolution' array H and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

H

Preprocess the array H (which has length $\tilde{n}=\frac{n}{\log n}$) to answer RMQs...
using Solution 2 in $O(n)$ space/prep time
Preprocess each array L_{i} (which has length $\log n$) to answer RMQs... using Solution 2 in $O(\log n \log \log n)$ space/prep time

Key Idea replace A with a smaller, 'Iow resolution' array H and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

H

Preprocess the array H (which has length $\tilde{n}=\frac{n}{\log n}$) to answer RMQs...
using Solution 2 in $O(n)$ space/prep time
Preprocess each array L_{i} (which has length $\log n$) to answer RMQs... using Solution 2 in $O(\log n \log \log n)$ space/prep time

Key Idea replace A with a smaller, 'low resolution' array H
Key ldea replace A with a smaller, $l o w r e s o l u t i o n ~ a r r a y ~ H ~$ and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

H

Preprocess the array H (which has length $\tilde{n}=\frac{n}{\log n}$) to answer RMQs... using Solution 2 in $O(n)$ space/prep time

Preprocess each array L_{i} (which has length $\log n$) to answer RMQs... using Solution 2 in $O(\log n \log \log n)$ space/prep time

Total space $=O(n)+O(\tilde{n} \log n \log \log n)=O(n \log \log n)$

Key Idea replace A with a smaller, 'low resolution' array H and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

H

Preprocess the array H (which has length $\tilde{n}=\frac{n}{\log n}$) to answer RMQs... using Solution 2 in $O(n)$ space/prep time

Preprocess each array L_{i} (which has length $\log n$) to answer RMQs... using Solution 2 in $O(\log n \log \log n)$ space/prep time

Total space $=O(n)+O(\tilde{n} \log n \log \log n)=O(n \log \log n)$
Total prep. time $=O(n \log \log n)$

Key Idea replace A with a smaller, 'low resolution' array H

$$
\tilde{n}=\frac{n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

A

H

Key Idea replace A with a smaller, 'Iow resolution' array H and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

H

How do we answer a query in A ?

Key Idea replace A with a smaller, 'low resolution' array H

$$
\tilde{n}=\frac{n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

How do we answer a query in A ?

$$
\tilde{n}=\frac{n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

How do we answer a query in A ?
Do at most one query in $H \ldots$
and one query in at most two different L_{i}
then take the smallest

$$
\tilde{n}=\frac{n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

How do we answer a query in A ?
Do at most one query in $H \ldots$
and one query in at most two different L_{i}
then take the smallest

Key Idea replace A with a smaller, 'Iow resolution' array H

$$
\tilde{n}=\frac{n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

How do we answer a query in A ?
Do at most one query in $H \ldots$
and one query in at most two different L_{i}
then take the smallest

Key Idea replace A with a smaller, 'Iow resolution' array H

$$
\tilde{n}=\frac{n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

How do we answer a query in A ?

$$
i^{\prime}=\left\lceil\frac{i}{\log n}\right\rceil \quad j^{\prime}=\left\lfloor\frac{j}{\log n}\right\rfloor
$$

Do at most one query in $H \ldots$
and one query in at most two different L_{i}
then take the smallest

$$
\tilde{n}=\frac{n}{\log n}
$$

Key Idea replace A with a smaller, 'low resolution' array H
and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

How do we answer a query in A ?
Do at most one query in $H \ldots$
and one query in at most two different L_{i}
 then take the smallest

Key Idea replace A with a smaller, 'Iow resolution' array H

$$
\tilde{n}=\frac{n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

How do we answer a query in A ?

$$
i^{\prime}=\left\lceil\frac{i}{\log n}\right\rceil \quad j^{\prime}=\left\lfloor\frac{j}{\log n}\right\rfloor
$$

Do at most one query in $H \ldots$
and one query in at most two different L_{i}
then take the smallest

Key Idea replace A with a smaller, 'low resolution' array H

$$
\tilde{n}=\frac{n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

How do we answer a query in A ?

$$
i^{\prime}=\left\lceil\frac{i}{\log n}\right\rceil \quad j^{\prime}=\left\lfloor\frac{j}{\log n}\right\rfloor
$$

Do at most one query in $H \ldots$
and one query in at most two different L_{i}
then take the smallest

Key Idea replace A with a smaller, 'Iow resolution' array H

$$
\tilde{n}=\frac{n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

How do we answer a query in A ?

$$
i^{\prime}=\left\lceil\frac{i}{\log n}\right\rceil \quad j^{\prime}=\left\lfloor\frac{j}{\log n}\right\rfloor
$$

Do at most one query in $H \ldots$
and one query in at most two different L_{i}
then take the smallest

Key Idea replace A with a smaller, 'Iow resolution' array H

$$
\tilde{n}=\frac{n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

How do we answer a query in A ?

$$
i^{\prime}=\left\lceil\frac{i}{\log n}\right\rceil \quad j^{\prime}=\left\lfloor\frac{j}{\log n}\right\rfloor
$$

Do at most one query in $H \ldots$
and one query in at most two different L_{i} (here we query L_{1} and L_{5})
then take the smallest

$$
\tilde{n}=\frac{n}{\log n}
$$

Key Idea replace A with a smaller, 'low resolution' array H
and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

How do we answer a query in A ?

$$
i^{\prime}=\left\lceil\frac{i}{\log n}\right\rceil \quad j^{\prime}=\left\lfloor\frac{j}{\log n}\right\rfloor
$$

Do at most one query in $H \ldots$
and one query in at most two different L_{i} (here we query L_{1} and L_{5}) then take the smallest

$$
\tilde{n}=\frac{n}{\log n}
$$

Key Idea replace A with a smaller, 'low resolution' array H
and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

How do we answer a query in A ?

$$
i^{\prime}=\left\lceil\frac{i}{\log n}\right\rceil \quad j^{\prime}=\left\lfloor\frac{j}{\log n}\right\rfloor
$$

Do at most one query in $H \ldots$
and one query in at most two different L_{i} (here we query L_{1} and L_{5}) then take the smallest

Key Idea replace A with a smaller, 'Iow resolution' array H

$$
\tilde{n}=\frac{n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

How do we answer a query in A ?

$$
i^{\prime}=\left\lceil\frac{i}{\log n}\right\rceil \quad j^{\prime}=\left\lfloor\frac{j}{\log n}\right\rfloor
$$

Do at most one query in $H \ldots$
and one query in at most two different L_{i} (here we query L_{1} and L_{5}) then take the smallest

Solution 3

$O(n \log \log n)$ space
$O(n \log \log n)$ prep time
$O(1)$ query time

Key Idea replace A with a smaller, 'Iow resolution' array H

$$
\tilde{n}=\frac{n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

How do we answer a query in A ?

$$
i^{\prime}=\left\lceil\frac{i}{\log n}\right\rceil \quad j^{\prime}=\left\lfloor\frac{j}{\log n}\right\rfloor
$$

Do at most one query in $H \ldots$
and one query in at most two different L_{i} (here we query L_{1} and L_{5}) then take the smallest This takes $O(1)$ total query time

Solution 4

$O(n \log \log \log n)$ space
$O(n \log \log \log n)$ prep time
$O(1)$ query time

Key Idea replace A with a smaller, 'Iow resolution' array H

$$
\tilde{n}=\frac{n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

How do we answer a query in A ?

$$
i^{\prime}=\left\lceil\frac{i}{\log n}\right\rceil \quad j^{\prime}=\left\lfloor\frac{j}{\log n}\right\rfloor
$$

Do at most one query in $H \ldots$
and one query in at most two different L_{i} (here we query L_{1} and L_{5}) then take the smallest This takes $O(1)$ total query time

Solution 4

how?
$O(n \log \log \log n)$ space $\quad O(n \log \log \log n)$ prep time $\quad O(1)$ query time

Range minimum query summary

Preprocess an integer array A (length n) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\mathrm{RMQ}(i, j)$
the output is the location of the smallest element in $A[i, j]$

Solution $\mathbf{1}$
$O(n)$ space
$O(n)$ prep time
$O(\log n)$ query time

Solution 3

$O(n \log \log n)$ space
$O(n \log \log n)$ prep time $O(1)$ query time

Solution 2

$O(n \log n)$ space
$O(n \log n)$ prep time
$O(1)$ query time

Range minimum query summary

Preprocess an integer array A (length n) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\mathrm{RMQ}(i, j)$
the output is the location of the smallest element in $A[i, j]$

Solution 1

$O(n)$ space
$O(n)$ prep time
$O(\log n)$ query time

Solution 3

$O(n \log \log n)$ space
$O(n \log \log n)$ prep time
$O(1)$ query time

Solution 2

$O(n \log n)$ space
$O(n \log n)$ prep time
$O(1)$ query time

Can we do $O(n)$ space and $O(1)$ query time?

Range minimum query summary

Preprocess an integer array A (length n) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\mathrm{RMQ}(i, j)$
the output is the location of the smallest element in $A[i, j]$

Solution 1

$O(n)$ space
$O(n)$ prep time
$O(\log n)$ query time

Solution 3

$O(n \log \log n)$ space
$O(n \log \log n)$ prep time
$O(1)$ query time

Solution 2

$O(n \log n)$ space
$O(n \log n)$ prep time
$O(1)$ query time

Range minimum query summary

Preprocess an integer array A (length n) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\mathrm{RMQ}(i, j)$
the output is the location of the smallest element in $A[i, j]$

Solution 1

$O(n)$ space
$O(n)$ prep time
$O(\log n)$ query time

Solution 3

$O(n \log \log n)$ space
$O(n \log \log n)$ prep time
$O(1)$ query time

Solution 2

$O(n \log n)$ space
$O(n \log n)$ prep time
$O(1)$ query time

