
Advanced Algorithms – COMS31900

Range Minimum Queries

Raphaël Clifford

Slides by Benjamin Sach



Range minimum query

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n
17 823 73 51 82 19 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Range minimum query

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

17 823 73 51 82 19 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Range minimum query

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

the output is the location of the smallest element in A[i, j]

17 823 73 51 82 19 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Range minimum query

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

the output is the location of the smallest element in A[i, j]

17 823 73 51 82 19 32 5 67 91 14 46

i = 3 j = 7

9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Range minimum query

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

the output is the location of the smallest element in A[i, j]

17 823 73 51 82 19 32 5 67 91 14 46

i = 3 j = 7

19 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Range minimum query

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

the output is the location of the smallest element in A[i, j]

17 823 73 51 82 19 32 5 67 91 14 46

i = 3 j = 7

RMQ(3, 7) = 6

19 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Range minimum query

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

the output is the location of the smallest element in A[i, j]

17 823 73 51 82 19 32 5 67 91 14 46

e.g. RMQ(3, 7) = 6, which is the location of the smallest element in A[3, 7]

i = 3 j = 7

RMQ(3, 7) = 6

19 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Range minimum query

i = 5 j = 11

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

the output is the location of the smallest element in A[i, j]

17 823 73 51 82 19 32 5 67 91 14 46

e.g. RMQ(3, 7) = 6, which is the location of the smallest element in A[3, 7]

RMQ(5, 11) = 8

e.g. RMQ(5, 11) = 8, which is the location of the smallest element in A[5, 11]

9 21 545

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Range minimum query

i = 5 j = 11

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

the output is the location of the smallest element in A[i, j]

17 823 73 51 82 19 32 5 67 91 14 46

e.g. RMQ(3, 7) = 6, which is the location of the smallest element in A[3, 7]

RMQ(5, 11) = 8

e.g. RMQ(5, 11) = 8, which is the location of the smallest element in A[5, 11]

• We will discuss several algorithms which give trade-offs between

space used, prep. time and query time

9 21 545

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Range minimum query

i = 5 j = 11

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

the output is the location of the smallest element in A[i, j]

17 823 73 51 82 19 32 5 67 91 14 46

e.g. RMQ(3, 7) = 6, which is the location of the smallest element in A[3, 7]

RMQ(5, 11) = 8

e.g. RMQ(5, 11) = 8, which is the location of the smallest element in A[5, 11]

• We will discuss several algorithms which give trade-offs between

space used, prep. time and query time

• Ideally we would like O(n) space, O(n) prep. time and O(1) query time

9 21 545

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

19



Block decomposition

smallest from each pair

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

19



Block decomposition

smallest from each pair

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

19



Block decomposition

smallest from each pair

19A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

smallest from each four

1919



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

smallest from each four

1919



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

smallest from each eight

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

smallest from each eight

8 19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

Ak is an array of length n
k so that for all i: Ak[i] = (x, v)

where v is the minimum in A[ik, (i+ 1)k] and x is its location in A.

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

Ak is an array of length n
k so that for all i: Ak[i] = (x, v)

where v is the minimum in A[ik, (i+ 1)k] and x is its location in A.

We store Ak for all k = 1, 2, 4, 8 . . . 6 n

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

Ak is an array of length n
k so that for all i: Ak[i] = (x, v)

where v is the minimum in A[ik, (i+ 1)k] and x is its location in A.

We store Ak for all k = 1, 2, 4, 8 . . . 6 n

How much space is this?

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

Ak is an array of length n
k so that for all i: Ak[i] = (x, v)

where v is the minimum in A[ik, (i+ 1)k] and x is its location in A.

We store Ak for all k = 1, 2, 4, 8 . . . 6 n

How much space is this? O(n) in total

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

Ak is an array of length n
k so that for all i: Ak[i] = (x, v)

where v is the minimum in A[ik, (i+ 1)k] and x is its location in A.

We store Ak for all k = 1, 2, 4, 8 . . . 6 n

How much space is this? O(n) in total

n
2

n
4

n
8

n
16

+

+

+

+

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

Ak is an array of length n
k so that for all i: Ak[i] = (x, v)

where v is the minimum in A[ik, (i+ 1)k] and x is its location in A.

We store Ak for all k = 1, 2, 4, 8 . . . 6 n

How much space is this? O(n) in total

n
2

n
4

n
8

n
16

+

+

+

+

O(n)

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

Ak is an array of length n
k so that for all i: Ak[i] = (x, v)

where v is the minimum in A[ik, (i+ 1)k] and x is its location in A.

We store Ak for all k = 1, 2, 4, 8 . . . 6 n

How much space is this? O(n) in total

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

Ak is an array of length n
k so that for all i: Ak[i] = (x, v)

where v is the minimum in A[ik, (i+ 1)k] and x is its location in A.

We store Ak for all k = 1, 2, 4, 8 . . . 6 n

How much space is this? O(n) in total

How quickly can we build them?

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

Ak is an array of length n
k so that for all i: Ak[i] = (x, v)

where v is the minimum in A[ik, (i+ 1)k] and x is its location in A.

We store Ak for all k = 1, 2, 4, 8 . . . 6 n

How much space is this? O(n) in total

How quickly can we build them?

construct the Ak

arrays bottom-up

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

Ak is an array of length n
k so that for all i: Ak[i] = (x, v)

where v is the minimum in A[ik, (i+ 1)k] and x is its location in A.

We store Ak for all k = 1, 2, 4, 8 . . . 6 n

How much space is this? O(n) in total

How quickly can we build them?

compute this from

these in O(1) time

construct the Ak

arrays bottom-up

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

Ak is an array of length n
k so that for all i: Ak[i] = (x, v)

where v is the minimum in A[ik, (i+ 1)k] and x is its location in A.

We store Ak for all k = 1, 2, 4, 8 . . . 6 n

How much space is this? O(n) in total

How quickly can we build them? O(n) preprocessing time

compute this from

these in O(1) time

construct the Ak

arrays bottom-up

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

Ak is an array of length n
k so that for all i: Ak[i] = (x, v)

where v is the minimum in A[ik, (i+ 1)k] and x is its location in A.

We store Ak for all k = 1, 2, 4, 8 . . . 6 n

How much space is this? O(n) in total

How quickly can we build them? O(n) preprocessing time

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

RMQ(1,9)

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

RMQ(1,9)

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

RMQ(1,9)

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

RMQ(1,9)

Repeat:

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

RMQ(1,9)

Repeat:

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

RMQ(1,9)

Repeat:

(break ties arbitrarily)

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

RMQ(1,9)

Repeat:

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

RMQ(1,9)

Repeat:

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

RMQ(1,9)

Repeat:

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

RMQ(1,9)

Repeat:

How many blocks do we pick?

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Repeat:

How many blocks do we pick?

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Repeat:

How many blocks do we pick?

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Repeat:

How many blocks do we pick?

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Repeat:

How many blocks do we pick?

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Repeat:

How many blocks do we pick?

19

never three
in a row



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Repeat:

How many blocks do we pick?

19

never three
in a row



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Repeat:

How many blocks do we pick?

at most 2 blocks of each size

19

never three
in a row



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Repeat:

How many blocks do we pick?

at most 2 blocks of each size

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Repeat:

How many blocks do we pick?

at most 2 blocks of each size

19

never two on
one side



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Repeat:

How many blocks do we pick?

at most 2 blocks of each size

19

never two on
one side



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Repeat:

How many blocks do we pick?

at most 2 blocks of each size

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Repeat:

How many blocks do we pick?

at most 2 blocks of each size

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Repeat:

How many blocks do we pick?

at most 2 blocks of each size

19

no gaps



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Repeat:

How many blocks do we pick?

at most 2 blocks of each size

19

no gaps



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

Repeat:

How many blocks do we pick?

at most 2 blocks of each size

19

10,000 foot view

no valleys

no plateaus



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

RMQ(1,9)

Repeat:

How many blocks do we pick?

at most 2 blocks of each size

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

RMQ(1,9)

Repeat:

How many blocks do we pick?

at most 2 blocks of each size

There are O(logn) sizes

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

RMQ(1,9)

Repeat:

How many blocks do we pick?

at most 2 blocks of each size

There are O(logn) sizes

Picking the blocks from

Ak takes O(1) time

19



Block decomposition

A

n

17 823 73 51 82 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 6 8 11 13 14

17 8 51 19 5 14 9 21

2 6 8 13

8 19 5 9

2 8

8 5

8

5

A2

A4

A8

A16

How do we find RMQ(i,j)?

Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks
because they cover the query

RMQ(1,9)

Repeat:

How many blocks do we pick?

at most 2 blocks of each size

There are O(logn) sizes

Picking the blocks from

Ak takes O(1) time

So we have . . . O(n) space,

O(n) prep time

O(logn) query time

19



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

2

The array R2 stores RMQ(i, i+ 1) for all i

A



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

2



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

2



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

2



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

2



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

2



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

2



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

2



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

2



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

2



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

2



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

2
stored in R2



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

R4 stores RMQ(i, i+ 3) for all i

2
stored in R2



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

R4 stores RMQ(i, i+ 3) for all i

2
stored in R2

4
stored in R4



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

R4 stores RMQ(i, i+ 3) for all i

R8 stores RMQ(i, i+ 7) for all i

2
stored in R2

4
stored in R4



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

R4 stores RMQ(i, i+ 3) for all i

R8 stores RMQ(i, i+ 7) for all i

2
stored in R2

4
stored in R4

8
stored in R8



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

R4 stores RMQ(i, i+ 3) for all i

R8 stores RMQ(i, i+ 7) for all i

Rk stores RMQ(i, i+ k − 1) for all i

2
stored in R2

4
stored in R4

8
stored in R8



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

We build Rk for k = 2, 4, 8, 16 . . . 6 n

R4 stores RMQ(i, i+ 3) for all i

R8 stores RMQ(i, i+ 7) for all i

Rk stores RMQ(i, i+ k − 1) for all i

2
stored in R2

4
stored in R4

8
stored in R8



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

We build Rk for k = 2, 4, 8, 16 . . . 6 n

R4 stores RMQ(i, i+ 3) for all i

R8 stores RMQ(i, i+ 7) for all i

Rk stores RMQ(i, i+ k − 1) for all i

each of the O(logn) arrays uses O(n) space

2
stored in R2

4
stored in R4

8
stored in R8



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

We build Rk for k = 2, 4, 8, 16 . . . 6 n

R4 stores RMQ(i, i+ 3) for all i

R8 stores RMQ(i, i+ 7) for all i

Rk stores RMQ(i, i+ k − 1) for all i

each of the O(logn) arrays uses O(n) space

so O(n logn) total space

2
stored in R2

4
stored in R4

8
stored in R8



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

We build Rk for k = 2, 4, 8, 16 . . . 6 n

R4 stores RMQ(i, i+ 3) for all i

R8 stores RMQ(i, i+ 7) for all i

Rk stores RMQ(i, i+ k − 1) for all i

each of the O(logn) arrays uses O(n) space

so O(n logn) total space

2
stored in R2

4
stored in R4

8
stored in R8

We build R2 from A in O(n) time



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

We build Rk for k = 2, 4, 8, 16 . . . 6 n

R4 stores RMQ(i, i+ 3) for all i

R8 stores RMQ(i, i+ 7) for all i

Rk stores RMQ(i, i+ k − 1) for all i

each of the O(logn) arrays uses O(n) space

so O(n logn) total space

2
stored in R2

4
stored in R4

8
stored in R8

We build R2 from A in O(n) time

We build R2k from Rk in O(n) time



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

We build Rk for k = 2, 4, 8, 16 . . . 6 n

R4 stores RMQ(i, i+ 3) for all i

R8 stores RMQ(i, i+ 7) for all i

Rk stores RMQ(i, i+ k − 1) for all i

each of the O(logn) arrays uses O(n) space

so O(n logn) total space

2
stored in R2

4
stored in R4

8
stored in R8

We build R2 from A in O(n) time

We build R2k from Rk in O(n) time

how?



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

We build Rk for k = 2, 4, 8, 16 . . . 6 n

R4 stores RMQ(i, i+ 3) for all i

R8 stores RMQ(i, i+ 7) for all i

Rk stores RMQ(i, i+ k − 1) for all i

each of the O(logn) arrays uses O(n) space

so O(n logn) total space

We build R2 from A in O(n) time

We build R2k from Rk in O(n) time

how?



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

We build Rk for k = 2, 4, 8, 16 . . . 6 n

R4 stores RMQ(i, i+ 3) for all i

R8 stores RMQ(i, i+ 7) for all i

Rk stores RMQ(i, i+ k − 1) for all i

each of the O(logn) arrays uses O(n) space

so O(n logn) total space

We build R2 from A in O(n) time

We build R2k from Rk in O(n) time

how?

2k

k k



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

We build Rk for k = 2, 4, 8, 16 . . . 6 n

R4 stores RMQ(i, i+ 3) for all i

R8 stores RMQ(i, i+ 7) for all i

Rk stores RMQ(i, i+ k − 1) for all i

each of the O(logn) arrays uses O(n) space

so O(n logn) total space

We build R2 from A in O(n) time

We build R2k from Rk in O(n) time

how?

2k

k k

the min in here



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

We build Rk for k = 2, 4, 8, 16 . . . 6 n

R4 stores RMQ(i, i+ 3) for all i

R8 stores RMQ(i, i+ 7) for all i

Rk stores RMQ(i, i+ k − 1) for all i

each of the O(logn) arrays uses O(n) space

so O(n logn) total space

We build R2 from A in O(n) time

We build R2k from Rk in O(n) time

how?

2k

k k

the min in here

is the min of these two mins
(which we have in Rk )



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

We build Rk for k = 2, 4, 8, 16 . . . 6 n

R4 stores RMQ(i, i+ 3) for all i

R8 stores RMQ(i, i+ 7) for all i

Rk stores RMQ(i, i+ k − 1) for all i

each of the O(logn) arrays uses O(n) space

so O(n logn) total space

We build R2 from A in O(n) time

We build R2k from Rk in O(n) time

how?



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

We build Rk for k = 2, 4, 8, 16 . . . 6 n

R4 stores RMQ(i, i+ 3) for all i

R8 stores RMQ(i, i+ 7) for all i

Rk stores RMQ(i, i+ k − 1) for all i

each of the O(logn) arrays uses O(n) space

so O(n logn) total space

2
stored in R2

4
stored in R4

8
stored in R8

We build R2 from A in O(n) time

We build R2k from Rk in O(n) time

how?



More space, faster queries

Key Idea precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array R2 stores RMQ(i, i+ 1) for all i

A

We build Rk for k = 2, 4, 8, 16 . . . 6 n

R4 stores RMQ(i, i+ 3) for all i

R8 stores RMQ(i, i+ 7) for all i

Rk stores RMQ(i, i+ k − 1) for all i

each of the O(logn) arrays uses O(n) space

so O(n logn) total space

2
stored in R2

4
stored in R4

8
stored in R8

We build R2 from A in O(n) time

We build R2k from Rk in O(n) time

how?

This takes O(n logn) prep time



More space, faster queries

A

2
stored in R2

4
stored in R4

8
stored in R8

we build Rk for k = 2, 4, 8, 16 . . . 6 n

Rk stores RMQ(i, i+ k − 1) for all i,

How do we compute RMQ(i, j)?

If the interval length, ` = (j − i+ 1), is a power-of-two - just look up the answer



More space, faster queries

A

2
stored in R2

4
stored in R4

8
stored in R8

we build Rk for k = 2, 4, 8, 16 . . . 6 n

Rk stores RMQ(i, i+ k − 1) for all i,

How do we compute RMQ(i, j)?

If the interval length, ` = (j − i+ 1), is a power-of-two - just look up the answer

8
stored in R8



More space, faster queries

A

2
stored in R2

4
stored in R4

8
stored in R8

we build Rk for k = 2, 4, 8, 16 . . . 6 n

Rk stores RMQ(i, i+ k − 1) for all i,

How do we compute RMQ(i, j)?

If the interval length, ` = (j − i+ 1), is a power-of-two - just look up the answer

these queries take O(1) time

8
stored in R8



More space, faster queries

A

2
stored in R2

4
stored in R4

8
stored in R8

we build Rk for k = 2, 4, 8, 16 . . . 6 n

Rk stores RMQ(i, i+ k − 1) for all i,

How do we compute RMQ(i, j)?

If the interval length, ` = (j − i+ 1), is a power-of-two - just look up the answer

these queries take O(1) time

Otherwise, find the k = 2, 4, 8, 16 . . . such that k 6 ` < 2k



More space, faster queries

A

2
stored in R2

4
stored in R4

8
stored in R8

we build Rk for k = 2, 4, 8, 16 . . . 6 n

Rk stores RMQ(i, i+ k − 1) for all i,

How do we compute RMQ(i, j)?

If the interval length, ` = (j − i+ 1), is a power-of-two - just look up the answer

these queries take O(1) time

Otherwise, find the k = 2, 4, 8, 16 . . . such that k 6 ` < 2k



More space, faster queries

A

2
stored in R2

4
stored in R4

8
stored in R8

we build Rk for k = 2, 4, 8, 16 . . . 6 n

Rk stores RMQ(i, i+ k − 1) for all i,

How do we compute RMQ(i, j)?

If the interval length, ` = (j − i+ 1), is a power-of-two - just look up the answer

these queries take O(1) time

Otherwise, find the k = 2, 4, 8, 16 . . . such that k 6 ` < 2k
Compute the minimum of RMQ(i, i+ k − 1) and RMQ(j − k + 1, j)



More space, faster queries

A

2
stored in R2

4
stored in R4

8
stored in R8

we build Rk for k = 2, 4, 8, 16 . . . 6 n

Rk stores RMQ(i, i+ k − 1) for all i,

How do we compute RMQ(i, j)?

If the interval length, ` = (j − i+ 1), is a power-of-two - just look up the answer

these queries take O(1) time

Otherwise, find the k = 2, 4, 8, 16 . . . such that k 6 ` < 2k
Compute the minimum of RMQ(i, i+ k − 1) and RMQ(j − k + 1, j)

(these two queries take O(1) time)



More space, faster queries

A

2
stored in R2

4
stored in R4

8
stored in R8

we build Rk for k = 2, 4, 8, 16 . . . 6 n

Rk stores RMQ(i, i+ k − 1) for all i,

How do we compute RMQ(i, j)?

If the interval length, ` = (j − i+ 1), is a power-of-two - just look up the answer

these queries take O(1) time

Otherwise, find the k = 2, 4, 8, 16 . . . such that k 6 ` < 2k
Compute the minimum of RMQ(i, i+ k − 1) and RMQ(j − k + 1, j)

(these two queries take O(1) time)



More space, faster queries

A

2
stored in R2

4
stored in R4

8
stored in R8

we build Rk for k = 2, 4, 8, 16 . . . 6 n

Rk stores RMQ(i, i+ k − 1) for all i,

How do we compute RMQ(i, j)?

If the interval length, ` = (j − i+ 1), is a power-of-two - just look up the answer

these queries take O(1) time

Otherwise, find the k = 2, 4, 8, 16 . . . such that k 6 ` < 2k
Compute the minimum of RMQ(i, i+ k − 1) and RMQ(j − k + 1, j)

(these two queries take O(1) time)

This takes O(1) time but why does it work?



More space, faster queries

A

we build Rk for k = 2, 4, 8, 16 . . . 6 n

Rk stores RMQ(i, i+ k − 1) for all i,

How do we compute RMQ(i, j)?

If the interval length, ` = (j − i+ 1), is a power-of-two - just look up the answer

these queries take O(1) time

Otherwise, find the k = 2, 4, 8, 16 . . . such that k 6 ` < 2k
Compute the minimum of RMQ(i, i+ k − 1) and RMQ(j − k + 1, j)

(these two queries take O(1) time)

This takes O(1) time but why does it work?



More space, faster queries

A

we build Rk for k = 2, 4, 8, 16 . . . 6 n

Rk stores RMQ(i, i+ k − 1) for all i,

How do we compute RMQ(i, j)?

If the interval length, ` = (j − i+ 1), is a power-of-two - just look up the answer

these queries take O(1) time

Otherwise, find the k = 2, 4, 8, 16 . . . such that k 6 ` < 2k
Compute the minimum of RMQ(i, i+ k − 1) and RMQ(j − k + 1, j)

(these two queries take O(1) time)

This takes O(1) time but why does it work?

i j`



More space, faster queries

A

we build Rk for k = 2, 4, 8, 16 . . . 6 n

Rk stores RMQ(i, i+ k − 1) for all i,

How do we compute RMQ(i, j)?

If the interval length, ` = (j − i+ 1), is a power-of-two - just look up the answer

these queries take O(1) time

Otherwise, find the k = 2, 4, 8, 16 . . . such that k 6 ` < 2k
Compute the minimum of RMQ(i, i+ k − 1) and RMQ(j − k + 1, j)

(these two queries take O(1) time)

This takes O(1) time but why does it work?

i j`

k
k



More space, faster queries

A

we build Rk for k = 2, 4, 8, 16 . . . 6 n

Rk stores RMQ(i, i+ k − 1) for all i,

How do we compute RMQ(i, j)?

If the interval length, ` = (j − i+ 1), is a power-of-two - just look up the answer

these queries take O(1) time

Otherwise, find the k = 2, 4, 8, 16 . . . such that k 6 ` < 2k
Compute the minimum of RMQ(i, i+ k − 1) and RMQ(j − k + 1, j)

(these two queries take O(1) time)

This takes O(1) time but why does it work?

i j`

k
k

these overlap

because 2k > `



More space, faster queries

A

we build Rk for k = 2, 4, 8, 16 . . . 6 n

Rk stores RMQ(i, i+ k − 1) for all i,

How do we compute RMQ(i, j)?

If the interval length, ` = (j − i+ 1), is a power-of-two - just look up the answer

these queries take O(1) time

Otherwise, find the k = 2, 4, 8, 16 . . . such that k 6 ` < 2k
Compute the minimum of RMQ(i, i+ k − 1) and RMQ(j − k + 1, j)

(these two queries take O(1) time)

This takes O(1) time but why does it work?

i j`

k
k

these overlap

because 2k > `

the min is either in

here or in here



Range minimum query (intermediate) summary

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

the output is the location of the smallest element in A[i, j]

17 823 73 51 82 19 32 5 67 91 14 46

i = 3 j = 7

RMQ(3, 7) = 6

19 9 21 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Range minimum query (intermediate) summary

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

the output is the location of the smallest element in A[i, j]

17 823 73 51 82 19 32 5 67 91 14 46

i = 3 j = 7

RMQ(3, 7) = 6

19 9 21 54

Solution 1

O(n) space

O(n) prep time

O(logn) query time

Solution 2

O(n logn) space

O(n logn) prep time

O(1) query time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Range minimum query (intermediate) summary

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

the output is the location of the smallest element in A[i, j]

17 823 73 51 82 19 32 5 67 91 14 46

i = 3 j = 7

RMQ(3, 7) = 6

19 9 21 54

Can we do better?
Solution 1

O(n) space

O(n) prep time

O(logn) query time

Solution 2

O(n logn) space

O(n logn) prep time

O(1) query time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Range minimum query (intermediate) summary

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

the output is the location of the smallest element in A[i, j]

17 823 73 51 82 19 32 5 67 91 14 46

i = 3 j = 7

RMQ(3, 7) = 6

19 9 21 54

Can we do better?
Solution 1

O(n) space

O(n) prep time

O(logn) query time

Solution 2

O(n logn) space

O(n logn) prep time

O(1) query time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(yes)



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

n



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

n



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

n

ñ = n
logn



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

log n

n

ñ = n
logn



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

log n

the smallest of these

is stored here

n

ñ = n
logn



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

n

ñ = n
logn



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

all of these

are stored here

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

Preprocess the array H (which has length ñ = n
logn ) to answer RMQs. . .

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

Preprocess the array H (which has length ñ = n
logn ) to answer RMQs. . .

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

using Solution 2

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

Preprocess the array H (which has length ñ = n
logn ) to answer RMQs. . .

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

using Solution 2

Solution 2 on A

O(n logn) prep time

O(1) query time

O(n logn) space

Recall . . .

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

Preprocess the array H (which has length ñ = n
logn ) to answer RMQs. . .

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

using Solution 2

Solution 2 on A

O(n logn) prep time

O(1) query time

O(n logn) space

Recall . . .

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

Preprocess the array H (which has length ñ = n
logn ) to answer RMQs. . .

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

using Solution 2

Solution 2 on A

O(n logn) prep time

O(1) query time

O(n logn) space

Recall . . .

Solution 2 on H

O(ñ log ñ) prep time

O(1) query time

O(ñ log ñ) space

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

Preprocess the array H (which has length ñ = n
logn ) to answer RMQs. . .

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

using Solution 2

Solution 2 on A

O(n logn) prep time

O(1) query time

O(n logn) space

Recall . . .

Solution 2 on H

O(ñ log ñ) prep time

O(1) query time

O(ñ log ñ) space = O
((

n
logn

)
log
(

n
logn

))

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

Preprocess the array H (which has length ñ = n
logn ) to answer RMQs. . .

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

using Solution 2

Solution 2 on A

O(n logn) prep time

O(1) query time

O(n logn) space

Recall . . .

Solution 2 on H

O(ñ log ñ) prep time

O(1) query time

O(ñ log ñ) space = O
((

n
logn

)
log
(

n
logn

))
= O(n)

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

Preprocess the array H (which has length ñ = n
logn ) to answer RMQs. . .

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

using Solution 2

Solution 2 on A

O(n logn) prep time

O(1) query time

O(n logn) space

Recall . . .

Solution 2 on H

O(ñ log ñ) prep time

O(1) query time

O(ñ log ñ) space = O
((

n
logn

)
log
(

n
logn

))
= O(n)

= O(n)

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

Preprocess the array H (which has length ñ = n
logn ) to answer RMQs. . .

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

using Solution 2

Solution 2 on A

O(n logn) prep time

O(1) query time

O(n logn) space

Recall . . .

Solution 2 on H

O(ñ log ñ) prep time

O(1) query time

O(ñ log ñ) space = O
((

n
logn

)
log
(

n
logn

))
= O(n)

= O(n)

in O(n) space/prep time

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

Preprocess the array H (which has length ñ = n
logn ) to answer RMQs. . .

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

using Solution 2 in O(n) space/prep time

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

Preprocess the array H (which has length ñ = n
logn ) to answer RMQs. . .

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

using Solution 2 in O(n) space/prep time

Preprocess each array Li (which has length logn) to answer RMQs. . .

using Solution 2

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

Preprocess the array H (which has length ñ = n
logn ) to answer RMQs. . .

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

using Solution 2 in O(n) space/prep time

Preprocess each array Li (which has length logn) to answer RMQs. . .

using Solution 2

Solution 2 on Li

O(1) query timeO((logn) log logn)) space/prep time

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

Preprocess the array H (which has length ñ = n
logn ) to answer RMQs. . .

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

using Solution 2 in O(n) space/prep time

Preprocess each array Li (which has length logn) to answer RMQs. . .

using Solution 2 in O(logn log logn) space/prep time

Solution 2 on Li

O(1) query timeO((logn) log logn)) space/prep time

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

Preprocess the array H (which has length ñ = n
logn ) to answer RMQs. . .

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

using Solution 2 in O(n) space/prep time

Preprocess each array Li (which has length logn) to answer RMQs. . .

using Solution 2 in O(logn log logn) space/prep time

Total space = O(n) +O(ñ logn log logn)

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

Preprocess the array H (which has length ñ = n
logn ) to answer RMQs. . .

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

using Solution 2 in O(n) space/prep time

Preprocess each array Li (which has length logn) to answer RMQs. . .

using Solution 2 in O(logn log logn) space/prep time

Total space = O(n) +O(ñ logn log logn)

space for RMQ structures

for all the Li arrays
space for RMQ structure for H

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

Preprocess the array H (which has length ñ = n
logn ) to answer RMQs. . .

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

using Solution 2 in O(n) space/prep time

Preprocess each array Li (which has length logn) to answer RMQs. . .

using Solution 2 in O(logn log logn) space/prep time

Total space = O(n) +O(ñ logn log logn)

space for RMQ structures

for all the Li arrays
space for RMQ structure for H

= O(n log logn)

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

Preprocess the array H (which has length ñ = n
logn ) to answer RMQs. . .

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

using Solution 2 in O(n) space/prep time

Preprocess each array Li (which has length logn) to answer RMQs. . .

using Solution 2 in O(logn log logn) space/prep time

Total space = O(n) +O(ñ logn log logn) = O(n log logn)

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

Preprocess the array H (which has length ñ = n
logn ) to answer RMQs. . .

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

using Solution 2 in O(n) space/prep time

Preprocess each array Li (which has length logn) to answer RMQs. . .

using Solution 2 in O(logn log logn) space/prep time

Total space = O(n) +O(ñ logn log logn) = O(n log logn)

Total prep. time = O(n log logn)

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

How do we answer a query in A?

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

i j

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

How do we answer a query in A?

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

i j

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

How do we answer a query in A?

Do at most one query in H . . .

and one query in at most two different Li

then take the smallest

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

i j

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

How do we answer a query in A?

Do at most one query in H . . .

and one query in at most two different Li

then take the smallest

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

i j

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

How do we answer a query in A?

Do at most one query in H . . .

and one query in at most two different Li

then take the smallest

i′ j′

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

i j

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

How do we answer a query in A?

Do at most one query in H . . .

and one query in at most two different Li

then take the smallest

i′ =
⌈

i
logn

⌉
j′ =

⌊
j

logn

⌋i′ j′

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

i j

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

How do we answer a query in A?

Do at most one query in H . . .

and one query in at most two different Li

then take the smallest

i′ =
⌈

i
logn

⌉
j′ =

⌊
j

logn

⌋i′ j′

indices into H

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

i j

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

How do we answer a query in A?

Do at most one query in H . . .

and one query in at most two different Li

then take the smallest

i′ =
⌈

i
logn

⌉
j′ =

⌊
j

logn

⌋i′ j′

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

i j

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

How do we answer a query in A?

Do at most one query in H . . .

and one query in at most two different Li

then take the smallest

i′ =
⌈

i
logn

⌉
j′ =

⌊
j

logn

⌋i′ j′

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

i j

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

How do we answer a query in A?

Do at most one query in H . . .

and one query in at most two different Li

then take the smallest

i′ =
⌈

i
logn

⌉
j′ =

⌊
j

logn

⌋i′ j′

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

i j

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

How do we answer a query in A?

Do at most one query in H . . .

and one query in at most two different Li (here we query L1 and L5)

then take the smallest

i′ =
⌈

i
logn

⌉
j′ =

⌊
j

logn

⌋i′ j′

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

i j

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

How do we answer a query in A?

Do at most one query in H . . .

and one query in at most two different Li (here we query L1 and L5)

This takes O(1) total query timethen take the smallest

i′ =
⌈

i
logn

⌉
j′ =

⌊
j

logn

⌋i′ j′

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

i j

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

How do we answer a query in A?

Do at most one query in H . . .

and one query in at most two different Li (here we query L1 and L5)

This takes O(1) total query timethen take the smallest

i′ =
⌈

i
logn

⌉
j′ =

⌊
j

logn

⌋i′ j′

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

i j

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

How do we answer a query in A?

Do at most one query in H . . .

and one query in at most two different Li (here we query L1 and L5)

This takes O(1) total query timethen take the smallest

i′ =
⌈

i
logn

⌉
j′ =

⌊
j

logn

⌋i′ j′

Solution 3

O(n log logn) space O(n log logn) prep time O(1) query time

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

i j

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

How do we answer a query in A?

Do at most one query in H . . .

and one query in at most two different Li (here we query L1 and L5)

This takes O(1) total query timethen take the smallest

i′ =
⌈

i
logn

⌉
j′ =

⌊
j

logn

⌋i′ j′

Solution 4

O(n log log logn) space O(n log log logn) prep time O(1) query time

L0
L1

L2
L3

L4
L5 Lñ



Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

i j

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

How do we answer a query in A?

Do at most one query in H . . .

and one query in at most two different Li (here we query L1 and L5)

This takes O(1) total query timethen take the smallest

i′ =
⌈

i
logn

⌉
j′ =

⌊
j

logn

⌋i′ j′

Solution 4

O(n log log logn) space O(n log log logn) prep time O(1) query time

how?

L0
L1

L2
L3

L4
L5 Lñ



Range minimum query summary

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

the output is the location of the smallest element in A[i, j]

17 823 73 51 82 19 32 5 67 91 14 46

i = 3 j = 7

RMQ(3, 7) = 6

19 9 21 54

Solution 1

O(n) space

O(n) prep time

O(logn) query time

Solution 2

O(n logn) space

O(n logn) prep time

O(1) query time

Solution 3

O(n log logn) space

O(n log logn) prep time

O(1) query time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Range minimum query summary

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

the output is the location of the smallest element in A[i, j]

17 823 73 51 82 19 32 5 67 91 14 46

i = 3 j = 7

RMQ(3, 7) = 6

19 9 21 54

Can we do O(n) space and O(1) query time?

Solution 1

O(n) space

O(n) prep time

O(logn) query time

Solution 2

O(n logn) space

O(n logn) prep time

O(1) query time

Solution 3

O(n log logn) space

O(n log logn) prep time

O(1) query time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Range minimum query summary

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

the output is the location of the smallest element in A[i, j]

17 823 73 51 82 19 32 5 67 91 14 46

i = 3 j = 7

RMQ(3, 7) = 6

19 9 21 54

Can we do O(n) space and O(1) query time? Yes. . .

Solution 1

O(n) space

O(n) prep time

O(logn) query time

Solution 2

O(n logn) space

O(n logn) prep time

O(1) query time

Solution 3

O(n log logn) space

O(n log logn) prep time

O(1) query time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Range minimum query summary

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

the output is the location of the smallest element in A[i, j]

17 823 73 51 82 19 32 5 67 91 14 46

i = 3 j = 7

RMQ(3, 7) = 6

19 9 21 54

Can we do O(n) space and O(1) query time? Yes. . . but not until next lecture

Solution 1

O(n) space

O(n) prep time

O(logn) query time

Solution 2

O(n logn) space

O(n logn) prep time

O(1) query time

Solution 3

O(n log logn) space

O(n log logn) prep time

O(1) query time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15


