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Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ
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ñ = n
logn

using Solution 2

Solution 2 on A

O(n logn) prep time

O(1) query time

O(n logn) space

Recall . . .

L0
L1

L2
L3

L4
L5 Lñ
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ñ = n
logn

using Solution 2 in O(n) space/prep time

Preprocess each array Li (which has length logn) to answer RMQs. . .

using Solution 2 in O(logn log logn) space/prep time

Total space = O(n) +O(ñ logn log logn)
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ñ

Preprocess the array H (which has length ñ = n
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ñ

and many small arrays L0, L1, L2 . . . ‘for the details’

n
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ñ = n
logn

How do we answer a query in A?

Do at most one query in H . . .

and one query in at most two different Li

then take the smallest

i′ =
⌈

i
logn

⌉
j′ =

⌊
j

logn

⌋i′ j′

L0
L1

L2
L3

L4
L5 Lñ
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ñ = n
logn

How do we answer a query in A?

Do at most one query in H . . .

and one query in at most two different Li

then take the smallest

i′ =
⌈

i
logn

⌉
j′ =

⌊
j

logn

⌋i′ j′

L0
L1

L2
L3

L4
L5 Lñ
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Key Idea replace A with a smaller, ‘low resolution’ array H
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Key Idea replace A with a smaller, ‘low resolution’ array H
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and many small arrays L0, L1, L2 . . . ‘for the details’
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How do we answer a query in A?

Do at most one query in H . . .

and one query in at most two different Li (here we query L1 and L5)
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Solution 3

O(n log logn) space O(n log logn) prep time O(1) query time
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Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H
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and many small arrays L0, L1, L2 . . . ‘for the details’
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How do we answer a query in A?

Do at most one query in H . . .

and one query in at most two different Li (here we query L1 and L5)

This takes O(1) total query timethen take the smallest
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Low-resolution RMQ

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H
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i j

and many small arrays L0, L1, L2 . . . ‘for the details’

n

ñ = n
logn

How do we answer a query in A?

Do at most one query in H . . .

and one query in at most two different Li (here we query L1 and L5)

This takes O(1) total query timethen take the smallest
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Solution 4
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Range minimum query summary

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

the output is the location of the smallest element in A[i, j]

17 823 73 51 82 19 32 5 67 91 14 46

i = 3 j = 7

RMQ(3, 7) = 6

19 9 21 54

Solution 1

O(n) space

O(n) prep time

O(logn) query time

Solution 2

O(n logn) space

O(n logn) prep time

O(1) query time

Solution 3

O(n log logn) space

O(n log logn) prep time

O(1) query time
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Range minimum query summary

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

the output is the location of the smallest element in A[i, j]

17 823 73 51 82 19 32 5 67 91 14 46

i = 3 j = 7

RMQ(3, 7) = 6

19 9 21 54

Can we do O(n) space and O(1) query time?

Solution 1

O(n) space

O(n) prep time

O(logn) query time

Solution 2

O(n logn) space

O(n logn) prep time

O(1) query time

Solution 3

O(n log logn) space

O(n log logn) prep time

O(1) query time
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Range minimum query summary

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

the output is the location of the smallest element in A[i, j]

17 823 73 51 82 19 32 5 67 91 14 46

i = 3 j = 7

RMQ(3, 7) = 6

19 9 21 54

Can we do O(n) space and O(1) query time? Yes. . .

Solution 1

O(n) space

O(n) prep time

O(logn) query time

Solution 2
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O(1) query time

Solution 3
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O(n log logn) prep time

O(1) query time
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Range minimum query summary

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

the output is the location of the smallest element in A[i, j]

17 823 73 51 82 19 32 5 67 91 14 46

i = 3 j = 7

RMQ(3, 7) = 6

19 9 21 54

Can we do O(n) space and O(1) query time? Yes. . . but not until next lecture

Solution 1

O(n) space

O(n) prep time

O(logn) query time

Solution 2

O(n logn) space

O(n logn) prep time

O(1) query time

Solution 3

O(n log logn) space

O(n log logn) prep time

O(1) query time
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