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Probability

The sample space S is the set of outcomes of an experiment.

- EXAMPLE

Amount of money you can win when playing some lottery:
S ={£0, £10, £100, £1000, £10,000, £100,000}.
Pr(£0) = 0.9, Pr(£10) = 0.08, ..., Pr(£100,000) = 0.0001.

For z € S, the probability of -, written Pr(x),

is a real number between 0 and 1,
suchthat > o Pr(z) = 1.

Pr is just’ a function which maps each x € S to Pr(x) € [0, 1]
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Flip a coin until first tail shows up:

S = {T, HT, HHT, HHHT, HHHHT, HHHHHT, . . .

Pr(“It takes 7 coin flips”) = (%)n and
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- EXAMPLE
Flip a coin 3 times: S = {TTT, TTH, THT, HTT, HHT, HTH, THH, HHH }

Foreachx € S, Pr(x) = 3

Define V' to be the event “the first and last coin flips are the same”
in other words, V' = {HHH, HTH, THT, TTT}

What is Pr(V)?

ol —
NO| —

Pr(V) = Pr(HHH) + Pr(HTH) 4 Pr(THT) 4+ Pr(TTT) = 4 X
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A random variable (r.v.) Y over sample space S is a function S — R
i.e. it maps each outcome x € S to some real number Y ().

The probability of Y taking value v is Pr(Y Z Pr(z
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Two coin flips.

S |Y
HH| 2
HT | 1
TH| 5
TT| 2
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Random variable

A random variable (r.v.) Y over sample space S is a function S — R
i.e. it maps each outcome x € S to some real number Y ().

The probability of Y taking value v is Pr(Y Z Pr(z
{x € Sst. Y(x) = y}

EXAMPLE

Two coin flips. The expected value (the mean) of ar.v. Y,

denoted £(Y"), is

= ZY(Q;) Pr(z

x€eS

S
HH

HT
TH
TT

N oo = N




Random variable

A random variable (r.v.) Y over sample space S is a function S — R
i.e. it maps each outcome x € S to some real number Y ().

The probability of Y taking value v is Pr(Y Z Pr(z
{a:GASSLYKx)—-y}

- EXAMPLE
Two coin flips. The expected value (the mean) of ar.v. Y,
Ty denoted £(Y), is
HH | 2
TH| 5 res
TT 2
EY)=02-H+01-H+G-H=1
(Y) = 2) T 1 4/ 2
Pr(Y =2) = %
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- THEOREM (Linearity of expectation)

Let Y7, Yo, ..., Y. be k random variables. Then

E(ij) - ijEm)
1=1 1=1

Linearity of expectation always holds,
(regardless of whether the random variables are independent or not.)

- EXAMPLE
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.."
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Let Y7, Yo, ..., Y. be k random variables. Then
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- THEOREM (Linearity of expectation)

Let Y7, Yo, ..., Y. be k random variables. Then

E(ij) — ijEm)
1=1 1=1

Linearity of expectation always holds,
(regardless of whether the random variables are independent or not.)

- EXAMPLE -
Roll two dice. Let the r.v. Y be the sum of the values. Nae2
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Approach 2: (with the theorem)

Let the r.v. Y7 be the value of the first die and Y5 the value of the second
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- THEOREM (Linearity of expectation)

Let Y7, Yo, ..., Y. be k random variables. Then

E(ij) - ijEm)
1=1 1=1

Linearity of expectation always holds,
(regardless of whether the random variables are independent or not.)

- EXAMPLE

Roll two dice. Let the r.v. Y be the sum of the values. Ne2
What is E(Y")? ‘@
OOQ‘

Approach 2: (with the theorem)
Let the r.v. Y7 be the value of the first die and Y5 the value of the second
E(Y;) = E(Ya) = 3.5
soE(Y) =E(Y] + Ya) = E(Y7) + E(Ya) = 7
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Indicator random variables

An indicator random variable is a r.v. that can only be O or 1.

(usually referred to by the letter I)
Fact: (/) = Pr(/ =1).

Often an indicator r.v. [ is associated with an event such that
I = 1 if the event happens (and / = 0 otherwise).

Indicator random variables and linearity of expectation work great together!

- EXAMPLE
Roll a die 1 times.

What is the expected number rolls that show a value
that is at least the value of the previous roll?

Forj € {2,...,n}, letindicator r.v. /; = 1 if the value of the jth roll
is at least the value of the previous roll (and Ij — (0 otherwise)
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An indicator random variable is a r.v. that can only be O or 1.
(usually referred to by the letter I)
Fact: (/) = Pr(/ =1).

Often an indicator r.v. [ is associated with an event such that
I = 1 if the event happens (and / = 0 otherwise).

Indicator random variables and linearity of expectation work great together!
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- EXAMPLE

Roll a die 7 times. What is the expected number rolls that show a value

that is at least the value of the previous roll?

Forj € {2,...,n}, letindicator r.v. /; = 1 if the value of the jth roll
is at least the value of the previous roll (and Ij — (0 otherwise)
— 21 7 :
Pr(I; = 1) = 35 = 13. (by counting the outcomes)
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An indicator random variable is a r.v. that can only be O or 1.
(usually referred to by the letter I)
Fact: (/) = Pr(/ =1).

Often an indicator r.v. [ is associated with an event such that
I = 1 if the event happens (and / = 0 otherwise).

Indicator random variables and linearity of expectation work great together!

- EXAMPLE

Roll a die 7 times. What is the expected number rolls that show a value

that is at least the value of the previous roll?

Forj € {2,...,n}, letindicator r.v. /; = 1 if the value of the jth roll
is at least the value of the previous roll (and Ij — (0 otherwise)

Pr(l; =1) = 21 — % (by counting the outcomes)
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B(Y8) = S B =S Pl = 1) = (- 1) -
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Indicator random variables
An indicator random variable is a r.v. that can only be O or 1.
(usually referred to by the letter I)
Fact: (/) = Pr(/ =1).

Often an indicator r.v. [ is associated with an event such that

I = 1 if the event happens (and / = 0 otherwise).

Indicator random variables and linearity of expectation work great together!

Linearity of Expectation
Let Y1, Yo, ..., Y. be k random variables. Then Volls that show a value
" " ast the value of the previous roll?
E(ZYL) = E(Y)  of the jth roll
i—=1 i=1 orevious roll (and /; = 0 otherwise)

n n

36
le) — ZE(I]-) = ZPr(Ij — 1) — (n— 1) . l
. =
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is at least the value of the previous roll (and Ij — (0 otherwise)

Pr(l; =1) = 21 — % (by counting the outcomes)

36
B(Y8) = S B =S Pl = 1) = (- 1) -
j=2 J=2

J=2
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- EXAMPLE

Suppose that the average (mean) speed on the motorway is 60 mph.

It then follows that at most

% of all cars drive at least 90 mph,

... otherwise the mean must be higher than 60 mph. (a contradiction)

- THEOREM (Markov’s inequality)
If X is a non-negative r.v., then for all a > 0,
E(X)
P

Pr(X >a) <
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Suppose that the average (mean) speed on the motorway is 60 mph.

It then follows that at most

% of all cars drive at least 90 mph,

... otherwise the mean must be higher than 60 mph. (a contradiction)

- THEOREM (Markov’s inequality)

If X is a non-negative r.v., then for all a > 0,
E(X)
P

Pr(X >a) <

- EXAMPLE

From the example above:

= Pr(speed of a random car > 120 mph) < 16—200 — %

» Pr(speed of arandom car > 90mph) < % — %
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How many people leave with their own hat?
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otherwise Ij = 0.
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How many people leave with their own hat?
For ) & {1, e n} let indicator r.v. Ij — 1 if the Jth person gets their own hat,

otherwise /; = 0.
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]E(X)),

1
n-— = 1.
n

By Markov’s inequality (recall: Pr(X > a) <




B SRt

Markov’s inequality

- EXAMPLE

1. people go to a party, leaving their hats at the door.
Each person leaves with a random hat.

How many people leave with their own hat?

For ) & {1, e n} let indicator r.v. Ij — 1 if the Jth person gets their own hat,
otherwise Ij = 0.

By linearity of expectation. ..

n n n
1
E(le) =Y E(Ij) =) Prlj=1)=n_ =1
j=1 j=1 j=1
By Markov’s inequality (recall: Pr(X > a) < E(f)),

bJ

U=

Pr(5 or more people leaving with their own hats) <
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1. people go to a party, leaving their hats at the door.
Each person leaves with a random hat.

How many people leave with their own hat?
For ) & {1, e n} let indicator r.v. Ij — 1 if the Jth person gets their own hat,

otherwise /; = 0.
By linearity of expectation. ..

E(D 1) = j:ZlE(Ij) = ;Pr(lj = 1)

1
n-— = 1.
. n

J=1

]E(X)),

By Markov’s inequality (recall: Pr(X > a) <

Pr(5 or more people leaving with their own hats) < %

Pr(at least 1 person leaving with their own hat) < % = 1.
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- EXAMPLE

1, people go to a party, leaving their hats at the door.
Each person leaves with a random hat.

How many people leave with their own hat?
For j € {1, e n} let indicator r.v. Ij — 1 if the Jth person gets their own hat,

otherwise /[, =
By linearity of expectation...

E(le) = N"E(I;) = Y Pr(l; = 1)
j=1 j=1 j=1

By Markov's inequality (recall: Pr(X > a) < E(X)

< =2y,

1
n-— = 1.
n

Pr(5 or more people leaving with their own hats) < %

Pr(at least 1 person leaving with their own hat) < % = 1.

(sometimes Markov’s inequality is not particularly informative)

In fact, here it can be shown that as N — 0OQ, the probability that at least

one person leaves with their own hatis 1 — % ~ 0.0632.




Markov’s inequality

- COROLLARY

If X is a non-negative r.v. that only takes integer values, then

Pr(X >0) = Pr(X >1) < E(X).

For an indicator r.v. I, the bound is tight (=), as Pr(1 > 0) = E([).
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Union bound

- THEOREM (union bound)

Let V1, ..., V. be k events. Then

k

Pr(Lka;;) < > Pr(Vi),
1=1

1=1
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Union bound
- THEOREM (union bound)
Let V1, ..., V. be k events. Then
k k
Pr ( L V) N Pr(V;)
1=1

This is the probability at least one of the events happens
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- PROOF
Define indicator r.v. 1 to be 1 if event /; happens, otherwise [, —

Letthe rv. X — Z?Zl Ij be the number of events that happen.

Pr(Uj_, V;) = Pr(X>0) <E(X) = E(F_, 1)) = S5, E(1))

- k
— 2321 Pr(V?

)
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- THEOREM (union bound)
Let V1, ..., V. be k events. Then
k k
Pr((Jvi) < D pr(vp).
1=1 1=1

This bound is tight (=) when the events are all disjoint.
(Vi and V; are disjoint iff V; M V; is empty)

- PROOF
Define indicator r.v. 1 to be 1 if event /; happens, otherwise [, —

Letthe rv. X — Z?Zl Ij be the number of events that happen.
k k k
Pr (szl VJ) =Pr(X>0) <E(X) = E(Zj:l I;) = Zj—l E(1;)

by previous/' — Z?:l PI‘(Vj)

Markov corollary
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Let V1, ..., V. be k events. Then
k k
Pr((Jvi) < D pr(vp).
1=1 1=1

This bound is tight (=) when the events are all disjoint.
(Vi and V; are disjoint iff V; M V; is empty)

- PROOF

Define indicator r.v. 1 to be 1 if event /; happens, otherwise [, —

Letthe rv. X = Z?:l Ij be the number of events that happen. /) - pi(7 = 1)

k k
Pr(Uj=y V) =Pr(X >0 5 ) = E(Zjmr 1) = 2 B
k
by previolis / = > —1 Pr(Vj)
Markov corollary J
Linearity of expectation
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- THEOREM (union bound)
Let V1, ..., V. be k events. Then
k k
Pr((Jvi) < D pr(vp).
1=1 1=1

This bound is tight (=) when the events are all disjoint.
(Vi and V; are disjoint iff V; M V; is empty)

- EXAMPLE
S = {1,...,6} is the set of outcomes of a die roll.
We define two events: 1] = {3, 4}

V2 — {17 27 3}

Pr(ViUVs) < Pr(Vq) +Pr(Va) = = + % _ %

| =
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- THEOREM (union bound)
Let V1, ..., V. be k events. Then
k k
Pr((Jvi) < D pr(vp).
1=1 1=1

This bound is tight (=) when the events are all disjoint.
(Vi and V; are disjoint iff V; M V; is empty)

- EXAMPLE
S = {1,...,6} is the set of outcomes of a die roll. S
We define two events: 1] = {3, 4} @ V2

Vo = {1,2,3} @

Pr(Vl U VQ) < PI‘(Vl) + PI’(VQ) —

|
T2T6

| =

®
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Vo ={1,2,3} RC
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Pr(Vi UVa) < Pr(V4) + Pr(Va) = L + 5 =3 5
in fact, Pr(V1 U Vo) = %
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S = {1,...,6} is the set of outcomes of a die roll.
We define two events: 1] = {3, 4} Vo
Vo ={1,2,3} RC
o\
Pr(Vi UVa) < Pr(V4) + Pr(Va) = L + 5 =3 5

in fact, PI‘(V1 U VQ) — % (3 was ‘double counted’)
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- THEOREM (union bound)

Let V1, ..., V. be k events. Then
k

1=1

Pr(Lka;;) < > Pr(Vi),
1=1

This bound is tight (=) when the events are all disjoint.

(Vi and V; are disjoint iff V; M V; is empty)

- EXAMPLE
S = {1,...,6} is the set of outcomes of a die roll.
We define two events: 1] = {3, 4} Vo
Vo ={1,2,3} RC
o\
Pr(Vi UVa) < Pr(V4) + Pr(Va) = L + 5 =3 5

in fact, PI‘(V1 U VQ) — % (3 was ‘double counted’)

Typically the union bound is used when each Pr(V}) is much smaller than k.
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Summary

The sample space S is the set of outcomes of an experiment.

For z € .S, the probability of x, written Pr(z),is a real number between 0 and 1,
suchthat ) o Pr(z) = 1.

An event is a subset V' of the sample space S, Pr(V') = >, Pr(x)

A random variable (r.v.) Y is a function which maps = € S'to S(x) € R
The probability of Y taking value 7/ is Pr(Y Z Pr(z

{;U € Sst.Y(z) = y}
The expected value (the mean) of Y is E(Y) = > Y(x)-Pr(z
xeS

An indicator random variable is a r.v. that can only be O or 1.
Fact: £(/) = Pr(/ = 1).

- THEOREM (Linearity of expectation) == = THEOREM (union bound) - THEOREM (Markov’s inequality) =

Let Yl, YQ, cee Yk be k random variables then, Let Vl, ey Vk: be k events then, If X is a non-negative r.v., then forall a > 0,

k k k k
B(Y vi)=YEm) [[Pr(UW) < DoPr(vi) || PrX>a) < EX)
1=1 1=1 1=1 1=1

a
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