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Probability

The sample space S is the set of outcomes of an experiment.

For x ∈ S, the probability of x, written Pr(x),

such that
∑
x∈S Pr(x) = 1.

is a real number between 0 and 1,

Pr is ‘just’ a function which maps each x ∈ S to Pr(x) ∈ [0, 1]

Amount of money you can win when playing some lottery:

Pr(£0) = 0.9, Pr(£10) = 0.08, . . . , Pr(£100, 000) = 0.0001.

EXAMPLE

S = {£0,£10,£100,£1000,£10, 000,£100, 000}.
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(
1
2

)n
, and

EXAMPLE

S = {T, HT, HHT, HHHT, HHHHT, HHHHHT, . . . }.

∑∞
n=1

(
1
2

)n
= 1

2 + 1
4 + 1

8 + 1
16 . . . = 1
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Event

An event is a subset V of the sample space S.

Pr(V ) = Pr(HHH) + Pr(HTH) + Pr(THT) + Pr(TTT) = 4× 1
8 = 1

2 .

EXAMPLE

The probability of event V happening, denoted Pr(V ), is

Pr(V ) =
∑
x∈V

Pr(x).

Flip a coin 3 times: S = {TTT, TTH, THT, HTT, HHT, HTH, THH, HHH}
For each x ∈ S, Pr(x) = 1

8

Define V to be the event “the first and last coin flips are the same”
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Linearity of expectation

Let Y1, Y2, . . . , Yk be k random variables. Then

E
( k∑
i=1

Yi

)
=

k∑
i=1

E(Yi)

Linearity of expectation always holds,

THEOREM (Linearity of expectation)

EXAMPLE

(regardless of whether the random variables are independent or not.)

Roll two dice. Let the r.v. Y be the sum of the values.
What is E(Y )?

Approach 2: (with the theorem)

Let the r.v. Y1 be the value of the first die and Y2 the value of the second

E(Y1) = E(Y2) = 3.5

so E(Y ) = E(Y1 + Y2) = E(Y1) + E(Y2) = 7



Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1.

(usually referred to by the letter I )



Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1.

(usually referred to by the letter I )

Fact: E(I) = 0 · Pr(I = 0) + 1 · Pr(I = 1) = Pr(I = 1).



Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1.

(usually referred to by the letter I )

Fact: E(I) = Pr(I = 1).



Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1.

Often an indicator r.v. I is associated with an event such that

(usually referred to by the letter I )

Fact: E(I) = Pr(I = 1).

I = 1 if the event happens (and I = 0 otherwise).



Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1.

Often an indicator r.v. I is associated with an event such that

Indicator random variables and linearity of expectation work great together!

(usually referred to by the letter I )

Fact: E(I) = Pr(I = 1).

I = 1 if the event happens (and I = 0 otherwise).



Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1.

Roll a die n times.

Often an indicator r.v. I is associated with an event such that

Indicator random variables and linearity of expectation work great together!

EXAMPLE

(usually referred to by the letter I )

Fact: E(I) = Pr(I = 1).

I = 1 if the event happens (and I = 0 otherwise).



Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1.

Roll a die n times.

Often an indicator r.v. I is associated with an event such that

Indicator random variables and linearity of expectation work great together!

EXAMPLE

(usually referred to by the letter I )

Fact: E(I) = Pr(I = 1).

I = 1 if the event happens (and I = 0 otherwise).

What is the expected number rolls that show a value
that is at least the value of the previous roll?



Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1.

Roll a die n times.

Often an indicator r.v. I is associated with an event such that

Indicator random variables and linearity of expectation work great together!

EXAMPLE

(usually referred to by the letter I )

Fact: E(I) = Pr(I = 1).

I = 1 if the event happens (and I = 0 otherwise).

What is the expected number rolls that show a value
that is at least the value of the previous roll?

For j ∈ {2, . . . , n}, let indicator r.v. Ij = 1 if the value of the jth roll
is at least the value of the previous roll (and Ij = 0 otherwise)



Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1.

Roll a die n times.

Pr(Ij = 1) = 21
36 = 7

12 . (by counting the outcomes)

Often an indicator r.v. I is associated with an event such that

Indicator random variables and linearity of expectation work great together!

EXAMPLE

(usually referred to by the letter I )

Fact: E(I) = Pr(I = 1).

I = 1 if the event happens (and I = 0 otherwise).

What is the expected number rolls that show a value
that is at least the value of the previous roll?

For j ∈ {2, . . . , n}, let indicator r.v. Ij = 1 if the value of the jth roll
is at least the value of the previous roll (and Ij = 0 otherwise)



Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1.

Roll a die n times.

Pr(Ij = 1) = 21
36 = 7

12 . (by counting the outcomes)

Often an indicator r.v. I is associated with an event such that

Indicator random variables and linearity of expectation work great together!

EXAMPLE

(usually referred to by the letter I )

Fact: E(I) = Pr(I = 1).

I = 1 if the event happens (and I = 0 otherwise).

What is the expected number rolls that show a value
that is at least the value of the previous roll?

For j ∈ {2, . . . , n}, let indicator r.v. Ij = 1 if the value of the jth roll
is at least the value of the previous roll (and Ij = 0 otherwise)

E
( n∑
j=2

Ij

)
=

n∑
j=2

E(Ij) =
n∑
j=2

Pr(Ij = 1) = (n− 1) · 7

12



Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1.

Roll a die n times.

Pr(Ij = 1) = 21
36 = 7

12 . (by counting the outcomes)

Often an indicator r.v. I is associated with an event such that

Indicator random variables and linearity of expectation work great together!

EXAMPLE

(usually referred to by the letter I )

Fact: E(I) = Pr(I = 1).

I = 1 if the event happens (and I = 0 otherwise).

What is the expected number rolls that show a value
that is at least the value of the previous roll?

For j ∈ {2, . . . , n}, let indicator r.v. Ij = 1 if the value of the jth roll
is at least the value of the previous roll (and Ij = 0 otherwise)

E
( n∑
j=2

Ij

)
=

n∑
j=2

E(Ij) =
n∑
j=2

Pr(Ij = 1) = (n− 1) · 7

12

Linearity of Expectation

Let Y1, Y2, . . . , Yk be k random variables. Then

E
( k∑
i=1

Yi

)
=

k∑
i=1

E(Yi)



Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1.

Roll a die n times.

Pr(Ij = 1) = 21
36 = 7

12 . (by counting the outcomes)

Often an indicator r.v. I is associated with an event such that

Indicator random variables and linearity of expectation work great together!

EXAMPLE

(usually referred to by the letter I )

Fact: E(I) = Pr(I = 1).

I = 1 if the event happens (and I = 0 otherwise).

What is the expected number rolls that show a value
that is at least the value of the previous roll?

For j ∈ {2, . . . , n}, let indicator r.v. Ij = 1 if the value of the jth roll
is at least the value of the previous roll (and Ij = 0 otherwise)

E
( n∑
j=2

Ij

)
=

n∑
j=2

E(Ij) =
n∑
j=2

Pr(Ij = 1) = (n− 1) · 7

12



Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1.

Roll a die n times.

Pr(Ij = 1) = 21
36 = 7

12 . (by counting the outcomes)

Often an indicator r.v. I is associated with an event such that

Indicator random variables and linearity of expectation work great together!

EXAMPLE

(usually referred to by the letter I )

Fact: E(I) = Pr(I = 1).

I = 1 if the event happens (and I = 0 otherwise).

What is the expected number rolls that show a value
that is at least the value of the previous roll?

For j ∈ {2, . . . , n}, let indicator r.v. Ij = 1 if the value of the jth roll
is at least the value of the previous roll (and Ij = 0 otherwise)

E
( n∑
j=2

Ij

)
=

n∑
j=2

E(Ij) =
n∑
j=2

Pr(Ij = 1) = (n− 1) · 7

12



Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1.

Roll a die n times.

Pr(Ij = 1) = 21
36 = 7

12 . (by counting the outcomes)

Often an indicator r.v. I is associated with an event such that

Indicator random variables and linearity of expectation work great together!

EXAMPLE

(usually referred to by the letter I )

Fact: E(I) = Pr(I = 1).

I = 1 if the event happens (and I = 0 otherwise).

What is the expected number rolls that show a value
that is at least the value of the previous roll?

For j ∈ {2, . . . , n}, let indicator r.v. Ij = 1 if the value of the jth roll
is at least the value of the previous roll (and Ij = 0 otherwise)

E
( n∑
j=2

Ij

)
=

n∑
j=2

E(Ij) =
n∑
j=2

Pr(Ij = 1) = (n− 1) · 7

12



Markov’s inequality

EXAMPLE

Suppose that the average (mean) speed on the motorway is 60 mph.



Markov’s inequality

It then follows that at most

EXAMPLE

Suppose that the average (mean) speed on the motorway is 60 mph.



Markov’s inequality

It then follows that at most

EXAMPLE

Suppose that the average (mean) speed on the motorway is 60 mph.

1
2 of all cars drive at least 120 mph,



Markov’s inequality

It then follows that at most

EXAMPLE

. . . otherwise the mean must be higher than 60 mph. (a contradiction)

Suppose that the average (mean) speed on the motorway is 60 mph.

1
2 of all cars drive at least 120 mph,



Markov’s inequality

It then follows that at most

EXAMPLE

. . . otherwise the mean must be higher than 60 mph. (a contradiction)

Suppose that the average (mean) speed on the motorway is 60 mph.

2
3 of all cars drive at least 90 mph,



Markov’s inequality

It then follows that at most

IfX is a non-negative r.v., then for all a > 0,

Pr(X ≥ a) ≤ E(X)

a
.

THEOREM (Markov’s inequality)

EXAMPLE

. . . otherwise the mean must be higher than 60 mph. (a contradiction)

Suppose that the average (mean) speed on the motorway is 60 mph.

2
3 of all cars drive at least 90 mph,



Markov’s inequality

It then follows that at most

IfX is a non-negative r.v., then for all a > 0,

Pr(X ≥ a) ≤ E(X)

a
.

From the example above:

� Pr(speed of a random car≥ 120 mph) ≤ 60
120 = 1
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Markov’s inequality

IfX is a non-negative r.v. that only takes integer values, then

Pr(X > 0) = Pr(X ≥ 1) ≤ E(X) .

COROLLARY

For an indicator r.v. I , the bound is tight (=), as Pr(I > 0) = E(I).
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Typically the union bound is used when each Pr(Vi) is much smaller than k.



Summary

The sample space S is the set of outcomes of an experiment.

For x ∈ S, the probability of x, written Pr(x),

such that
∑
x∈S Pr(x) = 1.

is a real number between 0 and 1,

An event is a subset V of the sample space S, Pr(V ) =
∑
x∈V Pr(x)

The probability of Y taking value y is
{x ∈ S st. Y(x) = y}

A random variable (r.v.) Y is a function which maps x ∈ S to S(x) ∈ R
Pr(Y = y) =

∑
Pr(x).

The expected value (the mean) of Y is E(Y ) =
∑
x∈S

Y (x)·Pr(x).

An indicator random variable is a r.v. that can only be 0 or 1.

Fact: E(I) = Pr(I = 1).

Let V1, . . . , Vk be k events then,

THEOREM (union bound)

Pr
( k⋃
i=1

Vi

)
≤

k∑
i=1

Pr(Vi).

IfX is a non-negative r.v., then for all a > 0,

THEOREM (Markov’s inequality)

Pr(X ≥ a) ≤ E(X)

a
.

Let Y1, Y2, . . . , Yk be k random variables then,

E
( k∑
i=1

Yi

)
=

k∑
i=1

E(Yi)

THEOREM (Linearity of expectation)
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