

Advanced Algorithms – COMS31900

Probability recap.

Raphaël Clifford

Slides by Markus Jalsenius

Probability

The sample space S is the set of *outcomes* of an experiment.

EXAMPLE

Roll a die: $S = \{1, 2, 3, 4, 5, 6\}$.

$$Pr(1) = Pr(2) = Pr(3) = Pr(4) = Pr(5) = Pr(6) = \frac{1}{6}$$
.

For $x\in S$, the **probability** of x, written $\Pr(x)$, is a real number between 0 and 1, such that $\sum_{x\in S}\Pr(x)=1$.

 \Pr is 'just' a function which maps each $x \in S$ to $\Pr(x) \in [0,1]$

Probability

The sample space is not necessarily *finite*.

EXAMPLE

Flip a coin until first tail shows up:

$$S = \{\mathsf{T}, \mathsf{HT}, \mathsf{HHT}, \mathsf{HHHT}, \mathsf{HHHHT}, \mathsf{HHHHHT}, \dots \}.$$

 $\Pr(\text{``It takes } n \text{ coin flips''}) = \left(\frac{1}{2}\right)^n$, and

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} \dots = 1$$

Event

An **event** is a subset V of the sample space S.

The probability of event V happening, denoted $\Pr(V)$, is

$$\Pr(V) = \sum_{x \in V} \Pr(x).$$

EXAMPLE

Flip a coin 3 times: $S = \{TTT, TTH, THT, HTT, HHT, HTH, THH, HHH\}$

For each $x \in S$, $\Pr(x) = \frac{1}{8}$

Define V to be the event "the first and last coin flips are the same"

in other words, $V = \{ HHH, HTH, THT, TTT \}$

What is $\Pr(V)$?

$$\Pr(V) = \Pr(\mathsf{HHH}) + \Pr(\mathsf{HTH}) + \Pr(\mathsf{THT}) + \Pr(\mathsf{TTT}) = 4 \times \frac{1}{8} = \frac{1}{2}.$$

Random variable

A **random variable** (r.v.) Y over sample space S is a function $S \to \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number Y(x).

The probability of Y taking value y is F

$$\{x \in S \text{ st. } Y(x) = y\}$$

EXAMPLE

Two coin flips.

$oxed{S}$	Y
НН	2
нт	1
ТН	5
TT	2

$$\Pr(Y = 2) = \frac{1}{2}$$

The **expected value** (the mean) of a r.v. Y, denoted $\mathbb{E}(Y)$, is

 \mathbb{F}

$$\mathbb{E}(Y) = (2 \cdot \frac{1}{2}) + (1 \cdot \frac{1}{4}) + (5 \cdot \frac{1}{4}) = \frac{7}{2}$$

Linearity of expectation

THEOREM (Linearity of expectation) -

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\Big(\sum_{i=1}^k Y_i\Big) = \sum_{i=1}^k \mathbb{E}(Y_i)$$

Linearity of expectation always holds,

(regardless of whether the random variables are independent or not.)

EXAMPLE

Roll two dice. Let the r.v. Y be the sum of the values.

What is $\mathbb{E}(Y)$?

Approach 1: (without the theorem)

The sample space $S = \{(1,1), (1,2), (1,3), \dots, (6,6)\}$ (36 outcomes)

$$\mathbb{E}(Y) = \sum_{x \in S} Y(x) \cdot \Pr(x) = \frac{1}{36} \sum_{x \in S} Y(x) = \frac{1}{36} (1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + 1 \cdot 12) = 7$$

Linearity of expectation

THEOREM (Linearity of expectation) -

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\Big(\sum_{i=1}^k Y_i\Big) = \sum_{i=1}^k \mathbb{E}(Y_i)$$

Linearity of expectation always holds,

(regardless of whether the random variables are independent or not.)

EXAMPLE

Roll two dice. Let the r.v. Y be the sum of the values.

What is $\mathbb{E}(Y)$?

Approach 2: (with the theorem)

Let the r.v. Y_1 be the value of the first die and Y_2 the value of the second

$$\mathbb{E}(Y_1)=\mathbb{E}(Y_2)=3.5$$

$$\mathrm{so}\,\mathbb{E}(Y)=\mathbb{E}(Y_1+Y_2)=\mathbb{E}(Y_1)+\mathbb{E}(Y_2)=7$$

Indicator random variables

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact:
$$\mathbb{E}(I) = \Pr(I = 1)$$
.

Often an indicator r.v. I is associated with an event such that

$$I=1$$
 if the event happens (and $I=0$ otherwise).

Indicator random variables and linearity of expectation work great together!

EXAMPLE

Roll a die n times.

What is the expected number rolls that show a value that is at least the value of the previous roll?

For $j\in\{2,\ldots,n\}$, let indicator r.v. $I_j=1$ if the value of the jth roll is at least the value of the previous roll (and $I_j=0$ otherwise)

$$\Pr(I_j=1)=rac{21}{36}=rac{7}{12}$$
 (by counting the outcomes)

$$E\left(\sum_{j=2}^{n} I_{j}\right) = \sum_{j=2}^{n} \mathbb{E}(I_{j}) = \sum_{j=2}^{n} \Pr(I_{j} = 1) = (n-1) \cdot \frac{7}{12}$$

Markov's inequality

EXAMPLE

Suppose that the average (mean) speed on the motorway is 60 mph. It then follows that at most

 $\frac{2}{3}$ of all cars drive at least 90 mph,

... otherwise the mean must be higher than 60 mph. (a contradiction)

THEOREM (Markov's inequality) -

If X is a non-negative r.v., then for all a > 0,

$$\Pr(X \ge a) \le \frac{\mathbb{E}(X)}{a}$$
.

EXAMPLE

From the example above:

- ▶ $\Pr(\text{speed of a random car} \ge 120 \text{ mph}) \le \frac{60}{120} = \frac{1}{2},$
- $ightharpoonup \Pr(\text{speed of a random car} \geq 90 \text{mph}) \leq \frac{60}{90} = \frac{2}{3}.$

Markov's inequality

EXAMPLE

n people go to a party, leaving their hats at the door.

Each person leaves with a random hat.

How many people leave with their own hat?

For $j\in\{1,\ldots,n\}$, let indicator r.v. $I_j=1$ if the jth person gets their own hat, otherwise $I_j=0$.

By linearity of expectation...

By Markov's inequality (recall: $\Pr(X \geq a) \leq \frac{\mathbb{E}(X)}{a}$),

 $\Pr(exttt{5 or more people leaving with their own hats}) \leq rac{1}{5},$

 $\Pr(\text{at least 1 person leaving with their own hat}) \leq \frac{1}{1} = 1.$

(sometimes Markov's inequality is not particularly informative)

In fact, here it can be shown that as $n\to\infty$, the probability that at least one person leaves with their own hat is $1-\frac{1}{e}\approx 0.632$.

Markov's inequality

COROLLARY

If X is a non-negative r.v. that only takes integer values, then

$$\Pr(X > 0) = \Pr(X \ge 1) \le \mathbb{E}(X)$$
.

For an indicator r.v. I, the bound is tight (=), as $\Pr(I>0)=\mathbb{E}(I)$.

Union bound

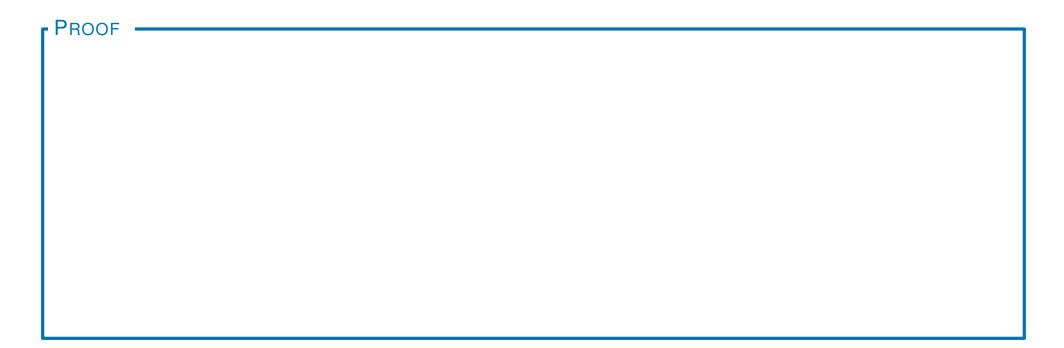
THEOREM (union bound) -

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint.

 $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$



Union bound

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint.

 $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$

PROOF

Define indicator r.v. I_j to be 1 if event V_j happens, otherwise $I_j=0$.

Let the r.v. $X=\sum_{j=1}^k I_j$ be the number of events that happen. $\mathbb{E}_I^{(I)}=\Pr(I=1)$

$$\Pr\left(\bigcup_{j=1}^{k} V_{j}\right) = \Pr(X > 0) \leq \mathbb{E}(X) = \mathbb{E}\left(\sum_{j=1}^{k} I_{j}\right) = \sum_{j=1}^{k} \mathbb{E}(I_{j})$$
by previous
$$= \sum_{j=1}^{k} \Pr(V_{j})$$
Markov corollary

Linearity of expectation

Union bound

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint.

 $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$

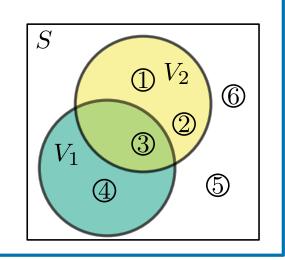
EXAMPLE

 $S=\{1,\ldots,6\}$ is the set of outcomes of a die roll.

We define two events:
$$V_1 = \{3,4\}$$

$$V_2 = \{1,2,3\}$$

$$\Pr(V_1\cup V_2)\leq \Pr(V_1)+\Pr(V_2)=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}$$
 in fact,
$$\Pr(V_1\cup V_2)=\frac{2}{3}\quad \text{(3 was 'double counted')}$$



Summary

The **sample space** S is the set of *outcomes* of an experiment.

For $x \in S$, the **probability** of x, written $\Pr(x)$, is a real number between 0 and 1,

such that
$$\sum_{x \in S} \Pr(x) = 1$$
.

An **event** is a subset V of the sample space S, $\Pr(V) = \sum_{x \in V} \Pr(x)$

A **random variable** (r.v.) Y is a function which maps $x \in S$ to $S(x) \in \mathbb{R}$ The probability of Y taking value y is Y

The **expected value** (the mean) of Y is ${\mathbb F}$

 $\{x\in S \text{ st. } Y(x)=y\}$

An **indicator random variable** is a r.v. that can only be 0 or 1.

Fact: $\mathbb{E}(I) = \Pr(I = 1)$.

THEOREM (Linearity of expectation) =

Let Y_1, Y_2, \ldots, Y_k be k random variables then,

$$\mathbb{E}\Big(\sum_{i=1}^{k} Y_i\Big) = \sum_{i=1}^{k} \mathbb{E}(Y_i)$$

- THEOREM (union bound) -

Let V_1,\ldots,V_k be k events then,

F

THEOREM (Markov's inequality) -

If X is a non-negative r.v., then for all a>0,

$$\Pr(X \ge a) \le \frac{\mathbb{E}(X)}{a}$$