## Advanced Algorithms - COMS31900

# Orthogonal Range Searching 

Raphaël Clifford

Slides by Benjamin Sach

## Orthogonal range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.


## Orthogonal range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.



## Orthogonal range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.

The universe


## Orthogonal range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.



## Orthogonal range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.



## Orthogonal range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.



## Orthogonal range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.



## Orthogonal range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.


A classic database query
"find all employees aged between 21 and 48 with salaries between $£ 23 k$ and $£ 36 k$ "

## Orthogonal range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.


A classic database query
"find all employees aged between 21 and 48 with salaries between $£ 23 k$ and $£ 36 k$ "

## Orthogonal range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.



## Orthogonal range searching

- A d-dimensional range searching data structure stores $n$ distinct points
for $d=1$, the lookup $\left(x_{1}, x_{2}\right)$ operation
returns every point with $x_{1} \leqslant x \leqslant x_{2}$.

for $d=2$, the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation returns every point with

$$
x_{1} \leqslant x \leqslant x_{2} \text { and } y_{1} \leqslant y \leqslant y_{2}
$$


for $d=3$, the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right)$ operation returns every point with

$$
\begin{aligned}
& x_{1} \leqslant x \leqslant x_{2} \\
& y_{1} \leqslant y \leqslant y_{2} \text { and } \\
& z_{1} \leqslant z \leqslant z_{2} .
\end{aligned}
$$



## Orthogonal range searching

- A d-dimensional range searching data structure stores $n$ distinct points
for $d=1$, the lookup $\left(x_{1}, x_{2}\right)$ operation
returns every point with $x_{1} \leqslant x \leqslant x_{2}$.

for $d=2$, the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation returns every point with

$$
x_{1} \leqslant x \leqslant x_{2} \text { and } y_{1} \leqslant y \leqslant y_{2}
$$


for $d=3$, the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right)$ operation returns every point with

$$
\begin{aligned}
& x_{1} \leqslant x \leqslant x_{2} \\
& y_{1} \leqslant y \leqslant y_{2} \text { and } \\
& z_{1} \leqslant z \leqslant z_{2}
\end{aligned}
$$



## Orthogonal range searching

- A d-dimensional range searching data structure stores $n$ distinct points
for $d=1$, the lookup $\left(x_{1}, x_{2}\right)$ operation
returns every point with $x_{1} \leqslant x \leqslant x_{2}$.

for $d=2$, the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation returns every point with

$$
x_{1} \leqslant x \leqslant x_{2} \text { and } y_{1} \leqslant y \leqslant y_{2}
$$


for $d=3$, the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right)$ operation returns every point with

$$
\begin{aligned}
& x_{1} \leqslant x \leqslant x_{2} \\
& y_{1} \leqslant y \leqslant y_{2} \text { and } \\
& z_{1} \leqslant z \leqslant z_{2} .
\end{aligned}
$$



Starting simple...1D range searching

## Starting simple...1D range searching



## Starting simple...1D range searching



Starting simple...1D range searching


Starting simple...1D range searching


## Starting simple...1D range searching



## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

$$
\text { in } O(n \log n) \text { preprocessing (prep.) time }
$$



| 3 | 7 | 11 | 19 | 23 | 27 | 35 | 43 | 53 | 61 | 67 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

$$
\begin{aligned}
& \text { in } O(n \log n) \text { preprocessing (prep.) time } \\
& \quad \text { and } O(n) \text { space }
\end{aligned}
$$



## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

$$
\begin{aligned}
& \text { in } O(n \log n) \text { preprocessing (prep.) time } \\
& \quad \text { and } O(n) \text { space }
\end{aligned}
$$

to perform lookup $\left(x_{1}, x_{2}\right) \ldots$
find the successor of $x_{1}$ by binary search and then 'walk' right


## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

$$
\begin{aligned}
& \text { in } O(n \log n) \text { preprocessing (prep.) time } \\
& \quad \text { and } O(n) \text { space }
\end{aligned}
$$

to perform lookup $\left(x_{1}, x_{2}\right) \ldots$
find the successor of $x_{1}$ by binary search and then 'walk' right
(i.e. the closest point to the right)



## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

$$
\begin{aligned}
& \text { in } O(n \log n) \text { preprocessing (prep.) time } \\
& \quad \text { and } O(n) \text { space }
\end{aligned}
$$

to perform lookup $\left(x_{1}, x_{2}\right) \ldots$
find the successor of $x_{1}$ by binary search and then 'walk' right
(i.e. the closest point to the right)



## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

$$
\begin{aligned}
& \text { in } O(n \log n) \text { preprocessing (prep.) time } \\
& \quad \text { and } O(n) \text { space }
\end{aligned}
$$

to perform lookup $\left(x_{1}, x_{2}\right) \ldots$
find the successor of $x_{1}$ by binary search and then 'walk' right


## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

$$
\begin{aligned}
& \text { in } O(n \log n) \text { preprocessing (prep.) time } \\
& \quad \text { and } O(n) \text { space }
\end{aligned}
$$

to perform lookup $\left(x_{1}, x_{2}\right) \ldots$
find the successor of $x_{1}$ by binary search and then 'walk' right


## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

$$
\begin{aligned}
& \text { in } O(n \log n) \text { preprocessing (prep.) time } \\
& \quad \text { and } O(n) \text { space }
\end{aligned}
$$

to perform lookup $\left(x_{1}, x_{2}\right) \ldots$
find the successor of $x_{1}$ by binary search and then 'walk' right


## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

$$
\begin{aligned}
& \text { in } O(n \log n) \text { preprocessing (prep.) time } \\
& \quad \text { and } O(n) \text { space }
\end{aligned}
$$

to perform lookup $\left(x_{1}, x_{2}\right) \ldots$
find the successor of $x_{1}$ by binary search and then 'walk' right


## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

$$
\begin{aligned}
& \text { in } O(n \log n) \text { preprocessing (prep.) time } \\
& \quad \text { and } O(n) \text { space }
\end{aligned}
$$

to perform lookup $\left(x_{1}, x_{2}\right) \ldots$
find the successor of $x_{1}$ by binary search and then 'walk' right


## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

$$
\begin{aligned}
& \text { in } O(n \log n) \text { preprocessing (prep.) time } \\
& \quad \text { and } O(n) \text { space }
\end{aligned}
$$

to perform lookup $\left(x_{1}, x_{2}\right) \ldots$
find the successor of $x_{1}$ by binary search and then 'walk' right


## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

$$
\begin{aligned}
& \text { in } O(n \log n) \text { preprocessing (prep.) time } \\
& \quad \text { and } O(n) \text { space }
\end{aligned}
$$

to perform lookup $\left(x_{1}, x_{2}\right) \ldots$
find the successor of $x_{1}$ by binary search and then 'walk' right


## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

$$
\begin{aligned}
& \text { in } O(n \log n) \text { preprocessing (prep.) time } \\
& \quad \text { and } O(n) \text { space }
\end{aligned}
$$

to perform lookup $\left(x_{1}, x_{2}\right) \ldots$
find the successor of $x_{1}$ by binary search and then 'walk' right


## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

$$
\begin{aligned}
& \text { in } O(n \log n) \text { preprocessing (prep.) time } \\
& \quad \text { and } O(n) \text { space }
\end{aligned}
$$

to perform lookup $\left(x_{1}, x_{2}\right) \ldots$
find the successor of $x_{1}$ by binary search and then 'walk' right


## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

$$
\begin{aligned}
& \text { in } O(n \log n) \text { preprocessing (prep.) time } \\
& \quad \text { and } O(n) \text { space }
\end{aligned}
$$

to perform lookup $\left(x_{1}, x_{2}\right) \ldots$
find the successor of $x_{1}$ by binary search and then 'walk' right


## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

$$
\begin{aligned}
& \text { in } O(n \log n) \text { preprocessing (prep.) time } \\
& \quad \text { and } O(n) \text { space }
\end{aligned}
$$

to perform lookup $\left(x_{1}, x_{2}\right) \ldots$
find the successor of $x_{1}$ by binary search and then 'walk' right


## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

$$
\begin{aligned}
& \text { in } O(n \log n) \text { preprocessing (prep.) time } \\
& \quad \text { and } O(n) \text { space }
\end{aligned}
$$

to perform lookup $\left(x_{1}, x_{2}\right) \ldots$
find the successor of $x_{1}$ by binary search and then 'walk' right


## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

$$
\begin{aligned}
& \text { in } O(n \log n) \text { preprocessing (prep.) time } \\
& \quad \text { and } O(n) \text { space }
\end{aligned}
$$

to perform lookup $\left(x_{1}, x_{2}\right) \ldots$
find the successor of $x_{1}$ by binary search and then 'walk' right


## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

$$
\begin{aligned}
& \text { in } O(n \log n) \text { preprocessing (prep.) time } \\
& \quad \text { and } O(n) \text { space }
\end{aligned}
$$

to perform lookup $\left(x_{1}, x_{2}\right) \ldots$
find the successor of $x_{1}$ by binary search and then 'walk' right


## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

$$
\begin{aligned}
& \text { in } O(n \log n) \text { preprocessing (prep.) time } \\
& \quad \text { and } O(n) \text { space }
\end{aligned}
$$

to perform lookup $\left(x_{1}, x_{2}\right) \ldots$
find the successor of $x_{1}$ by binary search and then 'walk' right


## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

$$
\begin{aligned}
& \text { in } O(n \log n) \text { preprocessing (prep.) time } \\
& \quad \text { and } O(n) \text { space }
\end{aligned}
$$

to perform lookup $\left(x_{1}, x_{2}\right) \ldots$
find the successor of $x_{1}$ by binary search and then 'walk' right

lookups take $O(\log n+k)$ time ( $k$ is the number of points reported)

## Starting simple...1D range searching

build a sorted array containing the $x$-coordinates

> in $O(n \log n)$ preprocessing (prep.) time $\quad$ and $O(n)$ space
to perform lookup $\left(x_{1}, x_{2}\right) \ldots$
find the successor of $x_{1}$ by binary search and then 'walk' right

lookups take $O(\log n+k)$ time ( $k$ is the number of points reported) this is called being 'output sensitive'

Starting simple...1D range searching

## Starting simple...1D range searching

alternatively we could build a balanced tree...

## Starting simple...1D range searching

alternatively we could build a balanced tree...

find the point in the middle

## Starting simple...1D range searching

alternatively we could build a balanced tree...


## Starting simple...1D range searching

alternatively we could build a balanced tree...

find the point in the middle

## Starting simple...1D range searching

alternatively we could build a balanced tree...

find the point in the middle
... and recurse on each half

## Starting simple...1D range searching

alternatively we could build a balanced tree...

find the point in the middle
... and recurse on each half

## Starting simple...1D range searching

alternatively we could build a balanced tree...

find the point in the middle
... and recurse on each half

## Starting simple...1D range searching

alternatively we could build a balanced tree...

find the point in the middle
. . . and recurse on each half
(in a tie, pick the left)

## Starting simple...1D range searching

alternatively we could build a balanced tree...

find the point in the middle
. . . and recurse on each half
(in a tie, pick the left)

## Starting simple...1D range searching

alternatively we could build a balanced tree...

find the point in the middle
... and recurse on each half
(in a tie, pick the left)

## Starting simple...1D range searching

alternatively we could build a balanced tree...

find the point in the middle
... and recurse on each half
(in a tie, pick the left)

## Starting simple...1D range searching

alternatively we could build a balanced tree...

find the point in the middle
. . . and recurse on each half
(in a tie, pick the left)

We can store the tree in $O(n)$ space (it has one node per point)

## Starting simple...1D range searching

alternatively we could build a balanced tree...

find the point in the middle
. . . and recurse on each half
(in a tie, pick the left)

We can store the tree in $O(n)$ space (it has one node per point)
It has $O(\log n)$ depth

## Starting simple...1D range searching

alternatively we could build a balanced tree...

find the point in the middle
. . . and recurse on each half
(in a tie, pick the left)

We can store the tree in $O(n)$ space (it has one node per point)
It has $O(\log n)$ depth

## Starting simple...1D range searching

alternatively we could build a balanced tree...

find the point in the middle
... and recurse on each half
(in a tie, pick the left)

We can store the tree in $O(n)$ space (it has one node per point) It has $O(\log n)$ depth and can be built in $O(n \log n)$ time

## Starting simple...1D range searching

alternatively we could build a balanced tree...

find the point in the middle
... and recurse on each half
(in a tie, pick the left)

We can store the tree in $O(n)$ space (it has one node per point) It has $O(\log n)$ depth and can be built in $O(n \log n)$ time

## Starting simple...1D range searching

alternatively we could build a balanced tree...

find the point in the middle
. . . and recurse on each half
(in a tie, pick the left)

We can store the tree in $O(n)$ space (it has one node per point) It has $O(\log n)$ depth and can be built in $O(n \log n)$ time $\quad(O(n)$ time if the points are sorted)

## Starting simple... 1D range searching

how do we do a lookup?


## Starting simple... 1D range searching

how do we do a lookup?


## Starting simple... 1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$

## Starting simple... 1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$

## Starting simple...1D range searching



Step 1: find the successor of $x_{1}$

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$

## Starting simple... 1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$

## Starting simple... 1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time
which points in the tree should we output?

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time
which points in the tree should we output?

## Starting simple...1D range searching

how do we do a lookup?
look at any node on the path


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time
which points in the tree should we output?

## Starting simple...1D range searching

how do we do a lookup?
look at any node on the path
this is called an off-path edge

Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time
which points in the tree should we output?

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time
which points in the tree should we output?

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time
which points in the tree should we output?

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time
which points in the tree should we output?

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time
which points in the tree should we output?

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time
which points in the tree should we output?

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time
which points in the tree should we output?

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time
which points in the tree should we output?

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time
which points in the tree should we output?

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time
which points in the tree should we output?

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time
which points in the tree should we output?

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time
which points in the tree should we output?

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time
which points in the tree should we output?

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time
which points in the tree should we output?

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time
which points in the tree should we output?

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time
which points in the tree should we output?

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time
which points in the tree should we output?

## Starting simple...1D range searching

how do we do a lookup?


Step 1: find the successor of $x_{1}$ in $O(\log n)$ time
Step 2: find the predecessor of $x_{2}$ in $O(\log n)$ time
which points in the tree should we output?
those in the $O(\log n)$ selected subtrees on the path

## Starting simple...1D range searching

how do we do a lookup?


## Starting simple...1D range searching

how do we do a lookup?

as before
lookups take $O(\log n+k)$ time $(k$ is the number of points reported)

## Starting simple...1D range searching

how do we do a lookup?

as before
lookups take $O(\log n+k)$ time ( $k$ is the number of points reported)

## Subtree decomposition

Warning: the root to split path isn't to scale
root


## Subtree decomposition

Warning: the root to split path isn't to scale
$\qquad$ root

after the paths to $x_{1}$ and $x_{2}$ split. .

## Subtree decomposition



Warning: the root to split path isn't to scale
$\qquad$


## Subtree decomposition

Warning: the root to split path isn't to scale
root
$\qquad$
after the paths to $x_{1}$ and $x_{2}$ split...
any off-path subtree is either in or out
i.e. every point in the subtree has $x_{1} \leqslant x \leqslant x_{2}$ or none has

## Subtree decomposition

Warning: the root to split path isn't to scale
root
ก
ak University of
BRISTOL

## 1D range searching summary


$O(n \log n)$ prep time
$O(n)$ space
$O(\log n+k)$ lookup time
where $k$ is the number of points reported
(this is known as being output sensitive)

## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.



## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.


## Attempt one:

## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.


## Attempt one:



- Find all the points with $x_{1} \leqslant x \leqslant x_{2}$


## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.



## Attempt one:

- Find all the points with $x_{1} \leqslant x \leqslant x_{2}$


## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.



## Attempt one:

- Find all the points with $x_{1} \leqslant x \leqslant x_{2}$


## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.



## Attempt one:

- Find all the points with $x_{1} \leqslant x \leqslant x_{2}$
- Find all the points with $y_{1} \leqslant y \leqslant y_{2}$


## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.



## Attempt one:

- Find all the points with $x_{1} \leqslant x \leqslant x_{2}$
- Find all the points with $y_{1} \leqslant y \leqslant y_{2}$


## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.



## Attempt one:

- Find all the points with $x_{1} \leqslant x \leqslant x_{2}$
- Find all the points with $y_{1} \leqslant y \leqslant y_{2}$
- Find all the points in both lists


## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.



## Attempt one:

- Find all the points with $x_{1} \leqslant x \leqslant x_{2}$
- Find all the points with $y_{1} \leqslant y \leqslant y_{2}$
- Find all the points in both lists


## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.



## Attempt one:

- Find all the points with $x_{1} \leqslant x \leqslant x_{2}$
- Find all the points with $y_{1} \leqslant y \leqslant y_{2}$
- Find all the points in both lists

How long does this take?

## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.



## Attempt one:

- Find all the points with $x_{1} \leqslant x \leqslant x_{2}$
- Find all the points with $y_{1} \leqslant y \leqslant y_{2}$
- Find all the points in both lists

How long does this take?
$O(\log n+k)+O(\log n+k)+O(k)$

## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.



## Attempt one:

- Find all the points with $x_{1} \leqslant x \leqslant x_{2}$
- Find all the points with $y_{1} \leqslant y \leqslant y_{2}$
- Find all the points in both lists

How long does this take?

$$
\begin{aligned}
& O(\log n+k)+O(\log n+k)+O(k) \\
& \quad=O(\log n+k)
\end{aligned}
$$

## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:

$$
\begin{aligned}
& \text { the lookup }\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \text { operation } \\
& \qquad \text { which returns every point in the rectangle }\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right] \\
& \text { i.e. every }(x, y) \text { with } x_{1} \leqslant x \leqslant x_{2} \text { and } y_{1} \leqslant y \leqslant y_{2} .
\end{aligned}
$$



## Attempt one:

- Find all the points with $x_{1} \leqslant x \leqslant x_{2}$
- Find all the points with $y_{1} \leqslant y \leqslant y_{2}$
- Find all the points in both lists

How long does this take?

$$
\begin{aligned}
& O(\log n+k)+O(\log n+k)+O(k) \\
& \quad=O(\log n+k)
\end{aligned}
$$

## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:

$$
\begin{aligned}
& \text { the lookup }\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \text { operation } \\
& \qquad \text { which returns every point in the rectangle }\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right] \\
& \text { i.e. every }(x, y) \text { with } x_{1} \leqslant x \leqslant x_{2} \text { and } y_{1} \leqslant y \leqslant y_{2} .
\end{aligned}
$$



## Attempt one:

- Find all the points with $x_{1} \leqslant x \leqslant x_{2}$
- Find all the points with $y_{1} \leqslant y \leqslant y_{2}$
- Find all the points in both lists

How long does this take?

$$
\begin{aligned}
& O(\log n+k)+O(\log n+k)+O(k) \\
& \quad=O(\log n+k)
\end{aligned}
$$



## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.



## Attempt one:

- Find all the points with $x_{1} \leqslant x \leqslant x_{2}$
- Find all the points with $y_{1} \leqslant y \leqslant y_{2}$
- Find all the points in both lists

How long does this take?


## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:

$$
\begin{aligned}
& \text { the lookup }\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \text { operation } \\
& \qquad \text { which returns every point in the rectangle }\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right] \\
& \text { i.e. every }(x, y) \text { with } x_{1} \leqslant x \leqslant x_{2} \text { and } y_{1} \leqslant y \leqslant y_{2} .
\end{aligned}
$$



## Attempt one:

- Find all the points with $x_{1} \leqslant x \leqslant x_{2}$
- Find all the points with $y_{1} \leqslant y \leqslant y_{2}$
- Find all the points in both lists

How long does this take?

$$
\begin{gathered}
O\left(\log n+k_{x}\right)+O\left(\log n+k_{y}\right)+O\left(k_{x}+k_{y}\right) \\
=O\left(\log n+k_{x}+k_{y}\right)
\end{gathered}
$$

here $k_{x}$ is the number of points with $x_{1} \leqslant x \leqslant x_{2}$ (respectively for $k_{y}$ )

## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:

```
the lookup( }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{y}{1}{},\mp@subsup{y}{2}{})\mathrm{ operation
```

which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.


## Attempt one:

- Find all the points with $x_{1} \leqslant x \leqslant x_{2}$
- Find all the points with $y_{1} \leqslant y \leqslant y_{2}$
- Find all the points in both lists

How long does this take?

$$
\begin{gathered}
O\left(\log n+k_{x}\right)+O\left(\log n+k_{y}\right)+O\left(k_{x}+k_{y}\right) \\
=O\left(\log n+k_{x}+k_{y}\right)
\end{gathered}
$$

these could be huge in comparison with $k$
here $k_{x}$ is the number of points with $x_{1} \leqslant x \leqslant x_{2}$ (respectively for $k_{y}$ )

## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.



## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.

how can we do better?

Subtree decomposition in 2D
Warning: the root to split path isn't to scale
root

(during preprocessing) build a balanced binary tree using the $x$-coordinates

Subtree decomposition in 2D


Raxikivioit
root

(during preprocessing) build a balanced binary tree using the $x$-coordinates to perform a lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ follow the paths to $x_{1}$ and $x_{2}$ as before

## Subtree decomposition in 2D


wik Univerity of
BRISTOL
root

(during preprocessing) build a balanced binary tree using the $x$-coordinates to perform a lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ follow the paths to $x_{1}$ and $x_{2}$ as before for any off-path subtree...
every point in the subtree has $x_{1} \leqslant x \leqslant x_{2}$ or no point has

## Subtree decomposition in 2D


root

(during preprocessing) build a balanced binary tree using the $x$-coordinates to perform a lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ follow the paths to $x_{1}$ and $x_{2}$ as before for any off-path subtree...
every point in the subtree has $x_{1} \leqslant x \leqslant x_{2}$ or no point has
Idea: filter these subtrees by $y$-coordinate

Subtree decomposition in 2D

(during preprocessing) build a balanced binary tree using the $x$-coordinates
to perform a lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ follow the paths to $x_{1}$ and $x_{2}$ as before for any off-path subtree...
every point in the subtree has $x_{1} \leqslant x \leqslant x_{2}$ or no point has
Idea: filter these subtrees by $y$-coordinate

Subtree decomposition in 2D
we want to find all points in here with $y_{1} \leqslant y \leqslant y_{2}$
(they all have $x_{1} \leqslant x \leqslant x_{2}$ )
(during preprocessing) build a balanced binary tree using the $x$-coordinates
to perform a lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ follow the paths to $x_{1}$ and $x_{2}$ as before for any off-path subtree...
every point in the subtree has $x_{1} \leqslant x \leqslant x_{2}$ or no point has
Idea: filter these subtrees by $y$-coordinate

Subtree decomposition in 2D
we want to find all points in here with $y_{1} \leqslant y \leqslant y_{2}$
(they all have $x_{1} \leqslant x \leqslant x_{2}$ )
how?

(during preprocessing) build a balanced binary tree using the $x$-coordinates
to perform a lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ follow the paths to $x_{1}$ and $x_{2}$ as before for any off-path subtree...
every point in the subtree has $x_{1} \leqslant x \leqslant x_{2}$ or no point has
Idea: filter these subtrees by $y$-coordinate

## Subtree decomposition in 2D

we want to find all points in here with $y_{1} \leqslant y \leqslant y_{2}$ (they all have $x_{1} \leqslant x \leqslant x_{2}$ )
how?
build a $1 D$ range searching strúcture at every node on the $y$-coordinates of the points in the subtree (during preprocessing)
(during preprocessing) build a balanced binary tree using the $x$-coordinates to perform a lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ follow the paths to $x_{1}$ and $x_{2}$ as before for any off-path subtree...
every point in the subtree has $x_{1} \leqslant x \leqslant x_{2}$ or no point has
Idea: filter these subtrees by $y$-coordinate

## Subtree decomposition in 2D

we want to find all points in here with $y_{1} \leqslant y \leqslant y_{2}$ (they all have $x_{1} \leqslant x \leqslant x_{2}$ )

## how?

build a 1D range searching structure at every node on the $y$-coordinates of the points in the subtree (during preprocessing)
a 1D lookup takes $O\left(\log n+k^{\prime}\right)$ time
(during preprocessing) build a balanced binary tree using the $x$-coordinates to perform a lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ follow the paths to $x_{1}$ and $x_{2}$ as before for any off-path subtree...
every point in the subtree has $x_{1} \leqslant x \leqslant x_{2}$ or no point has
Idea: filter these subtrees by $y$-coordinate

## Subtree decomposition in 2D

we want to find all points in here with $y_{1} \leqslant y \leqslant y_{2}$ (they all have $x_{1} \leqslant x \leqslant x_{2}$ )

## how?

build a $1 D$ range searching strúcture at every node on the $y$-coordinates of the points in the subtree (during preprocessing)
a 1D lookup takes $O\left(\log n+k^{\prime}\right)$ time and only returns points we want
(during preprocessing) build a balanced binary tree using the $x$-coordinates to perform a lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ follow the paths to $x_{1}$ and $x_{2}$ as before for any off-path subtree...
every point in the subtree has $x_{1} \leqslant x \leqslant x_{2}$ or no point has
Idea: filter these subtrees by $y$-coordinate

Subtree decomposition in 2D
ave Univerity of
BRISTOL

Subtree decomposition in 2D
agk University of
BRISTOL


## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$

Subtree decomposition in 2D


## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (inspecting the points on the path as you go)

Subtree decomposition in 2D


## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (inspecting the points on the path as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small

## Subtree decomposition in 2D



## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (inspecting the points on the path as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small

## Subtree decomposition in 2D



## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (inspecting the points on the path as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small
3. For each off-path subtree where the $x$ coordinates are in range...
use the 1D range structure for that subtree
to filter the $y$ coordinates

## Subtree decomposition in 2D

perform lookup $\left(y_{1}, y_{2}\right)$ on the points in this subtree

Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (inspecting the points on the path as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small
3. For each off-path subtree where the $x$ coordinates are in range...
use the 1D range structure for that subtree
to filter the $y$ coordinates

## Subtree decomposition in 2D

perform lookup $\left(y_{1}, y_{2}\right)$ on the points in this subtree

## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (inspecting the points on the path as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small
3. For each off-path subtree where the $x$ coordinates are in range...
use the 1D range structure for that subtree
to filter the $y$ coordinates

## Subtree decomposition in 2D

perform lookup $\left(y_{1}, y_{2}\right)$ on the


## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (inspecting the points on the path as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small
3. For each off-path subtree where the $x$ coordinates are in range...
use the 1D range structure for that subtree
to filter the $y$ coordinates

## Subtree decomposition in 2D

perform lookup $\left(y_{1}, y_{2}\right)$ on the points in this subtree

## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (inspecting the points on the path as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small
3. For each off-path subtree where the $x$ coordinates are in range...
use the 1D range structure for that subtree
to filter the $y$ coordinates

## Subtree decomposition in 2D

perform lookup $\left(y_{1}, y_{2}\right)$ on the points in this subtree

## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (inspecting the points on the path as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small
3. For each off-path subtree where the $x$ coordinates are in range...
use the 1D range structure for that subtree
to filter the $y$ coordinates

## Subtree decomposition in 2D

How long does a query take?


## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (inspecting the points on the path as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small
3. For each off-path subtree where the $x$ coordinates are in range...
use the 1D range structure for that subtree
to filter the $y$ coordinates

## Subtree decomposition in 2D

How long does a query take?

The paths have length $O(\log n)$


## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (inspecting the points on the path as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small
3. For each off-path subtree where the $x$ coordinates are in range...
use the 1D range structure for that subtree
to filter the $y$ coordinates

## Subtree decomposition in 2D

How long does a query take?

The paths have length $O(\log n)$
So steps 1. and 2. take $O(\log n)$ time


## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (inspecting the points on the path as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small
3. For each off-path subtree where the $x$ coordinates are in range... use the 1D range structure for that subtree

## Subtree decomposition in 2D

How long does a query take?

The paths have length $O(\log n)$
So steps 1. and 2. take $O(\log n)$ time As for step 3,


## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (inspecting the points on the path as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small
3. For each off-path subtree where the $x$ coordinates are in range...
use the 1D range structure for that subtree
to filter the $y$ coordinates

## Subtree decomposition in 2D

How long does a query take?

The paths have length $O(\log n)$
So steps 1. and 2. take $O(\log n)$ time As for step 3,

We do $O(\log n) 1$ dookups....


## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (inspecting the points on the path as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small
3. For each off-path subtree where the $x$ coordinates are in range. . use the 1D range structure for that subtree

## Subtree decomposition in 2D

How long does a query take?


## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (inspecting the points on the path as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small
3. For each off-path subtree where the $x$ coordinates are in range. . use the 1D range structure for that subtree

## Subtree decomposition in 2D

How long does a query take?


## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (inspecting the points on the path as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small
3. For each off-path subtree where the $x$ coordinates are in range. . use the 1D range structure for that subtree

## Subtree decomposition in 2D

How long does a query take?

because the 1D lookups are disjoint

$$
O\left(\log ^{2} n+k\right)
$$

The paths have length $O(\log n)$
So steps 1. and 2. take $O(\log n)$ time As for step 3,

We do $O(\log n) 1$ D lookups....
Each takes $O\left(\log n+k^{\prime}\right)$ time

This sums to...

## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (inspecting the points on the path as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small
3. For each off-path subtree where the $x$ coordinates are in range. . use the 1D range structure for that subtree

## Space Usage

How much space does our 2D range structure use?
the original (1D) structure used $O(n)$ space...
but we added some stuff
at each node we store an array
containing the points in its subtree
the array is sorted by $y$ coordinate
(this gives us a 1D range data structure)


## Space Usage

How much space does our 2D range structure use?
the original (1D) structure used $O(n)$ space...
but we added some stuff
at each node we store an array
containing the points in its subtree
the array is sorted by $y$ coordinate
(this gives us a 1D range data structure)

look at any level in the tree
i.e. all nodes at the same distance from the root

## Space Usage

How much space does our 2D range structure use?
the original (1D) structure used $O(n)$ space...
but we added some stuff
at each node we store an array
containing the points in its subtree
the array is sorted by $y$ coordinate
(this gives us a 1D range data structure)

look at any level in the tree
i.e. all nodes at the same distance from the root
the points in these subtrees are disjoint

## Space Usage

How much space does our 2D range structure use?
the original (1D) structure used $O(n)$ space...
but we added some stuff
at each node we store an array
containing the points in its subtree
the array is sorted by $y$ coordinate
(this gives us a 1D range data structure)

look at any level in the tree
i.e. all nodes at the same distance from the root
the points in these subtrees are disjoint
so the sizes of the arrays add up to $n$

## Space Usage

How much space does our 2D range structure use?
the original (1D) structure used $O(n)$ space...
but we added some stuff
at each node we store an array
containing the points in its subtree
the array is sorted by $y$ coordinate
(this gives us a 1D range data structure)

look at any level in the tree
i.e. all nodes at the same distance from the root
the points in these subtrees are disjoint
so the sizes of the arrays add up to $n$
As the tree has depth $O(\log n) \ldots$

## Space Usage

How much space does our 2D range structure use?
the original (1D) structure used $O(n)$ space...
but we added some stuff
at each node we store an array
containing the points in its subtree
the array is sorted by $y$ coordinate
(this gives us a 1D range data structure)

look at any level in the tree
i.e. all nodes at the same distance from the root
the points in these subtrees are disjoint
so the sizes of the arrays add up to $n$
As the tree has depth $O(\log n) \ldots$
the total space used is $O(n \log n)$

Preprocessing time

How much prep time does our 2D range structure take?
the original (1D) structure used $O(n \log n)$ prep time... but we added some stuff

How long does it take to build the arrays at the nodes?


## Preprocessing time

How much prep time does our 2D range structure take?
the original (1D) structure used $O(n \log n)$ prep time... but we added some stuff

How long does it take to build the arrays at the nodes?


## Preprocessing time

How much prep time does our 2D range structure take?
the original (1D) structure used $O(n \log n)$ prep time...
but we added some stuff

How long does it take to build the arrays at the nodes?

$\square$
as

$\square$ are already sorted, merging them takes $O(\ell)$ time

Therefore the total time is $O(n \log n)$

## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.



## Summary

$O(n \log n)$ prep time
$O(n \log n)$ space
$O\left(\log ^{2} n+k\right)$ lookup time
where $k$ is the number of points reported

## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.



## Summary

$O(n \log n)$ prep time $O(n \log n)$ space $O\left(\log ^{2} n+k\right)$ lookup time


Improving the query time
when we do a 2D look-up we do $O(\log n)$ 1D lookups... all with the same $y_{1}$ and $y_{2}$
(but on different point sets)


| 3 | 7 | 11 | 19 | 23 | 27 | 35 | 43 | 53 | 61 | 67 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Improving the query time
when we do a 2D look-up we do $O(\log n)$ 1D lookups... all with the same $y_{1}$ and $y_{2}$
(but on different point sets)


| 3 | 7 | 11 | 19 | 23 | 27 | 35 | 43 | 53 | 61 | 67 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The slow part is finding the successor of $y_{1}$

Improving the query time
when we do a 2D look-up we do $O(\log n)$ 1D lookups... all with the same $y_{1}$ and $y_{2}$
(but on different point sets)


The slow part is finding the successor of $y_{1}$
If I told you where this point was, a 1D lookup would only take $O\left(k^{\prime}\right)$ time (where $k^{\prime}$ is the number of points between $y_{1}$ and $y_{2}$ )

Improving the query time


The arrays of points at the children
partition the array of the parent

Improving the query time


The arrays of points at the children
partition the array of the parent

Improving the query time


The arrays of points at the children
partition the array of the parent

Improving the query time


The arrays of points at the children partition the array of the parent

The child arrays are sorted by $y$ coordinate
(but have been partitioned by $x$ coordinate)

Improving the query time

| 3 | 7 | 11 | 19 | 23 | 27 | 35 | 43 | 53 | 61 | 67 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



| 3 | 19 | 23 | 27 | 53 |
| :--- | :--- | :--- | :--- | :--- |

The arrays of points at the children partition the array of the parent

The child arrays are sorted by $y$ coordinate
(but have been partitioned by $x$ coordinate)

Consider a point in the parent array...

## Improving the query time

| 3 | 7 | 11 | 19 | 23 | 27 | 35 | 43 | 53 | 61 | 67 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |




| 3 | 19 | 23 | 27 | 53 |
| :--- | :--- | :--- | :--- | :--- |

The arrays of points at the children partition the array of the parent

The child arrays are sorted by $y$ coordinate
(but have been partitioned by $x$ coordinate)

Consider a point in the parent array...

Improving the query time

| 3 | 7 | 11 | 19 | 23 | 27 | 35 | 43 | 53 | 61 | 67 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



The arrays of points at the children partition the array of the parent

The child arrays are sorted by $y$ coordinate
(but have been partitioned by $x$ coordinate)

Consider a point in the parent array...

## Improving the query time



The arrays of points at the children
partition the array of the parent

The child arrays are sorted by $y$ coordinate

## (but have been partitioned by $x$ coordinate)

Consider a point in the parent array...
we add a link to its successor in both child arrays

Improving the query time


The arrays of points at the children partition the array of the parent

The child arrays are sorted by $y$ coordinate

## (but have been partitioned by $x$ coordinate)

Consider a point in the parent array...
we add a link to its successor in both child arrays

Improving the query time


The arrays of points at the children partition the array of the parent

The child arrays are sorted by $y$ coordinate

## (but have been partitioned by $x$ coordinate)

Consider a point in the parent array... we add a link to its successor in both child arrays

Improving the query time


Improving the query time


Observation if we know where the successor of $y_{1}$ is in the parent, can find the successor in either child in $O(1)$ time

Improving the query time


Observation if we know where the successor of $y_{1}$ is in the parent, can find the successor in either child in $O(1)$ time

Improving the query time


Observation if we know where the successor of $y_{1}$ is in the parent, can find the successor in either child in $O(1)$ time
adding these links doesn't increase the space or the prep time

## The improved query time

How long does a query take?


## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (updating the successor to $y_{1}$ as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small
3. For each off-path subtree where the $x$ coordinates are in range...
use the 1D range structure for that subtree
to filter the $y$ coordinates

## The improved query time

How long does a query take?

The paths have length $O(\log n)$


## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (updating the successor to $y_{1}$ as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small
3. For each off-path subtree where the $x$ coordinates are in range...
use the 1D range structure for that subtree
to filter the $y$ coordinates

## The improved query time

How long does a query take?
The paths have length $O(\log n)$
So steps 1. and 2. take $O(\log n)$ time


## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (updating the successor to $y_{1}$ as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small
3. For each off-path subtree where the $x$ coordinates are in range...
use the 1D range structure for that subtree to filter the $y$ coordinates

## The improved query time

How long does a query take?
The paths have length $O(\log n)$
So steps 1. and 2. take $O(\log n)$ time As for step 3,


## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (updating the successor to $y_{1}$ as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small
3. For each off-path subtree where the $x$ coordinates are in range. .
use the 1D range structure for that subtree to filter the $y$ coordinates

## The improved query time

How long does a query take?
The paths have length $O(\log n)$
So steps 1. and 2. take $O(\log n)$ time As for step 3,

We do $O(\log n) 1$ dookups....


## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (updating the successor to $y_{1}$ as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small
3. For each off-path subtree where the $x$ coordinates are in range. .
use the 1D range structure for that subtree to filter the $y$ coordinates

## The improved query time

How long does a query take?
The paths have length $O(\log n)$
So steps 1. and 2. take $O(\log n)$ time As for step 3,

We do $O(\log n) 1$ D lookups....
Each takes $O\left(k^{\prime}\right)$ time


## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (updating the successor to $y_{1}$ as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small
3. For each off-path subtree where the $x$ coordinates are in range. .
use the 1D range structure for that subtree to filter the $y$ coordinates

## The improved query time

How long does a query take?
The paths have length $O(\log n)$
So steps 1. and 2. take $O(\log n)$ time As for step 3,

We do $O(\log n) 1$ D lookups....
Each takes $O\left(k^{\prime}\right)$ time

This sums to...

$$
O(\log n+k)
$$



## Query summary

1. Follow the paths to $x_{1}$ and $x_{2}$ (updating the successor to $y_{1}$ as you go)
2. Discard off-path subtrees where the $x$ coordinates are too large or too small
3. For each off-path subtree where the $x$ coordinates are in range. .
use the 1D range structure for that subtree to filter the $y$ coordinates

## 2D range searching

- A 2D range searching data structure stores $n$ distinct $(x, y)$-pairs and supports:
the lookup $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ operation
which returns every point in the rectangle $\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$
i.e. every $(x, y)$ with $x_{1} \leqslant x \leqslant x_{2}$ and $y_{1} \leqslant y \leqslant y_{2}$.



## Summary

$O(n \log n)$ prep time $O(n \log n)$ space $O(\log n+k)$ lookup time where $k$ is the number of points reported

