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Preprocess a tree T (with n nodes) to answer lowest common ancestor queries. . .

After preprocessing,
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• Ideally, we would like O(n) space, O(n) prep. time and O(1) query time
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Query Summary - LCA(i,j)

Notice anything interesting about D?

1. Find (any) i′ st. N [i′] = i

2. Find (any) j′ st. N [j′] = j

3. Compute RMQ(i′, j′) in D

4. LCA(i, j) = N [RMQ(i′, j′)]



Solving LCAs using RMQs - efficiency
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Preprocessing Summary

1. Construct N and D from T

2. Add a pointer from each

3. Preprocess D for RMQs

node i to some N [i′] = i

Query Summary - LCA(i,j)

Notice anything interesting about D? D[i+ 1] = D[i]± 1

1. Find (any) i′ st. N [i′] = i

2. Find (any) j′ st. N [j′] = j

3. Compute RMQ(i′, j′) in D

4. LCA(i, j) = N [RMQ(i′, j′)]



±1 Range minimum query

A

Preprocess an integer array A (length n) to answer range minimum queries. . .

n

After preprocessing, a range minimum query is given by RMQ(i, j)

the output is the location of the smallest element in A[i, j]

e.g. RMQ(3, 7) = 5, which is the location of the smallest element in A[3, 7]

i = 3 j = 7

RMQ(3, 7) = 5

• Can we exploit this±1 property to get a more efficient RMQ data structure?

• Ideally we would like O(n) space, O(n) prep. time and O(1) query time

where for all k, we have A[k + 1] = A[k]± 1

16 1715 16 15 14 15 16 17 18 19 20 21 20 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(in a tie, report the leftmost)



Low-resolution RMQ (again)

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

i j

and many small arrays L0, L1, L2 . . . ‘for the details’

n

i′ j′

Preprocess the array H
(

which has length ñ = 2n
logn

)
to answer RMQs. . .

in O(n) space/prep time

Preprocess each array Li (which has length (logn)/2) to answer RMQs. . .

in O(logn log logn) space/prep time

How do we answer a query in A in O(1) time?

Do one query in H and one query in two different Li and return the smallest

ñ = 2n
logn

logn
2

min of these

as there are O(n/ logn) Li arrays, we have O(n log logn) total space/prep time

L0
L1

L2
L3

L4
L5 Lñ

goes in here

all of these
go in here



Low-resolution RMQ (again)

A

Key Idea replace A with a smaller, ‘low resolution’ array H

H

ñ

i j

and many small arrays L0, L1, L2 . . . ‘for the details’

n

i′ j′

Preprocess the array H
(

which has length ñ = 2n
logn

)
to answer RMQs. . .

in O(n) space/prep time

Preprocess each array Li (which has length (logn)/2) to answer RMQs. . .

in O(logn log logn) space/prep time

How do we answer a query in A in O(1) time?

Do one query in H and one query in two different Li and return the smallest

ñ = 2n
logn

logn
2

min of these

as there are O(n/ logn) Li arrays, we have O(n log logn) total space/prep time

too big and slow!

L0
L1

L2
L3

L4
L5 Lñ

goes in here

all of these
go in here
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L
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2

How many different±1 RMQ arrays like this. . . are there?
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Ly
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We say that iff for all (i, j): RMQx(i, j) = RMQy(i, j)
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logn
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is equivalent to

(remember these are the locations of the minimum)



Counting ±1 RMQ arrays

L
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How many different±1 RMQ arrays like this. . . are there?

Ly
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Lx Ly
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Counting ±1 RMQ arrays

L
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How many different±1 RMQ arrays like this. . . are there?

Ly
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2

We say that iff for all (i, j): RMQx(i, j) = RMQy(i, j)
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is equivalent to
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Lx Ly
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RMQx(0, 4) = RMQy(0, 4) = 2
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(remember these are the locations of the minimum)
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Counting ±1 RMQ arrays
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Counting ±1 RMQ arrays
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Counting ±1 RMQ arrays
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Counting ±1 RMQ arrays

L

logn
2

How many different±1 RMQ arrays like this. . . are there?

Ly

logn
2

We say that iff for all (i, j): RMQx(i, j) = RMQy(i, j)

Lx

logn
2
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Lx Ly
0 1 2 3 4 0 1 2 3 4
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0100 0100dx = dy == 2 = 2

(remember these are the locations of the minimum)



Counting ±1 RMQ arrays

L
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Ly
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We say that iff for all (i, j): RMQx(i, j) = RMQy(i, j)
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iff dx = dy

0100 0100dx = dy == 2 = 2
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Counting ±1 RMQ arrays
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Lx Ly
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0 1 2 3 4 0 1 2 3 4 Fact Lx is equivalent to Ly

• We can precompute dx for each Lx in O(|Lx|) = O(logn) time.
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(remember these are the locations of the minimum)



Counting ±1 RMQ arrays
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Lx Ly
0 1 2 3 4 0 1 2 3 4

16 15 14 15 14 10 9 8 9 8

0 1 2 3 4 0 1 2 3 4 Fact Lx is equivalent to Ly

• We can precompute dx for each Lx in O(|Lx|) = O(logn) time.

• How many different values of d are there?

iff dx = dy

0100 0100dx = dy == 2 = 2

(remember these are the locations of the minimum)



Counting ±1 RMQ arrays

L
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How many different±1 RMQ arrays like this. . . are there?

Ly
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2

We say that iff for all (i, j): RMQx(i, j) = RMQy(i, j)

Lx

logn
2

is equivalent to

16 15 14 15 14 10 9 8 9 8is equivalent to

Lx Ly
0 1 2 3 4 0 1 2 3 4

16 15 14 15 14 10 9 8 9 8

0 1 2 3 4 0 1 2 3 4 Fact Lx is equivalent to Ly

• We can precompute dx for each Lx in O(|Lx|) = O(logn) time.

• How many different values of d are there?

iff dx = dy

0100 0100dx = dy == 2 = 2

d contains (logn)/2− 1 bits so . . .

(remember these are the locations of the minimum)



Counting ±1 RMQ arrays

L
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How many different±1 RMQ arrays like this. . . are there?

Ly
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2

We say that iff for all (i, j): RMQx(i, j) = RMQy(i, j)

Lx

logn
2

is equivalent to

16 15 14 15 14 10 9 8 9 8is equivalent to

Lx Ly
0 1 2 3 4 0 1 2 3 4

16 15 14 15 14 10 9 8 9 8

0 1 2 3 4 0 1 2 3 4 Fact Lx is equivalent to Ly

• We can precompute dx for each Lx in O(|Lx|) = O(logn) time.

• How many different values of d are there?

iff dx = dy

0100 0100dx = dy == 2 = 2

d contains (logn)/2− 1 bits so . . . at most 2(logn)/2

(remember these are the locations of the minimum)



Counting ±1 RMQ arrays

L
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2

How many different±1 RMQ arrays like this. . . are there?

Ly
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2

We say that iff for all (i, j): RMQx(i, j) = RMQy(i, j)

Lx

logn
2

is equivalent to

16 15 14 15 14 10 9 8 9 8is equivalent to

Lx Ly
0 1 2 3 4 0 1 2 3 4

16 15 14 15 14 10 9 8 9 8

0 1 2 3 4 0 1 2 3 4 Fact Lx is equivalent to Ly

• We can precompute dx for each Lx in O(|Lx|) = O(logn) time.

• How many different values of d are there?

iff dx = dy

0100 0100dx = dy == 2 = 2

d contains (logn)/2− 1 bits so . . . at most 2(logn)/2 =
(
2logn

)1/2

(remember these are the locations of the minimum)



Counting ±1 RMQ arrays

L

logn
2

How many different±1 RMQ arrays like this. . . are there?

Ly
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We say that iff for all (i, j): RMQx(i, j) = RMQy(i, j)
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is equivalent to

16 15 14 15 14 10 9 8 9 8is equivalent to

Lx Ly
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0 1 2 3 4 0 1 2 3 4 Fact Lx is equivalent to Ly

• We can precompute dx for each Lx in O(|Lx|) = O(logn) time.

• How many different values of d are there?

iff dx = dy

0100 0100dx = dy == 2 = 2

d contains (logn)/2− 1 bits so . . . at most 2(logn)/2 =
(
2logn
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Counting ±1 RMQ arrays
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How many different±1 RMQ arrays like this. . . are there?
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We say that iff for all (i, j): RMQx(i, j) = RMQy(i, j)
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is equivalent to

16 15 14 15 14 10 9 8 9 8is equivalent to

Lx Ly
0 1 2 3 4 0 1 2 3 4

16 15 14 15 14 10 9 8 9 8

0 1 2 3 4 0 1 2 3 4 Fact Lx is equivalent to Ly

• We can precompute dx for each Lx in O(|Lx|) = O(logn) time.

• How many different values of d are there?

• For each value of d we store RMQ(i, j) for all i, j

iff dx = dy

0100 0100dx = dy == 2 = 2

d contains (logn)/2− 1 bits so . . . at most 2(logn)/2 =
(
2logn

)1/2
6
√
n

(remember these are the locations of the minimum)



Counting ±1 RMQ arrays

L

logn
2

How many different±1 RMQ arrays like this. . . are there?

Ly

logn
2

We say that iff for all (i, j): RMQx(i, j) = RMQy(i, j)

Lx

logn
2

is equivalent to

16 15 14 15 14 10 9 8 9 8is equivalent to

Lx Ly
0 1 2 3 4 0 1 2 3 4

16 15 14 15 14 10 9 8 9 8

0 1 2 3 4 0 1 2 3 4 Fact Lx is equivalent to Ly

• We can precompute dx for each Lx in O(|Lx|) = O(logn) time.

• How many different values of d are there?

• For each value of d we store RMQ(i, j) for all i, j

iff dx = dy

. . . this requires O(
√
n log2 n) = O(n) total space and prep. time

0100 0100dx = dy == 2 = 2

d contains (logn)/2− 1 bits so . . . at most 2(logn)/2 =
(
2logn

)1/2
6
√
n

(remember these are the locations of the minimum)



RMQ on the L arrays in linear space

A

Key Idea replace A with a smaller, ‘low resolution’ array H

n

ñ = 2n
logn

logn
2

L0
L1

L2
L3

L4
L5 Lñ

d0 d1 d2 d3 d4 d5 dñ

precompute the value of dx for each Lx

in O(n) total space and prep. time

Precompute all the RMQ answers for

every value 0 6 d 6
√
n

in O(n) total space and prep. time

To perform a query within some Lx

• Look up dx

• Find the row dx in the table

• Find the entry giving RMQx(i, j)

row d3

This takes O(1) time



Optimal ±1 RMQ
Key Idea replace A with a smaller, ‘low resolution’ array H

and many small arrays L0, L1, L2 . . . ‘for the details’

Preprocess the array H to answer RMQs. . .

in O(n) space/prep time

Preprocess each array Li (which has length (logn)/2) to answer RMQs. . .

build a complete table of answers

How do we answer a query in A in O(1) time?

Do one query in H and one query in two different Li and return the smallest

ñ = 2n
logn

O(n) total space/prep time

A

H

ñ

i j
n

i′ j′

logn
2

min of these

L0
L1

L2
L3

L4
L5 Lñ

goes in here

all of these
go in here



Ongoing Summary

for the Lowest Common Ancestor problem

We have seen an O(n) space, O(n) prep. time and O(1) query time solution

for the ±1 Range Minimum Query problem
which improves solution 3 for RMQ from last lecture

(but only for±1 inputs)

which uses solution 3 for RMQ from last lecture

We have seen an O(n log logn) space, O(n log logn) prep. time and O(1) query time solution



Ongoing Summary

How does this affect our LCA solution?

for the Lowest Common Ancestor problem

We have seen an O(n) space, O(n) prep. time and O(1) query time solution

for the ±1 Range Minimum Query problem
which improves solution 3 for RMQ from last lecture

(but only for±1 inputs)

which uses solution 3 for RMQ from last lecture

We have seen an O(n log logn) space, O(n log logn) prep. time and O(1) query time solution



Solving LCAs using RMQs
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Query Summary - LCA(i,j)

1. Find (any) i′ st. N [i′] = i

2. Find (any) j′ st. N [j′] = j

3. Compute RMQ(i′, j′) in D

4. LCA(i, j) = N [RMQ(i′, j′)]

O(n)

O(1)

O(n)

O(n)

O(1)

O(1)

O(1)
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1. Find (any) i′ st. N [i′] = i

2. Find (any) j′ st. N [j′] = j

3. Compute RMQ(i′, j′) in D

4. LCA(i, j) = N [RMQ(i′, j′)]

O(n)

O(1)

O(n)
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This gives us O(n) space, O(n) prep. time and O(1) query time for the LCA problem



Solving LCAs using RMQs
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Preprocessing Summary

1. Construct N and D from T

2. Add a pointer from each

3. Preprocess D for RMQs

node i to some N [i′] = i

Query Summary - LCA(i,j)

1. Find (any) i′ st. N [i′] = i

2. Find (any) j′ st. N [j′] = j

3. Compute RMQ(i′, j′) in D

4. LCA(i, j) = N [RMQ(i′, j′)]

O(n)

O(1)

O(n)

O(n)

O(1)

O(1)

O(1)

This gives us O(n) space, O(n) prep. time and O(1) query time for the LCA problem
by using the solution to ±1RMQ



Ongoing Summary

We have seen an O(n) space, O(n) prep. time and O(1) query time solution

for the Lowest Common Ancestor problem
which uses the solution to ±1RMQ

We have seen an O(n) space, O(n) prep. time and O(1) query time solution

for the ±1 Range Minimum Query problem
which improves solution 3 for RMQ from last lecture

(but only for±1 inputs)



Ongoing Summary

What about the general Range Minimum Query problem?

We have seen an O(n) space, O(n) prep. time and O(1) query time solution

for the Lowest Common Ancestor problem
which uses the solution to ±1RMQ

We have seen an O(n) space, O(n) prep. time and O(1) query time solution

for the ±1 Range Minimum Query problem
which improves solution 3 for RMQ from last lecture

(but only for±1 inputs)

(when the inputs aren’t±1)



Solving RMQs using LCAs

A

n

17 823 73 51 82 19 32 5 67 91 14 46 9 21 54

0 1 2 3 4 5 7 8 9 10 11 12 14 15

Build the Cartesian tree, TA of the array A:

6 13
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Build the Cartesian tree, TA of the array A:

• The root is the smallest value

• The selected location 8 9

1723 73 51 82 19 32 67 91 14 46 21 54
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by using the solution to LCA :)



Summary

We have seen an O(n) space, O(n) prep. time and O(1) query time solution

for the Range Minimum Query problem
which uses the solution to LCA

We have seen an O(n) space, O(n) prep. time and O(1) query time solution

for the Lowest Common Ancestor problem
which uses the solution to ±1RMQ

We have seen an O(n) space, O(n) prep. time and O(1) query time solution

for the ±1 Range Minimum Query problem
which improves solution 3 for RMQ from last lecture

(but only for±1 inputs)

(which works for all inputs)


