University of
BRISTOL

Advanced Algorithms — COMS31900

Lowest Common Ancestor

Raphaél Clifford

Slides by Benjamin Sach

University of
BRISTOL

Advanced Algorithms — COMS31900

Lowest Common Ancestor

(with a bit on on Range Minimum Queries)

Raphaél Clifford

B s

Lowest common ancestor

Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

B s

Lowest common ancestor

Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes ¢ and j

B s

Lowest common ancestor

Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes ¢ and j

B s

Lowest common ancestor

Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes ¢ and j

B s

Lowest common ancestor
Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

<¢— root

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes ¢ and j

B s

Lowest common ancestor
Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

<¢— root

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes ¢ and j

B s

Lowest common ancestor
Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

: PR <¢— root
ancestors of node 2 -7

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes ¢ and j

B s

Lowest common ancestor
Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

: PR <¢— root
ancestors of node 2 -7

- nodes on the path NN

from 7 to the root N

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes ¢ and j

B s

Lowest common ancestor

Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes ¢ and j

B s

Lowest common ancestor

Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

Rl

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes ¢ and j

B s

Lowest common ancestor

Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

Rl

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes ¢ and j

B s
Lowest common ancestor

Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

o .- - ->
ancestors of node 7

\
. \
~ N \ S
N~ N \ ‘
\

After preprocessing,
the output to a query LCA(4, 7) is the lowest common ancestor of nodes ¢ and j

B s
Lowest common ancestor

Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

, .-
ancestors of node J i
- nodes on the path AT

from 7 to the root y !

After preprocessing,
the output to a query LCA(4, 7) is the lowest common ancestor of nodes ¢ and j

B s

Lowest common ancestor

Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

Rl

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes ¢ and j

B s

Lowest common ancestor
Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

<¢— root

*

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes ¢ and j

B s

Lowest common ancestor

Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

common ancestors of 7 and j - <&— root

~
-
- -
~

Rl

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes ¢ and j

B s

Lowest common ancestor

Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

common ancestors of 7 and j - <&— root

~
-
- -
~

- nodes which are

ancestors of both 1

and)

Rl

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes ¢ and j

B s

Lowest common ancestor
Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

<¢— root

*

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes ¢ and j

B s

Lowest common ancestor

Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes ¢ and j

B s

Lowest common ancestor

Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes ¢ and j

B s

Lowest common ancestor

Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

lowest common ancestor of 2 and 7 <&— root depth= 0
___________________________ R
1

2

3

V\i

-~ 4
____________________________ Y A WS
5

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes ¢ and j

B s

Lowest common ancestor

Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

lowest common ancestor of < and j <€— root depth= 0
- the common ancestor of 1 1

and 7 furthest

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes 7 and j

B s

Lowest common ancestor

Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes 7 and j

B s

Lowest common ancestor

Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

0
1
LCA(7, 7)
__ ;/_ e mmmme o
3
J 4
___ A\
t 5

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes 7 and j

B s

Lowest common ancestor

Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes 7 and j

B s

Lowest common ancestor
Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

<— [CA(i, §) 0

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes 7 and j

B s

Lowest common ancestor
Preprocess a tree 7" (with . nodes) to answer lowest common ancestor queries. ..

<— [CA(i, §) 0

After preprocessing,

the output to a query LCA(4, 7) is the lowest common ancestor of nodes 7 and j

® Ideally, we would like O(n) space, O(n) prep. time and O(1) query time

B s

Solving LCAs using RMQs

B s

Solving LCAs using RMQs

the nodes are numbered between
Oand (n — 1)

B s

Solving LCAs using RMQs

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
...and its depth

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
...and its depth

(node) N | 0

(depth) D |0

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
...and its depth

(node) N |01

(depth) D |0 |1

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
...and its depth

(node) N |0|1|5

(depth) D {012

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
...and its depth

(node) V [0|1|5|9

(depth) D {0(1]|2]3

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
...and its depth

(node) N |0[1(5|9|5

(depth) D [0]|1|2|3]|2

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
...and its depth

(node) NV [0]1]|5[9]5]10

(depth) D |0|1(2|3|2|3

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
...and its depth

(node) NV [0|1|5[9|5(10[5

(depth) D |0|1|2(3|2|3|2

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
...and its depth

(node) N |0|1|5(9|5]10|5]|1

(depth) D [0|1|2[3|2(|3|2]|1

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
...and its depth

(node) N [o]1]5]9]5[10[5]1]6

(depth) D [o]1]2[3]2]3[2]1]2

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

(node) N |0[1(5[9|5(10{5|1|6]|1

(depth) D [o|1]2]3]2]38[2]1[2]1

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

(node) N [o]1]5]9]5[10[5[1]6]1]0

(depth) D [o|1[2]3]2]3[2]1]2]1]0

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

(node) N [0]|1|5[9|5|10{5|1|6]|1]|0]2

(depth) D [o]1]2[3]2]3[2]1]2]1]0][1

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

(node) N |0|1|5[9|5(10[5|1|6]|1]|0|2]|0

(depth) D [o|1]2]3]2]8[2]1[2]1]0]1]0

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

(node) N |0|1|5[9|5(10/5|1|6|1{0|2]|0|3

(depth) D [o]1]2[3]2]3[2]1]2[1]0[1]0]1

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

(node) N |0|1|5[9|5(10/5|1|6]|1{0|2]|0|3|7

(depth) D [o|1[2]3]2[8[2]1]2]1]o[1]0]1]2

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

(node) N [0|1|5|9(5(10]5|1|6|1|0]|2[0|3]|7]|3

(depth) D [o]1[2]3]2]38[2]1]2]1]o[1]0]1]2]1

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

(node) N [0|1|5]|9(5(10/5|1|{6|1]|0|2[0|3]|7|3]|8

(depth) D [o]1[2]3]2]3[2]1]2]1]o[1]o]1]2]1]2

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

(node) N |0|1|5[9|5(10/5|1|6|1|0|2]|0|3|7[3|8]|3

depth) D [o]1[2]3]2]3[2]1]2]1]o]1]o]1[2]1]2]1

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

(node) N |0|1|5[9|5(10/5|1|6]|1{0|2]|0[3|7[3|8]|3]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1]o]1]2]1]2]1]0

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

(node) N |0|1]5[9|5(10[5|1|6]|1|0|2]|0[3|7|3|8|3|0]|4

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2]1]2]1]0]1

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

(node) N |0|1|5[9(5(10[5|1|6|1]|0[2|0|3|7[3|8|3|0]|4]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2]1]2]1]0]1]0O

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

How long is the tour?

(node) N |0|1|5[9(5(10[5|1|6|1]|0[2|0|3|7[3|8|3|0]|4]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2]1]2]1]0]1]0O

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

How long is the tour?

We follow each edge twice. ..
and there are (n — 1) edges

(node) N |0|1|5[9(5(10[5|1|6|1]|0[2|0|3|7[3|8|3|0]|4]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2]1]2]1]0]1]0O

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

How long is the tour?

We follow each edge twice. ..
and there are (n — 1) edges

(node) N |0|1|5[9(5(10[5|1|6|1]|0[2|0|3|7[3|8|3|0]|4]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2]1]2]1]0]1]0O

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

How long is the tour?

We follow each edge twice. ..
and there are (n — 1) edges

(node) N |0|1|5[9(5(10[5|1|6|1]|0[2|0|3|7[3|8|3|0]|4]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2]1]2]1]0]1]0O

how do we find LCA(i,j)?

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

How long is the tour?

We follow each edge twice. ..
and there are (n — 1) edges

y'd A
(node) N |0|1|5|9|5(10/5|1f6(1]|0|2|0|3|7|3|8]|3|0[4]|0
| 2n—1 I

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2]1]2]1]0]1]0O

how do we find LCA(i,j)?

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

How long is the tour?

We follow each edge twice. ..
and there are (n — 1) edges

(node) N |0|1|5[9(5(10[5|1|6]1]|0[2|0|3|7[3|8[3|0]|4]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2[1]2]1]0]1]0O

how do we find LCA(i,j)?

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

How long is the tour?

We follow each edge twice. ..
and there are (n — 1) edges

(node) N |0|1|5[9(5(10[5|1|6]1]|0[2|0|3|7[3|8[3|0]|4]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2[1]2]1]0]1]0O

AT A
how do we find LCA(ij)? Compute RMQ(i", j7) in D

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

How long is the tour?

We follow each edge twice. ..
and there are (n — 1) edges

(node) N |0|1|5[9(5(10[5|1|6]1]|0[2|0|3|7[3|8[3|0]|4]|0

| — 2n—1 : I
(depth) D |0(1(2|3|2|3|2|1|2|1|0|1|0|1|2|1|2|1|{0|1]|O
i/ lﬁ E]’

AT A
how do we find LCA(ij)? Compute RMQ(i", j7) in D

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

How long is the tour?

We follow each edge twice. ..
and there are (n — 1) edges

(node) N |0|1|5[9(5(10[5|1|6|1]|0[2|0|3|7[3|8|3|0]|4]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2]1]2]1]0]1]0O

how do we find LCA(i,j)?

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

How long is the tour?

We follow each edge twice. ..
and there are (n — 1) edges

(node) N |0|1|5[9(5(10[5|1|6|1]|0[2|0|3|7[3|8|3|0]|4]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2]1]2]1]0]1]0O

how do we find LCA(i,j)?

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

How long is the tour?

We follow each edge twice. ..
and there are (n — 1) edges

Find 2 and 7 in N
VS

(node) N |0|1|5]9(5(10[5|1|6]|1]|0[2|0|3|7[3|8|3|0]|4]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2]1]2]1]0]1]0O

how do we find LCA(i,j)?

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

How long is the tour?

We follow each edge twice. ..
and there are (n — 1) edges

Find 2 and 7 in N
1V

(node) N |0|1|5]9(5(10[5|1|6]|1]|0[2|0|3|7[3|8|3|0]|4]|0

(depth) D [o]1[2]3]2]3[2]1]2

ok
o
ok
o
ok
()
ok
()
ok
o
ok
o

~
Q.
~

how do we find LCA(i,j)?

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

How long is the tour?

We follow each edge twice. ..
and there are (n — 1) edges

Find 2 and 7 in N
(node) N |0|1|5[9|5(10/5|1[6[1]|0[|2|0|3|7|3|8|3|0[4]|0
| - 2n—1 |
(depth) D |[0|1(2[3|2(3|2|1|2]1
/1 Ej/

AT A
how do we find LCA(ij)? Compute RMQ(i", j7) in D

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

How long is the tour?

We follow each edge twice. ..
and there are (n — 1) edges

Find 2 and 7 in N
(node) N |0|1|5[9|5(10/5|1[6[1]|0[|2|0|3|7|3|8|3|0[4]|0
| - 2n—1 |
(depth) D |[0|1(2[3|2(3|2|1|2]1
i’ Py

AT A
how do we find LCA(ij)? Compute RMQ(i", j7) in D

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

How long is the tour?

We follow each edge twice. ..
and there are (n — 1) edges

(node) N |0|1|5[9(5(10[5|1|6|1]|0[2|0|3|7[3|8|3|0]|4]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2]1]2]1]0]1]0O

how do we find LCA(i,j)?

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

How long is the tour?

We follow each edge twice. ..
and there are (n — 1) edges

(node) N |0|1|5[9(5(10[5|1|6|1]|0[2|0|3|7[3|8|3|0]|4]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2]1]2]1]0]1]0O

how do we find LCA(i,j)?

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

How long is the tour?

We follow each edge twice. ..
and there are (n — 1) edges

(node) N |0|1|5[9(5(10[5|1|6|1]|0[2|0|3|7[3|8|3|0]|4]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2]1]2]1]0]1]0O

how do we find LCA(i,j)?

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

How long is the tour?

We follow each edge twice. ..
and there are (n — 1) edges

Find 2 and 7 in V... which copy of 2?

(node) N |0|1[5(9[5(10[{5|1|6|1]|0[{2|0|3|7[3|8|3|0]|4]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2]1]2]1]0]1]0O

how do we find LCA(i,j)?

B s

Solving LCAs using RMQs

Compute an Euler tour of 7. ..
(a depth first search with repeats)

Write down every node you visit
.. and its depth

How long is the tour?

We follow each edge twice. ..
and there are (n — 1) edges

Find 2 and 7 in V... which copy of 2?

any copy is fine

(node) N |0|1[5(9[5(10[{5|1|6|1]|0[{2|0|3|7[3|8|3|0]|4]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2]1]2]1]0]1]0O

how do we find LCA(i,j)?

B s

Solving LCAs using RMQs

(node) N |0|1|5[9(5(10[5|1|6|1]|0[2|0|3|7[3|8|3|0]|4]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2]1]2]1]0]1]0O

Solving LCAs using RMQs

Preprocessing Summary
1. Construct /N and D from T’

2. Add a pointer from each
node i to some N [i'] = i

3. Preprocess D for RMQs

(node) N |0|1|5(9]5

(depth) D [0]|1|2|3]|2

10 110
| 2n—1
3 1{0

B s

B s

Solving LCAs using RMQs

Preprocessing Summary
1. Construct /N and D from T’

2. Add a pointer from each
node i to some N [i'] = i

3. Preprocess D for RMQs

Query Summary - LCA(i,))
1. Find (any) i’ st. N[i'] =4
2. Find (any)j’ st. N[j/] =
3. Compute RMQ(4/, 5") in D
4. LCA(3, 7) = N[RMQ(#’,)]

(node) N |0|1|5[9(5(10[5|1|6|1]|0[2|0|3|7[3|8|3|0]|4]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2]1]2]1]0]1]0O

Solving LCAs using RMQs

Preprocessing Summary
O(n) 1. Construct N and D from T

2. Add a pointer from each
node i to some N [i'] = i

3. Preprocess D for RMQs

Query Summary - LCA(i,))
1. Find (any) i’ st. N[i'] =4
2. Find (any) j/ st. N[j/] =
3. Compute RMQ(4/, 5") in D
4. LCA(3, 7) = N[RMQ(#’,)]

(node) N |0|1|5(9]5

(depth) D [0]|1|2|3]|2

10 110
| 2n—1
3 1{0

B s

Solving LCAs using RMQs

Preprocessing Summary
O(n) 1. Construct N and D from T

I
O(n) 2. Add a pointer from each
node i to some N [i'] = i

3. Preprocess D for RMQs

Query Summary - LCA(i,))
1. Find (any) i’ st. N[i'] =4
2. Find (any) j/ st. N[j/] =
3. Compute RMQ(4/, 5") in D
4. LCA(3, 7) = N[RMQ(#’,)]

(node) N |0|1|5(9]5

(depth) D [0]|1|2|3]|2

10 110
| 2n—1
3 1{0

B s

Solving LCAs using RMQs

Preprocessing Summary
O(n) 1. Construct N and D from T

I
O(n) 2. Add a pointer from each
‘ node i to some N [i'] = i

O(?) 3. Preprocess D for RMQs
1

Query Summary - LCA(i,))
1. Find (any) i’ st. N[i'] =4
2. Find (any) j/ st. N[j/] =
3. Compute RMQ(4/, 5") in D
4. LCA(3, 7) = N[RMQ(#’,)]

(node) V [0|1]|5(9](5

(depth) D [0]|1|2|3]|2

10 1(0
| 2n—1
3 110

B s

Solving LCAs using RMQs

Preprocessing Summary
O(n) 1. Construct N and D from T

I
O(n) 2. Add a pointer from each
‘ node 7 to some IV [i’]

O(?) 3. Preprocess D for RMQs
1

=1

Query Summary - LCA(i,))

O(1) 1. Find (any) 7" st. N[i'] =i

2. Find (any) j/ st. N[j/] =
3. Compute RMQ(4/, 5") in D

4. LCA(3, 7) = N[RMQ(#’,)]

(node) V [0|1]|5(9](5

(depth) D [0]|1|2|3]|2

10 1(0
| 2n—1
3 110

B s

B s

Solving LCAs using RMQs

Preprocessing Summary
O(n) 1. Construct N and D from T

I
O(n) 2. Add a pointer from each
‘ node i to some N [i'] = i

O(?) 3. Preprocess D for RMQs
1

‘ Query Summary - LCA(i,))
O(1) 1. Find (any) 7" st. N[i'] =i
O(ll) 2. Find (any) 7' st. N[j'] = j
3. Compute RMQ(4/, 5") in D
4. LCA(3, 7) = N[RMQ(#’,)]

(node) N |0|1|5[9(5(10[5|1|6|1]|0[2|0|3|7[3|8|3|0]|4]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2]1]2]1]0]1]0O

B s

Solving LCAs using RMQs

Preprocessing Summary
O(n) 1. Construct N and D from T

I
O(n) 2. Add a pointer from each
‘ node i to some N [i'] = i

O(?) 3. Preprocess D for RMQs
1

‘ Query Summary - LCA(i,))
O(1) 1. Find (any) i/ st. N[i’] =i
O(ll) 2. Find (any) 7' st. N[j'] = j
O(?) 3. Compute RMQ(7’, ') in D

‘ 4. LCA(i, j) = N[RMQ(i’, j")]

(node) N |0|1|5[9(5(10[5|1|6|1]|0[2|0|3|7[3|8|3|0]|4]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2]1]2]1]0]1]0O

B s

Solving LCAs using RMQs

Preprocessing Summary
O(n) 1. Construct N and D from T

I
O(n) 2. Add a pointer from each
‘ node i to some N [i'] = i

O(?) 3. Preprocess D for RMQs
1

‘ Query Summary - LCA(i,))
O(1) 1. Find (any) 7" st. N[i'] =i
O(ll) 2. Find (any) 7' st. N[j'] = j
O(?I) 3. Compute RMQ(4/, 5") in D
O(1) 4. LGA(i, j) = N[RMQ(#’, §7)]

(node) N |0|1|5[9(5(10[5|1|6|1]|0[2|0|3|7[3|8|3|0]|4]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2]1]2]1]0]1]0O

Solving LCAs using RMQs

Preprocessing Summary
O(n) 1. Construct N and D from T

I
O(n) 2. Add a pointer from each
‘ node 7 to some IV [i’]

O(?) 3. Preprocess D for RMQs
1

=1

‘ Query Summary - LCA(i,))
O(1) 1. Find (any) i/ st. N[i’] =i
O(ll) 2. Find (any) 7' st. N[j'] = j
O(?I) 3. Compute RMQ(7/, ") in D

O(1) 4. LGA(i, j) = N[RMQ(#’, §7)]

B s

(node) V [0|1|5|9

(depth) D {0(1]|2]3

Prep. time O(n + prepRMQ(n))

Query time O(1 + queryRMQ(n))

-

5105116110210 3[71318 01410

| 2n—1 I
2(312(112(110(110(112(1]2 0|10
Wwawwom» -

depends on the RMQ structure used

Solving LCAs using RMQs

Preprocessing Summary
O(n) 1. Construct N and D from T

I
O(n) 2. Add a pointer from each
‘ node i to some N [i'] = i

O(?) 3. Preprocess D for RMQs
1

‘ Query Summary - LCA(i,))
O(1) 1. Find (any) 7" st. N[i'] =i
O(ll) 2. Find (any) 7' st. N[j'] = j
O(?I) 3. Compute RMQ(4/, 5") in D
O(1) 4. LGA(i, j) = N[RMQ(#’, §7)]

B s

(node) NV [0]1]|5[9]5]10

Prep. time O (n log logn)

5111611020137 |3(8 410

| 2n—1 I

(depth)y D [o[1[2]3]2]3]2]1]2[1]o[1]o]1]2]1]2 1[0
Space O(n loglogn

‘p\hg?;) - —

Query time O(1) <

using the best result from last lecture

Solving LCAs using RMQs

Preprocessing Summary
O(n) 1. Construct N and D from T

I
O(n) 2. Add a pointer from each
‘ node 7 to some IV [i’]

O(?) 3. Preprocess D for RMQs
1

=1

‘ Query Summary - LCA(i,))
O(1) 1. Find (any) 7" st. N[i'] =i
O(ll) 2. Find (any) 7' st. N[j'] = j
O(?I) 3. Compute RMQ(4/, 5") in D
O(1) 4. LGA(i, j) = N[RMQ(#’, §7)]

B s

(node) N |0|1|5(9]5

(depth) D |[0|1|2|3|2

Prep. time O(n log logn)
Query time O(1) <

10(5(1(6(1(0[2(0(3|7|3|8 410
| 2n—1 |
3(21112(1|10(1(0|1]2(1]|2 1|0
Space O(n loglogn
ﬂ—\(g g) = —

using the best result from last lecture

B SRt

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

depth > d + 1

(node) N [z] El
(depth) D [d] [d]

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

depth > d + 1

(node) N [z] El
(depth) D [d] [d]

B SRt

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

depth >d + 1

‘\ ‘\‘\4 K subtrees

(node) IV |@ z w-E l
(depth) D [d d d d| --- [d]

B s

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

depth >d + 1

‘\ ‘\‘\4 K subtrees

(node) NV [z z o =] - [«
(deptr) D [@ d T -
— "

L J (- J

Y Y
tour of S tour of So tour of S3 tour of Sy,

B SRt

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

depth > d + 1

(node) N [] [z] [z] - [« [=]
(depth) D [d] [d] [d["1d] --- [d [d]
L J oL —— S —

Y Y
tour of S tour of So tour of S3 tour of Sy,

B SRt

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

depth > d + 1

(node) N [z] [z]y] v Y
(dep’[h) D . .d+1 d+1 d+1
L

J (- J
v N Yy
tour of S tour of So tour of S3 tour of Sy,

{II

B SRt

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

depth > d + 1

(node) N [z] [z]y] v Y
(dep’[h) D . .d+1 d+1 d+1
L

J (- J
v N Yy
tour of S tour of So tour of S3 tour of Sy,

{II

B s

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

Claim the RMQ reports the location of
depth = d
somey in N iff LCA(i,7) = vy
depth=d + 1
depth > d + 1

(node) N |@ Ty y v[Ty [z =] --- [= [=
cep) D @ a1 [) - S
RY/_J \TJ

Y Y
tour of S tour of So tour of S3 tour of Sy,

B s

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

Claim the RMQ reports the location of
depth = d
somey in N iff LCA(i,7) = vy
depth=d + 1
depth > d + 1

o) N B nmpmspenn-— oE
(depth)D d d e+ d+1 d+1 d+1 d-E coe
RY/_J

Y Y
tour of S tour of So tour of S3 tour of Sy,

|

B s

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

Claim the RMQ reports the location of
depth = d
somey in N iff LCA(i,7) = vy
depth=d + 1
depth > d + 1

4 |imagine LCA(%, 7) is not y

(node) N |@ Ty y v[Ty [z =] --- [= [=
cep) D @ a1 [) - S
RY/_J \TJ

L J (- J

Y Y
tour of S tour of So tour of S3 tour of Sy,

B s

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

Claim the RMQ reports the location of
depth = d
somey in N iff LCA(i,7) = vy
depth=d + 1
depth > d + 1

4 |imagine LCA(%, 7) is not y

i/ and j’ are in here so RMQ does not return the location of a y

Nt

(node) N | @ x|y yli iy yw-zl
et D @ [[A - -
L — U — J o) |)

tour of S tour of So tour of S3 tour of Sy,

B s

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

Claim the RMQ reports the location of
depth = d
somey in N iff LCA(i,7) = vy
depth=d + 1
depth > d + 1

4 |imagine LCA(%, 7) is not y

i/ and j’ are in here so RMQ does not return the location of a y

\ / (all of the ys are out of range)
Yy Yy

(node) N | @ x|y yli x-zl
ceptn) D [T T I (A -
L — U — J o) |)

tour of S tour of So tour of S3 tour of Sy,

B s

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

Claim the RMQ reports the location of
depth = d
somey in N iff LCA(i,7) = vy
depth=d + 1
depth > d + 1

(node) N |@ Ty y v[Ty [z =] --- [= [=
cep) D @ a1 [) - S
RY/_J \TJ

Y Y
tour of S tour of So tour of S3 tour of Sy,

B s

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

Claim the RMQ reports the location of @ depth = d
somey in N iff LCA(7,7) = vy
depth=d + 1
depth > d + 1
S1
)

(node) N |@ Ty y v[Ty [z =] --- [= [=
(@eptn) D [@ IEEEENENEE . e

L —— J L — J oo) |)

tour of S tour of So tour of S3 tour of Sy,

B s

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

Claim the RMQ reports the location of @ depth = d
somey in N iff LCA(7,7) = vy
depth=d + 1
depth >d + 1
S1
2 again, imagine LCA(4, j) is not y

(node) N |x z|Y Y v[Ty [z =] --- [= [=
(depth) D [d df | [[[] [d[d] --- [d]d

L J - J - - _—J

tour of S tour of So tour of S3 tour of Sy,

B s

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

Claim the RMQ reports the location of (2 depth = d
some vy in N iff LCA(7,]) = vy

depth=d + 1

depth > d + 1

2 again, imagine LCA(4, j) is not y
i/ and j’ cross an x (which has smaller depth than)
‘/_/ so the RMQ location isn't a y \\»
(node) N (BB v] [V @ - EEE
(depth) DD |d _ fdpe] e e -+ [d I d
L ! J - 1
v " Y

tour of S tour of So tour of S3 tour of Sy,

B s

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

Claim the RMQ reports the location of
depth = d
somey in N iff LCA(i,7) = vy
depth=d + 1
depth > d + 1

(node) N |@ Ty y v[Ty [z =] --- [= [=
cep) D @ a1 [) - S
RY/_J \TJ

Y Y
tour of S tour of So tour of S3 tour of Sy,

B s

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

Claim the RMQ reports the location of
depth = d
somey in N iff LCA(i,7) = vy
depth=d + 1
depth > d + 1

(node) N |@ Ty y v[Ty [z =] --- [= [=
cep) D @ a1 [) - S
RY/_J LW_J

Y Y
tour of S tour of So tour of S3 tour of Sy,

B s

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

Claim the RMQ reports the location of
depth = d
somey in N iff LCA(i,7) = vy
depth=d + 1
depth > d + 1

now imagine LCA(¢, j) is y

(node) N |@ Ty y v[Ty [z =] --- [= [=
cep) D @ a1 [) - S
RY/_J LW_J

L J (- J

Y Y
tour of S tour of So tour of S3 tour of Sy,

B s

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

Claim the RMQ reports the location of
depth = d
somey in N iff LCA(i,7) = vy
depth=d + 1
depth > d + 1

j now imagine LCA(¢, j) is y

i/ and j’ cross a y (which is the smallest in the range)

.S

(node) N [ely] To[TvETv [T =] - [T
(depth) D [d dl | [Nd] - [«
! ! RY,_J W_J

Y Y
tour of S tour of So tour of S3 tour of Sy,

d+1 d+1

B s

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

Claim the RMQ reports the location of
depth = d
somey in N iff LCA(i,7) = vy
depth=d + 1
depth > d + 1

j now imagine LCA(¢, j) is y

i/ and j’ cross a y (which is the smallest in the range)
i ~_ 45
(node) N [B A R -
' |]
(depth) D |d dl'] . - la] --- [a [4
—~ ! VI—J RY,_J LW_J

tour of S tour of So tour of S3 tour of Sy,

d+1 d+1

B s

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

Claim the RMQ reports the location of
depth = d
somey in N iff LCA(i,7) = vy
depth=d + 1
depth > d + 1

j now imagine LCA(¢, j) is y

i/ and j’ cross a y (which is the smallest in the range)

e

(node) N |& A AVEE

(depth) D [d dl- [d] --- [
~ —~ Y —
tour of S tour of So tour of S3 tour of Sy,

d+1 d+1

B s

Solving LCA using RMQ - correctness

We can also define a Euler tour of " recursively. . .

Claim the RMQ reports the location of
depth = d
somey in N iff LCA(i,7) = vy
depth=d + 1
depth > d + 1

j now imagine LCA(¢, j) is y

i/ and j’ cross a y (which is the smallest in the range)

f so the RMQ reports a y
~ > 3

(node) N |& A AVEE

(depth) D [d dl- [d] --- [
~ —~ Y —
tour of S tour of So tour of S3 tour of Sy,

d+1 d+1

B SRt

Ongoing Summary

We have seen an O(n log log n) space, O(n log log n) prep. time and O(1) query time solution

for the Lowest Common Ancestor problem

which uses solution 3 for RMQ from last lecture

B s

Ongoing Summary

We have seen an O(n log log n) space, O(n log log n) prep. time and O(1) query time solution

for the Lowest Common Ancestor problem

which uses solution 3 for RMQ from last lecture

Can we do better?

B s

Solving LCAs using RMQs - efficiency

Preprocessing Summary
1. Construct /NV and D from T’

2. Add a pointer from each
node i to some N [i'] = i

3. Preprocess [for RMQs

Query Summary - LCA(i,))
1. Find (any) i’ st. N[i'] =4
2. Find (any)j/ st. N[j/] =
3. Compute RMQ(4/, 5") in D
4. LCA(3, 7) = N[RMQ(#’,)]

(node) N |0|1|5[9(5(10[5|1|6|1]|0[2|0|3|7[3|8|3|0]|4]|0

depth) D [o]1]2[3]2]3[2]1]2[1]o]1[o]1]2]1]2]1]0]1]0O

B s

Solving LCAs using RMQs - efficiency

Preprocessing Summary
1. Construct /NV and D from T’

2. Add a pointer from each
node i to some N [i'] = i

3. Preprocess [for RMQs

Query Summary - LCA(i,))
1. Find (any) i’ st. N[i'] =4
2. Find (any)j/ st. N[j/] =
3. Compute RMQ(3’, 5') in D
4. LCA(3, 7) = N[RMQ(#’,)]

(node) N |0|1|5[9(5(10[5|1|6|1]|0[2|0|3|7[3|8|3|0]|4]|0
| 2n—1 I
(depth) D |0(1|2|3|2|3|2|1|2|1|0|1|0|1|2|1|2|1({0|1]|O

Notice anything interesting about [D?

B s

Solving LCAs using RMQs - efficiency

Preprocessing Summary
1. Construct /NV and D from T’

2. Add a pointer from each

node i to some N [i'] = i

3. Preprocess [for RMQs

Query Summary - LCA(i,))

1. Find (any) i’ st. N[i'] =4

2. Find (any)j/ st. N[j/] =
3. Compute RMQ(3’, 5') in D

4. LCA(3, 7) = N[RMQ(#’,)]

(node) N |0|1|5[9(5(10[5|1|6|1]|0[2|0|3|7[3|8|3|0]|4]|0
| 2n—1 I
(depth) D |0(1|2|3|2|3|2|1|2|1|0|1|0|1|2|1|2|1({0|1]|O

Notice anything interesting about D? Dii+ 1] = D[]+ 1

B s

+1 Range minimum query

Preprocess an integer array A (length n) to answer range minimum queries. ...
where for all k, we have Ak + 1] = A[k] £ 1

I@@@E@@@@@E@@@@@I

| 'y |
A 15(16({17[16[15(14(15]16]|17|18119|20]|21{20({19|20
i =3 T =T

RMQ(3,7) = 5

After preprocessing, a range minimum query is given by RMQ(z, 7)
the output is the location of the smallest element in A |7, j]
(in a tie, report the leftmost)

e.g. RMQ(3, 7) = 5, which is the location of the smallest element in A[3, 7]

® Can we exploit this ==1 property to get a more efficient RMQ data structure?

® Ideally we would like O(n) space, O(n) prep. time and O(1) query time

B s

Low-resolution RMQ (again) o
Key Idea replace A with a smaller, ‘low resolution’ array H = logn
and many small arrays L, L1, Lo . .. ‘for the details’
. . logn
ZI 1 1 I‘] _T_
| 1 1 n 1 1 |
| 1 1 1 1 : |
A IIIIIIIIIIIIIIIIIIIIIIII
- : all of
IIEI:I I I:IEEEI Ls I:I:EI:I L5. IIEI:I Lz go in here
I:I:- > IO “ el I:DII'_I
: : 5 min of these
H I [I I] I 4> goes in here
| — A —
i g =
2n

Preprocess the array (which has length . =) to answer RMQs. ..

logn
in O(n) space/prep time

Preprocess each array I.; (which has length (log 1) /2) to answer RMQs. ...
in O(logn loglogn) space/prep time

as there are O(n/ logn) L; arrays, we have O(n log log n) total space/prep time

How do we answer a query in A in O(1) time?

Do one query in /1 and one query in two different /.; and return the smallest

B s

Low-resolution RMQ (again) o
Key Idea replace A with a smaller, ‘low resolution’ array H = logn
and many small arrays L, L1, Lo . .. ‘for the details’
. . logn
ZI 1 1 I‘] _T_
| 1 1 n 1 1 |
| 1 1 1 1 : |
A IIIIIIIIIIIIIIIIIIIIIIII
- : all of
IIEI:I I I:IEEEI Ls I:I:EI:I L5. IIEI:I Lz go in here
I:I:- > IO “ el I:DII'_I
: : 5 min of these
H I [I I] I 4> goes in here
| — A —
i g =
2n

Preprocess the array (which has length . =) to answer RMQs. ..

logn
in O(n) space/prep time

Preprocess each array I.; (which has length (log 1) /2) to answer RMQs. ...
too big and slow! \TP in O(logn loglogn) space/prep time

as there are O(n/ logn) L; arrays, we have O(n log log n) total space/prep time

How do we answer a query in A in O(1) time?

Do one query in /1 and one query in two different /.; and return the smallest

B s

Counting =1 RMQ arrays

L
How many different =1 RMQ arrays like this... [___] are there?
5

B s

Counting =1 RMQ arrays

L
How many different =1 RMQ arrays like this... [___] are there?
5
Ly Ly

We say that [___] is equivalentto [__] iff forall (4, j): RMQg (7, 7) = RMQy (4, 7)
I_ log n _| I_ 10% n _|

B SRt

Counting =1 RMQ arrays

L
How many different =1 RMQ arrays like this... [___] are there?
-5 o
We say that [___] is equivalentto [__] iff forall (4, j): RMQg (7, 7) = RMQy (4, 7)
-5 5" < (remember these are the locations of the minimum)

B s

Counting =1 RMQ arrays

L
How many different =1 RMQ arrays like this... [___] are there?
-5
We say that [___] is equivalentto [__] iff forall (4, j): RMQg (7, 7) = RMQy (4, 7)
o5t “" < (remember these are the locations of the minimum)
©0 606606 ©0 66006
16|15(14|15|14| is equivalentto [10]9[8|9 |8

B SRt

Counting =1 RMQ arrays

L
How many different =1 RMQ arrays like this... [___] are there?
5
We say that [___] is equivalentto [__] iff forall (4, j): RMQg (7, 7) = RMQy (4, 7)
5t “" < (remember these are the locations of the minimum)

La Ly RMQ (0, 2) = RMQy (0, 2
©0 660 ©0 6606 3.4
16[15[14]15[14] is equivalentto [10[9]8[9]8 RMQy (3, 4) = RMQy (

N N N NS
r—ll\D»-lkl\D

(
(3,
RMQz (0,4) = RMQy (0, 4
RMQ (0,1) = RI\/IQy(O 1

B s

Counting =1 RMQ arrays

L
How many different =1 RMQ arrays like this... [___] are there?
-5
We say that [___] is equivalentto [__] iff forall (4, j): RMQg (7, 7) = RMQy (4, 7)
o5t “" < (remember these are the locations of the minimum)
©0 606606 ©0 66006
16|15(14|15|14| is equivalentto [10]9[8|9 |8

B s

Counting =1 RMQ arrays

L
How many different =1 RMQ arrays like this... [___] are there?
-5
We say that [___] is equivalentto [__] iff forall (4, j): RMQg (7, 7) = RMQy (4, 7)
5" 5" < (remember these are the locations of the minimum)
©0 606606 ©0 66006
16|15(14|15|14| is equivalentto [10]9[8|9 |8
CAA A CAA A

B s

Counting =1 RMQ arrays

L
How many different =1 RMQ arrays like this... [___] are there?
-5
We say that [___] is equivalentto [__] iff forall (4, j): RMQg (7, 7) = RMQy (4, 7)
5" 5" < (remember these are the locations of the minimum)
©0 606606 ©0 66006
16|15(14|15|14| is equivalentto [10]9[8|9 |8
CAA A CAA A

. - = f -
0010 0010

B s

Counting =1 RMQ arrays

L
How many different =1 RMQ arrays like this... [___] are there?
-5
We say that [___] is equivalentto [__] iff forall (4, j): RMQg (7, 7) = RMQy (4, 7)
5" 5" < (remember these are the locations of the minimum)
©0 606606 ©0 66006
16|15(14|15|14| is equivalentto [10]9[8|9 |8

. - = f -
0010 0010

B s

Counting =1 RMQ arrays

L
How many different =1 RMQ arrays like this... [___] are there?
-5
We say that [___] is equivalentto [__] iff forall (4, j): RMQg (7, 7) = RMQy (4, 7)
o5t “" < (remember these are the locations of the minimum)
©0 606606 ©0 66006
16|15(14|15|14| is equivalentto [10]9[8|9 |8

- = g = - = o =
dre=0010 =2 dy=0010=2

B s

Counting =1 RMQ arrays

L
How many different =1 RMQ arrays like this... [___] are there?
5
Ly Ly

We say that [___] is equivalentto [__] iff forall (4, j): RMQg (7, 7) = RMQy (4, 7)
5" 5" < (remember these are the locations of the minimum)

Ly Ly
© 0606 6 © 0O 606 6O Fact L is equivalent to L
16{15|14|15|14| is equivalentto [10[{9|8 9|8 it dyy = dy

+r=0010 =2 dy =0 010 =2

B s

Counting =1 RMQ arrays

L
How many different =1 RMQ arrays like this... [___] are there?
5
Ly Ly

We say that [___] is equivalentto [__] iff forall (4, j): RMQg (7, 7) = RMQy (4, 7)
5" 5" < (remember these are the locations of the minimum)

Ly Ly
© 0606 6 © 0O 606 6O Fact L is equivalent to L
16{15|14|15|14| is equivalentto [10[{9|8 9|8 it dyy = dy

+r=0010 =2 dy =0 010 =2

® We can precompute d: for each Ly in O(|Lg|) = O(logn) time.

Counting =

B s

-1 RMQ arrays

L

How many different =1 RMQ arrays like this... [___] are there?

N

We say that [___] is equivalentto [__] iff forall (4, j): RMQg (7, 7) = RMQy (4, 7)

(remember these are the locations of the minimum)

Fact L is equivalent to L

I_lo%'n/_l I_ lo%‘n_l
Ly Ly
© 066 6 © 0606 O
16|15(14|15|14| is equivalentto [10]9[8|9 |8
dr=0010 =2 dy =0 010 =2

® We can precompute d: for each Ly in O(|Lg|) = O(logn) time.

® How many different values of d are there?

Counting =

B s

-1 RMQ arrays

L

How many different =1 RMQ arrays like this... [___] are there?

N

We say that [___] is equivalentto [__] iff forall (4, j): RMQg (7, 7) = RMQy (4, 7)

(remember these are the locations of the minimum)

Fact L is equivalent to L

I_lo%'n/_l I_ lo%‘n_l
Ly Ly
© 066 6 © 0606 O
16|15(14|15|14| is equivalentto [10]9[8|9 |8
dr=0010 =2 dy =0 010 =2

® We can precompute d: for each Ly in O(|Lg|) = O(logn) time.

® How many different values of d are there?

d contains (logn)/2 — 1 bits so ...

Counting =

B s

-1 RMQ arrays

L

How many different =1 RMQ arrays like this... [___] are there?

Ly

Ly

N

We say that [___] is equivalentto [__] iff forall (4, j): RMQg (7, 7) = RMQy (4, 7)

Ly

|_

© 060606

16

15

14

15

14

dz=0010

=2

lo% n _|

is equivalent to

©

|_

log n
2

Ly

_|

(remember these are the locations of the minimum)

10

O
9

®
3

®
9

@ Fact L is equivalent to L
8 it doy = dy

dy=0010 =2

® We can precompute d: for each Ly in O(|Lg|) = O(logn) time.

® How many different values of d are there?

d contains (logn)/2 — 1 bits so ...

at most 2(logn) /2

Counting =

B s

-1 RMQ arrays

L

How many different =1 RMQ arrays like this... [___] are there?

Ly

Ly

-

We say that [___] is equivalentto [__] iff forall (4, j): RMQg (7, 7) = RMQy (4, 7)

Ly

|_

© 060606

16

15

14

15

14

dz=0010

=2

log n _|

is equivalent to

5"~ (remember these are the locations of the minimum)
Ly
© 066 6 Fact L is equivalent to L
1091898 iffdg;:dy

dy=0010 =2

® We can precompute d: for each Ly in O(|Lg|) = O(logn) time.

® How many different values of d are there?

d contains (logn)/2 — 1 bits so ...

1/2
at most 2(102n)/2 = (210gn) /

Counting =

B s

-1 RMQ arrays

L

How many different =1 RMQ arrays like this... [___] are there?

Ly

Ly

-

We say that [___] is equivalentto [__] iff forall (4, j): RMQg (7, 7) = RMQy (4, 7)

Ly

|_

© 060606

16

15

14

15

14

dz=0010

=2

log n _|

is equivalent to

5"~ (remember these are the locations of the minimum)
Ly
© 066 6 Fact L is equivalent to L
1091898 iffdg;:dy

dy=0010 =2

® We can precompute d: for each Ly in O(|Lg|) = O(logn) time.

® How many different values of d are there?

d contains (logn)/2 — 1 bits so ...

1/2
at most 2(logn) /2 — (210gn) / <4\/n

Counting =

B s

-1 RMQ arrays

L

How many different =1 RMQ arrays like this... [___] are there?

Ly

Ly

-

We say that [___] is equivalentto [__] iff forall (4, j): RMQg (7, 7) = RMQy (4, 7)

Ly

|_

© 060606

16

15

14

15

14

dz=0010

=2

log n _|

is equivalent to

©

|_

log n

2

Ly

_|

(remember these are the locations of the minimum)

10

O
9

®
3

®
9

@ Fact L is equivalent to L
8 it doy = dy

dy=0010 =2

® We can precompute d: for each Ly in O(|Lg|) = O(logn) time.

® How many different values of d are there?

d contains (logn)/2 — 1 bits so ...

1/2
at most 2(logn) /2 — (210gn) / <4\/n

® For each value of d we store RMQ(z, j) for all 7, j

Counting =

B s

-1 RMQ arrays

L

How many different =1 RMQ arrays like this... [___] are there?

Ly

Ly

-

We say that [___] is equivalentto [__] iff forall (4, j): RMQg (7, 7) = RMQy (4, 7)

Ly

|_

© 060606

16

15

14

15

14

dz=0010

=2

log n _|

is equivalent to

5"~ (remember these are the locations of the minimum)
Ly
© 066 6 Fact L is equivalent to L
1091898 iffdg;:dy

dy=0010 =2

® We can precompute d: for each Ly in O(|Lg|) = O(logn) time.

® How many different values of d are there?

d contains (logn)/2 — 1 bits so ...

1/2
at most 2(logn) /2 — (210gn) / <4\/n

® For each value of d we store RMQ(z, j) for all 7, j

...this requires O (y/n log? n)

= O(n) total space and prep. time

B s

RMQ on the L arrays in linear space

Key Idea replace A with a smaller, ‘fow resolution’ array H

| —n i |
AIIIIIIIIIIIIIIIIIIIIIIIIIIIII_
DEEl:lLlIIEEILSII:D:I:I%I:I:EI:IL~§
S nmm D) T mmmn

dy dy dy ds ds e dy

~

precompute the value of d .. for each L

in O(n) total space and prep. time

< row dg To perform a query within some L,
® ook up d
® Find the row d in the table
Precompute all the RMQ answers for ® Find the entry giving RMQy: (7, j)

every value 0 < d < v/n This takes O(1) time

in O(n) total space and prep. time

B s

Optimal = 1 rRMQ

Key Idea replace A with a smaller, ‘fow resolution’ array H

and many small arrays L, L1, Lo . .. ‘for the details’

. . logn
v | | | |] ._ 2 _.
| 1 1 1 1 : |
n :
| 1 1 1 1 : |
A ettt et el
| all of

OO, 0D, OO0 BT 1,) “goinhers
oo 2 o 4 s - oo
H — : 4)

min of these
goes in here

|
E n E
g/ 5

Preprocess the array /1 to answer RMQs. ..
in O(n) space/prep time
Preprocess each array I.; (which has length (log 1) /2) to answer RMQs. ...

build a complete table of answers

O(n) total space/prep time

How do we answer a query in A in O(1) time?

Do one query in /1 and one query in two different /.; and return the smallest

B SRt

Ongoing Summary

We have seen an O(n log log n) space, O(n log log n) prep. time and O(1) query time solution

for the Lowest Common Ancestor problem

which uses solution 3 for RMQ from last lecture

We have seen an O(n) space, O(n) prep. time and O(1) query time solution

for the =

-1 Range Minimum Query problem

which improves solution 3 for RMQ from last lecture
(but only for =1 inputs)

B s

Ongoing Summary

We have seen an O(n log log n) space, O(n log log n) prep. time and O(1) query time solution

for the Lowest Common Ancestor problem

which uses solution 3 for RMQ from last lecture

We have seen an O(n) space, O(n) prep. time and O(1) query time solution

for the =1 Range Minimum Query problem

which improves solution 3 for RMQ from last lecture
(but only for =1 inputs)

How does this affect our LCA solution?

B s

Solving LCAs using RMQs

Preprocessing Summary
O(n) 1. Construct N and D from T

I
O(n) 2. Add a pointer from each
‘ node i to some N [i'] = i

O(n) 3. Preprocess D for RMQs
1

‘ Query Summary - LCA(i,))
O(1) 1. Find (any) 7" st. N[i'] =i
O(ll) 2. Find (any) 7' st. N[j'] = j
O(ll) 3. Compute RMQ(4/, 5") in D
O(1) 4. LGA(i, j) = N[RMQ(#’, §7)]

(node) NV [0|1(5[9|5[10[{5|1|6|1]{0]|2]|0]|3]|7|3|8|3|0[4/0
| 2n—1 I
(depth) D [0[1|2|3|2|3|2|1|2|1|0|1|0|1|2|1|2|1|0|1|0

Solving LCAs using RMQs

Preprocessing Summary
O(n) 1. Construct N and D from T

I
O(n) 2. Add a pointer from each
r node 7 to some IV [i’]

- O(n) 3. Preprocess D for RMQs

=1

‘ Query Summary - LCA(i,))
O(l) 1. Find (any) i’ st. N[i'] =4
Q('l'}Z Find (any) 5/ st. N[j/] = j
O(l) ?'>. Compute RMQ(4/, 57) in D
Q(,l)'4 LCA(7, j) = N[RMQ(7/, j)]

(node) NV [0[1(5[9]5

(depth) D [0]1]2[3]2

10 110
| 2n—1
3 110

B s

Solving LCAs using RMQs

Preprocessing Summary

O(n) 1. Construct N and D from T

I
O(n) 2. Add a pointer from each
‘ node i to some N [i'] = i

O(n) 3. Preprocess D for RMQs
1

‘ Query Summary - LCA(i,))

O(1) 1. Find (any) i/ st. N[i’] =i
O(ll) 2. Find (any) 7' st. N[j'] = j
O(1|) 3. Compute RMQ(7/, ") in D
O(1|) 4.LCA(7,7) = N[RMQ(4/, 57)]

(node) NV

0

1

5

9

5

10

(depth) D

0

1

2

3

2

3

2

1

2

1

0

1

2

1

2

1

0

1

0

This gives us O(n) space, O(n) prep. time and O (1) query time for the LCA problem

B s

B s

Solving LCAs using RMQs

Preprocessing Summary
O(n) 1. Construct N and D from T

I
O(n) 2. Add a pointer from each
‘ node i to some N [i'] = i

O(n) 3. Preprocess D for RMQs
1

‘ Query Summary - LCA(i,))
O(1) 1. Find (any) 7" st. N[i'] =i
O(ll) 2. Find (any) 7' st. N[j'] = j
O(ll) 3. Compute RMQ(4/, 5") in D
O(1) 4. LGA(i, j) = N[RMQ(#’, §7)]

(node) NV [0|1(5[9|5[10[{5|1|6|1]{0]|2]|0]|3]|7|3|8|3|0[4/0
| 2n—1 I
(depth) D [0[1|2|3|2|3|2|1|2|1|0|1|0|1|2|1|2|1|0|1|0

This gives us O(n) space, O(n) prep. time and O(1) query time {5 the LCA problem
by using the solution to =1RMQ

B s

Ongoing Summary

We have seen an O (n) space, O(n) prep. time and O (1) query time solution

for the =1 Range Minimum Query problem

which improves solution 3 for RMQ from last lecture
(but only for =1 inputs)

We have seen an O(n) space, O(n) prep. time and O(1) query time solution

for the Lowest Common Ancestor problem
which uses the solution to -=1RMQ

B s

Ongoing Summary

We have seen an O (n) space, O(n) prep. time and O (1) query time solution

for the =1 Range Minimum Query problem

which improves solution 3 for RMQ from last lecture
(but only for =1 inputs)

We have seen an O(n) space, O(n) prep. time and O(1) query time solution

for the Lowest Common Ancestor problem
which uses the solution to -=1RMQ

What about the general Range Minimum Query problem?
(when the inputs aren’t 1)

Solving RMQs using LCAs

Build the Cartesian tree, 1"y of the array A

Bt

23

17

73

51

82

19

32

5

67

91

14

46

21

54

n

ONONONONONONOCNONONONCNONCRENTON®,

University of
BRISTOL

Solving RMQs using LCAs

Build the Cartesian tree, 1'4 of the array A:

® The root is the smallest value

Bt

23

17

73

51

82

19

32

5

67

91

14

46

21

54

n

ONONONONONONOCNONONONCNONCRENTON®,

University of
BRISTOL

Solving RMQs using LCAs

Build the Cartesian tree, 1'4 of the array A:

® The root is the smallest value

Bt

23

17

73

51

82

19

32

5

67

91

14

46

21

54

n

ONONONONONONOCNONONONCNONCRENTON®,

University of
BRISTOL

Solving RMQs using LCAs

Build the Cartesian tree, 1'4 of the array A:

® The root is the smallest value

® The selected location
partitions the array in two

Bt

23

17

73

51

82

19

32

5

67

91

14

46

21

54

n

ONONONONONONOCNONONONCNONCRENTON®,

University of
BRISTOL

Solving RMQs using LCAs

Build the Cartesian tree, 1"4 of the array A:

® The root is the smallest value

® The selected location
partitions the array in two

Bt

23(17) 8 [73(51|82(19|32 67191|14|46 21|54
23(171 8 [73|51|82(19|32]| 5 |67(91(14(46 21(54
| n I

ONONONONONONOCNONONONCNONCRENTON®,

University of
BRJSTDL

Solving RMQs using LCAs

Build the Cartesian tree, 1"4 of the array A:

® The root is the smallest value

® The selected location
partitions the array in two

® The rest of the tree is given by
recursing left and right. ..

Bt

23(17) 8 [73(51|82(19|32 67191|14|46 21|54
23(171 8 [73|51|82(19|32]| 5 |67(91(14(46 21(54
| n I

ONONONONONONOCNONONONCNONCRENTON®,

University of
BRJSTDL

Solving RMQs using LCAs

Build the Cartesian tree, 1"4 of the array A:

® The root is the smallest value

® The selected location
partitions the array in two

® The rest of the tree is given by
recursing left and right. . .

Bt

(5)
23(171 8 (73(51|82(19(32 67191|14|46 21|54
23(171 8 [73|51|82(19|32]| 5 |67(91(14(46 21(54
| n I

ONONONONONONOCNONONONCNONCRENTON®,

University of
BRJSTDL

Solving RMQs using LCAs

Build the Cartesian tree, 1"4 of the array A:

® The root is the smallest value

® The selected location
partitions the array in two

® The rest of the tree is given by
recursing left and right. . .

Bt

(5)
23117 [73(51|82(19|32 67191|14|46 21|54
23(171 8 [73|51|82(19|32]| 5 |67(91(14(46 21(54
| n I

ONONONONONONOCNONONONCNONCRENTON®,

University of
BRJSTDL

B s

Solving RMQs using LCAs

Build the Cartesian tree, 1"4 of the array A:

® The root is the smallest value

® The selected location
partitions the array in two

® The rest of the tree is given by
recursing left and right. . .

23[17 |73[51|82(19|32| (67|91|14/46| |21|54

A |123|17] 8 |73]51|82[19]32| 5 |67(91|14|46| 9 21|54
| n I
ONONONONOCEONONOGNONONCENONENECNCHN®)

B s

Solving RMQs using LCAs

Build the Cartesian tree, 1"4 of the array A:

® The root is the smallest value

® The selected location
partitions the array in two

® The rest of the tree is given by
recursing left and right. . .

23 735182 |32| [67[91| |46 54

A |123|17] 8 |73]51|82[19]32| 5 |67(91|14|46| 9 21|54
| n I
ONONONONOCEONONOGNONONCENONENECNCHN®)

B s

Solving RMQs using LCAs

Build the Cartesian tree, 1"4 of the array A:

® The root is the smallest value

® The selected location
partitions the array in two

® The rest of the tree is given by
recursing left and right. . .

23 73[91|82| (32| [67|91| [46 54

A |123|17] 8 |73]51|82[19]32| 5 |67(91|14|46| 9 21|54
| n I
ONONONONOCEONONOGNONONCENONENECNCHN®)

B s

Solving RMQs using LCAs

Build the Cartesian tree, 1"4 of the array A:

® The root is the smallest value

® The selected location
partitions the array in two

® The rest of the tree is given by
recursing left and right. . .

73 |82 91

A |123|17] 8 |73]51|82[19]32| 5 |67(91|14|46| 9 21|54
| n I
ONONONONOCEONONOGNONONCENONENECNCHN®)

B s

Solving RMQs using LCAs

Build the Cartesian tree, 1"4 of the array A:

® The root is the smallest value

® The selected location
partitions the array in two

® The rest of the tree is given by
recursing left and right. . .

A |123|17] 8 |73]51|82[19]32| 5 |67(91|14|46| 9 21|54
| n I
ONONONONOCEONONOGNONONCENONENECNCHN®)

B s

Solving RMQs using LCAs

Build the Cartesian tree, 1'4 of the array A:

® The root is the smallest value

® The selected location
partitions the array in two

® The rest of the tree is given by
recursing left and right. ..

This process isn't very efficient. ..

a better one takes O(n) time

A |23[17] 8 |73|51|82[19|32| 5 |67|91(14|46| 9 [21[54

| n I
ONONONONONONONOEONONCNONECNENTCH®)

B s

Solving RMQs using LCAs

Build the Cartesian tree, 1'4 of the array A:

® The root is the smallest value

® The selected location
partitions the array in two

® The rest of the tree is given by
recursing left and right. ..

This process isn'’t very efficient. . .

a better one takes O(n) time

its not tricky but we don'thave A [93[17] 8 [73[51][82[19[32] 5 [67[91[14]46] 9 [21]54

time to cover it | n |

ONONONONONONOCNONONONCNONCRENTON®,

B s

Solving RMQs using LCAs

Build the Cartesian tree, 1'4 of the array A:

® The root is the smallest value

® The selected location
partitions the array in two

® The rest of the tree is given by
recursing left and right. ..

This process isn't very efficient. ..

a better one takes O(n) time

its not tricky but we don'thave A [93[17] 8 [73[51][82[19[32] 5 [67[91[14]46] 9 [21]54

time to cover it | n |

ONONONONONONOCNONONONCNONCRENTON®,

Key Fact: The LCA in T'4 equals the RMQ in A

B s

Solving RMQs using LCAs

Build the Cartesian tree, 1'4 of the array A:

® The root is the smallest value

® The selected location
partitions the array in two

® The rest of the tree is given by
recursing left and right. ..

This process isn't very efficient. ..
a better one takes O(n) time

J
its not tricky but we don't have A [93[17] 8 [73[51][82[19]32| 5 [67[91[14]46] 9 [21]54
time to cover it | ! ! |

; n I
ONONGHONONONCNOHONONCRONCRCHRCHE)
RMQ(3,7) =6

Key Fact: The LCA in T'4 equals the RMQ in A

B s

Solving RMQs using LCAs

Build the Cartesian tree, 1'4 of the array A:

® The root is the smallest value

® The selected location
partitions the array in two

® The rest of the tree is given by
recursing left and right. ..

This process isn't very efficient. ..

a better one takes O(n) time

its not tricky but we don'thave A [93[17] 8 [73[51][82[19[32] 5 [67[91[14]46] 9 [21]54

time to cover it | n |

ONONONONONONOCNONONONCNONCRENTON®,

Key Fact: The LCA in T'4 equals the RMQ in A

B s

Solving RMQs using LCAs

Build the Cartesian tree, 1'4 of the array A:

® The root is the smallest value

® The selected location
partitions the array in two

® The rest of the tree is given by
recursing left and right. ..

This process isn't very efficient. ..
a better one takes O(n) time

its not tricky but we don'thave A [93[17] 8 [73[51]82[19]32] 5 [67|91[14[46] 9]21]54

fime to cover it | n ;

@@@@@@@@@i@@@@i

Key Fact: The LCA in T'4 equals the RMQ in A

B s

Solving RMQs using LCAs

Build the Cartesian tree, 1'4 of the array A:

® The root is the smallest value

® The selected location
partitions the array in two

® The rest of the tree is given by
recursing left and right. ..

This process isn't very efficient. ..
a better one takes O(n) time

its not tricky but we don'thave A [93[17] 8 [73[51]82[19]32] 5 [67|91[14[46] 9]21]54

fime to cover it | n ,

@@@@@@@@@i@@@@i

Key Fact: The LCA in T'4 equals the RMQ in A

This gives us O(n) space, O(n) prep. time and O(1) query time {5 the RMQ problem

B s

Solving RMQs using LCAs

Build the Cartesian tree, 1'4 of the array A:

® The root is the smallest value

® The selected location
partitions the array in two

® The rest of the tree is given by
recursing left and right. ..

This process isn’t very efficient. . .
a better one takes O(n) time

its not tricky but we don'thave A [93[17] 8 [73[51]82[19]32] 5 [67|91[14[46] 9]21]54

fime to cover it | n ;

@@@@@@@@@i@@@@i

Key Fact: The LCA in T'4 equals the RMQ in A

This gives us O(n) space, O(n) prep. time and O(1) query time {5 the RMQ problem
by using the solution to LCA)

B s

Summary

We have seen an O (n) space, O(n) prep. time and O (1) query time solution

for the =1 Range Minimum Query problem

which improves solution 3 for RMQ from last lecture
(but only for =1 inputs)

We have seen an O(n) space, O(n) prep. time and O(1) query time solution

for the Lowest Common Ancestor problem
which uses the solution to -=1RMQ

We have seen an O (n) space, O(n) prep. time and O (1) query time solution

for the Range Minimum Query problem
which uses the solution to LCA
(which works for all inputs)

