Advanced Algorithms - COMS31900

Lowest Common Ancestor

Raphaël Clifford

Slides by Benjamin Sach

Advanced Algorithms - COMS31900

Lowest Common Ancestor
(with a bit on on Range Minimum Queries)

Raphaël Clifford

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries...

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries...

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries...

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries...

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries...

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries...

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries...

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries...

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries...

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries...

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries...

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries...

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries...

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries...

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries...

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries...

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries...

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries...

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries. .

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries.

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries.

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries.

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries. .

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries. .

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries. .

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries. .

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

Lowest common ancestor

Preprocess a tree T (with n nodes) to answer lowest common ancestor queries. .

After preprocessing,
the output to a query $\operatorname{LCA}(i, j)$ is the lowest common ancestor of nodes i and j

- Ideally, we would like $O(n)$ space, $O(n)$ prep. time and $O(1)$ query time

Solving LCAs using RMQs

Solving LCAs using RMQs

Solving LCAs using RMQs

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit . . . and its depth

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit . . . and its depth

(node) $N \boxed{0}$

(depth) $D \boxed{\mathbf{0}}$

Solving LCAs using RMQs

Compute an Euler tour of T...
(a depth first search with repeats)

Write down every node you visit ... and its depth

(node) $N \triangle 0 \mid 1$
(depth) $D \quad \mathbf{0} \mathbf{1}$

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit . . . and its depth

(node) N| 0 | 1 | 5 |
| :--- | :--- | :--- |

(depth) D| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ |
| :--- | :--- | :--- |

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

$$
\text { (node) } N \begin{array}{|l|l|l|l|}
\hline 0 & 1 & 5 & 9 \\
\hline
\end{array}
$$

$$
\text { (depth) } D \begin{array}{|l|l|l|l|}
\hline \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} \\
\hline
\end{array}
$$

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit . . . and its depth

(node) N| 0 | 1 | 5 | 9 | 5 |
| :--- | :--- | :--- | :--- | :--- |

(depth) D| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{2}$ |
| :--- | :--- | :--- | :--- | :--- |

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit . . . and its depth

(node) N| 0 | 1 | 5 | 9 | 5 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- |

(depth) D| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit . . . and its depth

(node) N| 0 | 1 | 5 | 9 | 5 | 10 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(depth) D| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Solving LCAs using RMQs

Compute an Euler tour of T...
(a depth first search with repeats)

Write down every node you visit ... and its depth

(node) N| 0 | 1 | 5 | 9 | 5 | 10 | 5 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(depth)	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$

Solving LCAs using RMQs

Compute an Euler tour of T...
(a depth first search with repeats)

Write down every node you visit ... and its depth

(node) N| 0 | 1 | 5 | 9 | 5 | 10 | 5 | 1 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Solving LCAs using RMQs

Compute an Euler tour of T...
(a depth first search with repeats)

Write down every node you visit ... and its depth

(node) N| 0 | 1 | 5 | 9 | 5 | 10 | 5 | 1 | 6 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(depth) | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit . . . and its depth

$$
\text { (node) } N \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 5 & 9 & 5 & 10 & 5 & 1 & 6 & 1 & 0 \\
\hline
\end{array}
$$

$$
\text { (depth) } D \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} \\
\hline
\end{array}
$$

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit . . . and its depth

$$
\text { (node) } N \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 5 & 9 & 5 & 10 & 5 & 1 & 6 & 1 & 0 & 2 \\
\hline
\end{array}
$$

$$
\text { (depth) } D \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\hline
\end{array}
$$

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit . . . and its depth

(node) N| 0 | 1 | 5 | 9 | 5 | 10 | 5 | 1 | 6 | 1 | 0 | 2 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(depth) D| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit . . . and its depth

$$
\text { (node) } N \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 5 & 9 & 5 & 10 & 5 & 1 & 6 & 1 & 0 & 2 & 0 & 3 \\
\hline
\end{array}
$$

(depth) D| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit . . . and its depth

$$
\text { (node) } N \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 5 & 9 & 5 & 10 & 5 & 1 & 6 & 1 & 0 & 2 & 0 & 3 & 7 \\
\hline
\end{array}
$$

(depth) D| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

(node) N| 0 | 1 | 5 | 9 | 5 | 10 | 5 | 1 | 6 | 1 | 0 | 2 | 0 | 3 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

(node) N| 0 | 1 | 5 | 9 | 5 | 10 | 5 | 1 | 6 | 1 | 0 | 2 | 0 | 3 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

(node) $\left.N \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}\hline 0 & 1 & 5 & 9 & 5 & 10 & 5 & 1 & 6 & 1 & 0 & 2 & 0 & 3 & 7 & 3\end{array}\right)$

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

$$
\text { (node) } N \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 5 & 9 & 5 & 10 & 5 & 1 & 6 & 1 & 0 & 2 & 0 & 3 & 7 & 3 & 8 \\
\hline
\end{array}
$$

$$
\text { (depth) } \left.D \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{2}
\end{array} \mathbf{1} \right\rvert\, \begin{aligned}
& \mathbf{0} \\
& \hline
\end{aligned}
$$

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

$$
\text { (node) } N \begin{array}{ll|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 5 & 9 & 5 & 10 & 5 & 1 & 6 & 1 & 0 & 2 & 0 & 3 & 7 & 3 & 8 & 3 & 0
\end{array}
$$

(depth) $\left.D$| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathbf{0} \right\rvert\, \mathbf{1}$

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

$$
\text { (depth) } D \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} \\
\hline
\end{array}
$$

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$ (a depth first search with repeats)

Write down every node you visit ... and its depth

How long is the tour?

$$
\text { (depth) } D \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} \\
\hline
\end{array}
$$

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

How long is the tour?
We follow each edge twice... and there are $(n-1)$ edges

(node) $\left.N \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}\hline 0 & 1 & 5 & 9 & 5 & 10 & 5 & 1 & 6 & 1 & 0 & 2 & 0 & 3 & 7 & 3 & 8 & 3 & 0\end{array}\right) 4.0$

(depth) | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ |
| :--- |
| $\mathbf{0}$ | $\mathbf{0}$ | | | | | | | | | | | | | | | | | | |

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

How long is the tour?
We follow each edge twice... and there are $(n-1)$ edges

(node) N	0			9							0	$\underline{ }$							0			0
	$\longmapsto \sim 2 n-1$ -																					
(depth) D	0	1	2	3	2	3	2	1	2		0	1	0		12		12		0			0

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

How long is the tour?
We follow each edge twice... and there are $(n-1)$ edges

(node) N	0	1	5	59		51	10			6	1	0	2	0				3	8	3	0		0
	0	1	12		3	2	3	2	1	2	1	0	1	0	1	2	2	1	2	1	0		0

how do we find LCA(i,j)?

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

How long is the tour?
We follow each edge twice... and there are $(n-1)$ edges

how do we find LCA(i,j)?

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

How long is the tour?
We follow each edge twice... and there are $(n-1)$ edges

how do we find LCA(i,j)?

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

How long is the tour?
We follow each edge twice... and there are $(n-1)$ edges

how do we find LCA(i,j)?
Compute RMQ $\left(i^{\prime}, j^{\prime}\right)$ in D

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

How long is the tour?
We follow each edge twice... and there are $(n-1)$ edges

how do we find LCA(i,j)?
Compute RMQ $\left(i^{\prime}, j^{\prime}\right)$ in D

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

How long is the tour?
We follow each edge twice... and there are $(n-1)$ edges

(node) N0 1 5 9 5 10 5 1 6 1 0 2 0 3 7 3 8 3 0

how do we find LCA(i,j)?

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

How long is the tour?
We follow each edge twice... and there are $(n-1)$ edges

(node) N0 1 5 9 5 10 5 1 6 1 0 2 0 3 7 3 8 3 0

how do we find LCA(i,j)?

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

How long is the tour?
We follow each edge twice... and there are $(n-1)$ edges

Find i and j in N

how do we find $\operatorname{LCA}(i, j)$?

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

How long is the tour?
We follow each edge twice...
and there are $(n-1)$ edges

how do we find LCA(i,j)?

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

How long is the tour?
We follow each edge twice... and there are $(n-1)$ edges

how do we find $\operatorname{LCA}(i, j)$?

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

How long is the tour?
We follow each edge twice...
and there are $(n-1)$ edges

how do we find LCA(i,j)?
Compute $\operatorname{RMQ}\left(i^{\prime}, j^{\prime}\right)$ in D

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

How long is the tour?
We follow each edge twice... and there are $(n-1)$ edges

(node) N0 1 5 9 5 10 5 1 6 1 0 2 0 3 7 3 8 3 0

how do we find LCA(i,j)?

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

How long is the tour?
We follow each edge twice... and there are $(n-1)$ edges

(node) N0 1 5 9 5 10 5 1 6 1 0 2 0 3 7 3 8 3 0

how do we find LCA(i,j)?

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

How long is the tour?
We follow each edge twice... and there are $(n-1)$ edges

Find i and j in $N \ldots$

(node) N	0			9							0	$\underline{ }$							0			0
	$\longmapsto \sim 2 n-1$ -																					
(depth) D	0	1	2	3	2	3	2	1	2		0	1	0		12		12		0			0

how do we find LCA(i,j)?

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

How long is the tour?
We follow each edge twice... and there are $(n-1)$ edges

Find i and j in $N \ldots \quad$ which copy of i ?

(node) N0 1 5 9 5 10 5 1 6 1 0 2 0 3 7 3 8 3 0

how do we find LCA(i,j)?

Solving LCAs using RMQs

Compute an Euler tour of $T \ldots$
(a depth first search with repeats)

Write down every node you visit ... and its depth

How long is the tour?
We follow each edge twice... and there are $(n-1)$ edges

Find i and j in $N \ldots \quad$ which copy of i ?
any copy is fine

N	0	1																						
th)	0		2			3				2		0												

how do we find LCA(i,j)?

Solving LCAs using RMQs

$$
\begin{aligned}
& \text { (node) } N \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 5 & 9 & 5 & 10 & 5 & 1 & 6 & 1 & 0 & 2 & 0 & 3 & 7 & 3 & 8 & 3 & 0
\end{array} 4 \\
& \text { (depth) } D \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} \\
\hline
\end{array}
\end{aligned}
$$

Solving LCAs using RMQs

Preprocessing Summary

1. Construct N and D from T
2. Add a pointer from each node i to some $N\left[i^{\prime}\right]=i$
3. Preprocess D for RMQs

$$
\begin{aligned}
& \text { (node) } N \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 5 & 9 & 5 & 10 & 5 & 1 & 6 & 1 & 0 & 2 & 0 & 3 & 7 & 3 & 8 & 3 & 0
\end{array} 4 \\
& \text { (depth) } \begin{array}{ll|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\mathbf{0} & \mathbf{0} \\
\hline
\end{array}
\end{aligned}
$$

Solving LCAs using RMQs

Preprocessing Summary

1. Construct N and D from T
2. Add a pointer from each node i to some $N\left[i^{\prime}\right]=i$
3. Preprocess D for RMQs

Query Summary - LCA(i,j)

1. Find (any) i^{\prime} st. $N\left[i^{\prime}\right]=i$
2. Find (any) j^{\prime} st. $N\left[j^{\prime}\right]=j$
3. Compute RMQ $\left(i^{\prime}, j^{\prime}\right)$ in D

4. $\operatorname{LCA}(i, j)=N\left[\operatorname{RMQ}\left(i^{\prime}, j^{\prime}\right)\right]$

$$
\begin{aligned}
& \text { (node) } N \begin{array}{|l|}
\hline 0 & 1 & 5 & 9 & 5 & 10 & 5 & 1 & 6 & 1 & 0 & 2 & 0 & 3 & 7 & 3 & 8 & 3 & 0 & 4 & 0 \\
\hline
\end{array} \\
& 2 n-1 \\
& \text { (depth) } D \begin{array}{|l|}
\mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\
\hline
\end{array}
\end{aligned}
$$

Solving LCAs using RMQs

Preprocessing Summary

$O(n)$ 1. Construct N and D from T
2. Add a pointer from each node i to some $N\left[i^{\prime}\right]=i$
3. Preprocess D for RMQs

Query Summary - LCA(i,j)

1. Find (any) i^{\prime} st. $N\left[i^{\prime}\right]=i$
2. Find (any) j^{\prime} st. $N\left[j^{\prime}\right]=j$
3. Compute RMQ $\left(i^{\prime}, j^{\prime}\right)$ in D

4. $\operatorname{LCA}(i, j)=N\left[\operatorname{RMQ}\left(i^{\prime}, j^{\prime}\right)\right]$

$$
\begin{aligned}
& \text { (node) } N \begin{array}{|l|}
\hline 0 & 1 & 5 & 9 & 5 & 10 & 5 & 1 & 6 & 1 & 0 & 2 & 0 & 3 & 7 & 3 & 8 & 3 & 0 & 4 & 0 \\
\hline
\end{array} \\
& 2 n-1 \\
& \text { (depth) } D \begin{array}{|l|}
\mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\
\hline
\end{array}
\end{aligned}
$$

Solving LCAs using RMQs

Preprocessing Summary

$O(n)$ 1. Construct N and D from T
$O\left(n^{\prime}\right)$ 2. Add a pointer from each

$$
\text { node } i \text { to some } N\left[i^{\prime}\right]=i
$$

3. Preprocess D for RMQs

Query Summary - LCA(i, j)

1. Find (any) i^{\prime} st. $N\left[i^{\prime}\right]=i$
2. Find (any) j^{\prime} st. $N\left[j^{\prime}\right]=j$
3. Compute $\mathrm{RMQ}\left(i^{\prime}, j^{\prime}\right)$ in D

$$
\begin{gathered}
\text { (node) } N \begin{array}{|c|}
\hline 0 & 1 & 5 & 9 & 5 & 10 & 5 & 1 & 6 & 1 & 0 & 2 & 0 & 3 & 7 & 3 & 8 & 3 & 0 & 4 & 0 \\
\hline
\end{array} \\
\text { (depth) } D
\end{gathered} \begin{array}{|l|}
\mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\
\hline
\end{array}
$$

Solving LCAs using RMQs

Preprocessing Summary

$O(n)$ 1. Construct N and D from T
$O\left(n^{\prime}\right)$ 2. Add a pointer from each node i to some $N\left[i^{\prime}\right]=i$
3. Preprocess D for RMQs

Query Summary - LCA (i, j)

1. Find (any) i^{\prime} st. $N\left[i^{\prime}\right]=i$
2. Find (any) j^{\prime} st. $N\left[j^{\prime}\right]=j$
3. Compute $\mathrm{RMQ}\left(i^{\prime}, j^{\prime}\right)$ in D

$$
\begin{gathered}
\text { (node) } N \begin{array}{|c|}
\hline 0 & 1 & 5 & 9 & 5 & 10 & 5 & 1 & 6 & 1 & 0 & 2 & 0 & 3 & 7 & 3 & 8 & 3 & 0 & 4 & 0 \\
\hline
\end{array} \\
\text { (depth) } D \\
\begin{array}{|l|l|l|llllllllllllll|l|l|l|l|l|l|l|l|}
\mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\
\hline
\end{array}
\end{gathered}
$$

Solving LCAs using RMQs

Preprocessing Summary

$O(n)$ 1. Construct N and D from T
$O\left(n^{\prime}\right)$ 2. Add a pointer from each

$$
\text { node } i \text { to some } N\left[i^{\prime}\right]=i
$$

3. Preprocess D for RMQs

Query Summary - LCA(i, j)

1. Find (any) i^{\prime} st. $N\left[i^{\prime}\right]=i$
2. Find (any) j^{\prime} st. $N\left[j^{\prime}\right]=j$
3. Compute $\mathrm{RMQ}\left(i^{\prime}, j^{\prime}\right)$ in D

4. $\operatorname{LCA}(i, j)=N\left[\operatorname{RMQ}\left(i^{\prime}, j^{\prime}\right)\right]$

$$
\begin{gathered}
\text { (node) } N \begin{array}{|c|}
\hline 0 & 1 & 5 & 9 & 5 & 10 & 5 & 1 & 6 & 1 & 0 & 2 & 0 & 3 & 7 & 3 & 8 & 3 & 0 & 4 & 0 \\
\hline
\end{array} \\
\text { (depth) } D \begin{array}{|l|}
\hline \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\hline
\end{array}
\end{gathered}
$$

Solving LCAs using RMQs

Preprocessing Summary

$O(n)$ 1. Construct N and D from T
$O\left(n^{\prime}\right)$ 2. Add a pointer from each

$$
\text { node } i \text { to some } N\left[i^{\prime}\right]=i
$$

3. Preprocess D for RMQs

Query Summary - LCA(i,j)

$O(1)$ 1. Find (any) i^{\prime} st. $N\left[i^{\prime}\right]=i$
$O\left(1^{\prime}\right)$ 2. Find (any) j^{\prime} st. $N\left[j^{\prime}\right]=j$
3. Compute RMQ $\left(i^{\prime}, j^{\prime}\right)$ in D

4. $\operatorname{LCA}(i, j)=N\left[\operatorname{RMQ}\left(i^{\prime}, j^{\prime}\right)\right]$

$$
\begin{gathered}
\text { (node) } N \begin{array}{|c|}
\hline 0 & 1 & 5 & 9 & 5 & 10 & 5 & 1 & 6 & 1 & 0 & 2 & 0 & 3 & 7 & 3 & 8 & 3 & 0 & 4 & 0 \\
\hline
\end{array} \\
\text { (depth) } D \begin{array}{|l|}
\hline \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\hline
\end{array}
\end{gathered}
$$

Solving LCAs using RMQs

Preprocessing Summary

$O(n)$ 1. Construct N and D from T
$O\left(n^{\prime}\right)$ 2. Add a pointer from each

$$
\text { node } i \text { to some } N\left[i^{\prime}\right]=i
$$

3. Preprocess D for RMQs

Query Summary - LCA(i,j)

$O(1)$ 1. Find (any) i^{\prime} st. $N\left[i^{\prime}\right]=i$
$O(1)^{\prime}$ 2. Find (any) j^{\prime} st. $N\left[j^{\prime}\right]=j$
$O(?)$ 3. Compute $\mathrm{RMQ}\left(i^{\prime}, j^{\prime}\right)$ in D

$$
\begin{gathered}
\text { (node) } N \begin{array}{|c|}
\hline 0 & 1 & 5 & 9 & 5 & 10 & 5 & 1 & 6 & 1 & 0 & 2 & 0 & 3 & 7 & 3 & 8 & 3 & 0 & 4 & 0 \\
\hline
\end{array} \\
\text { (depth) } D
\end{gathered} \begin{array}{|l|}
\mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\
\hline
\end{array}
$$

Solving LCAs using RMQs

Preprocessing Summary

$O(n)$ 1. Construct N and D from T
$O\left(n^{\prime}\right)$ 2. Add a pointer from each

$$
\text { node } i \text { to some } N\left[i^{\prime}\right]=i
$$

3. Preprocess D for RMQs

Query Summary - LCA(i,j)

$O(1)$ 1. Find (any) i^{\prime} st. $N\left[i^{\prime}\right]=i$
$O(1)^{\prime}$ 2. Find (any) j^{\prime} st. $N\left[j^{\prime}\right]=j$
$O(?)$ 3. Compute $\mathrm{RMQ}\left(i^{\prime}, j^{\prime}\right)$ in D

$$
\begin{aligned}
& \text { (node) } N \begin{array}{|l|}
\hline 0 & 1 & 5 & 9 & 5 & 10 & 5 & 1 & 6 & 1 & 0 & 2 & 0 & 3 & 7 & 3 & 8 & 3 & 0 & 4 & 0 \\
\hline
\end{array} \\
& \vdash-2 n-1 \text { — } \\
& \text { (depth) } D \begin{array}{|l|}
\mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\
\hline
\end{array}
\end{aligned}
$$

Solving LCAs using RMQs

Preprocessing Summary

$O(n)$ 1. Construct N and D from T
$O\left(n^{\prime}\right)$ 2. Add a pointer from each

$$
\text { node } i \text { to some } N\left[i^{\prime}\right]=i
$$

3. Preprocess D for RMQs

Query Summary - LCA(i,j)

$O(1)$ 1. Find (any) i^{\prime} st. $N\left[i^{\prime}\right]=i$
$O\left(1^{\prime}\right)$ 2. Find (any) j^{\prime} st. $N\left[j^{\prime}\right]=j$
$O(?)$ 3. Compute $\mathrm{RMQ}\left(i^{\prime}, j^{\prime}\right)$ in D

(node) N0 1 5 9 5 10 5 1 6 1 0 2 0 3 7 3 8 3 0 4 0
(depth) D
:---
$\mathbf{0}$

Prep. time $O(n+\operatorname{prepRMQ}(n))$
Query time $O(1+$ queryRMQ $(n))$
, Space $O(n+\operatorname{spaceRMQ}(n))$

Solving LCAs using RMQs

Preprocessing Summary

$O(n)$ 1. Construct N and D from T
$O\left(n^{\prime}\right)$ 2. Add a pointer from each

$$
\text { node } i \text { to some } N\left[i^{\prime}\right]=i
$$

3. Preprocess D for RMQs

Query Summary - LCA(i,j)

$O(1)$ 1. Find (any) i^{\prime} st. $N\left[i^{\prime}\right]=i$
$O\left(1^{\prime}\right)$ 2. Find (any) j^{\prime} st. $N\left[j^{\prime}\right]=j$
$O(?)$ 3. Compute $\mathrm{RMQ}\left(i^{\prime}, j^{\prime}\right)$ in D

(node) N0 1 5 9 5 10 5 1 6 1 0 2 0 3 7 3 8 3 0 4 0
(depth) D
:---
$\mathbf{0}$

Prep. time $O(n \log \log n)$ Space $O(n \log \log n)$
Query time $O(1)$

Solving LCAs using RMQs

Preprocessing Summary
$O(n)$ 1. Construct N and D from T
$O\binom{1}{n}$ 2. Add a pointer from each node i to some $N\left[i^{\prime}\right]=i$
3. Preprocess D for RMQs

Query Summary - LCA (i, j)

$O(1)$ 1. Find (any) i^{\prime} st. $N\left[i^{\prime}\right]=i$
$O\left(1^{\prime}\right)$ 2. Find (any) j^{\prime} st. $N\left[j^{\prime}\right]=j$
$O(?)$ 3. Compute $\mathrm{RMQ}\left(i^{\prime}, j^{\prime}\right)$ in D

why does this work?

| (node) N0 1 5 9 5 10 5 1 6 1 0 2 0 3 7 3 8 3 0 |
| :---: | | 4 |
| :---: |

Prep. time $O(n \log \log n)$ Space $O(n \log \log n)$
Query time $O(1)$

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

| (node) $N \times x$ | \|x| | ${ }^{x}$ | \|x ... x |
| :---: | :---: | :---: | :---: |
| (depth) D d \mathbf{d} | d | d | |

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

| (node) $N \times$ | \|x| | \| x | x... ${ }^{x}$ |
| :---: | :---: | :---: | :---: |
| (depth) D d | \|d | d | d . |

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

| (node) $N \times x$ | \|x| | ${ }^{x}$ | \|x ... x |
| :---: | :---: | :---: | :---: |
| (depth) D d \mathbf{d} | d | d | |

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

Solving LCA using RMQ - correctness

We can also define a Euler tour of T recursively...

Ongoing Summary

We have seen an $O(n \log \log n)$ space, $O(n \log \log n)$ prep. time and $O(1)$ query time solution for the Lowest Common Ancestor problem
which uses solution 3 for RMQ from last lecture

Ongoing Summary

We have seen an $O(n \log \log n)$ space, $O(n \log \log n)$ prep. time and $O(1)$ query time solution for the Lowest Common Ancestor problem
which uses solution 3 for RMQ from last lecture

Can we do better?

Solving LCAs using RMQs - efficiency

Preprocessing Summary

1. Construct N and D from T
2. Add a pointer from each

$$
\text { node } i \text { to some } N\left[i^{\prime}\right]=i
$$

3. Preprocess D for RMQs

Query Summary - LCA(i,j)

1. Find (any) i^{\prime} st. $N\left[i^{\prime}\right]=i$
2. Find (any) j^{\prime} st. $N\left[j^{\prime}\right]=j$
3. Compute RMQ $\left(i^{\prime}, j^{\prime}\right)$ in D

$$
\begin{aligned}
& \text { (node) } N \begin{array}{|l|}
\hline 0 & 1 & 5 & 9 & 5 & 10 & 5 & 1 & 6 & 1 & 0 & 2 & 0 & 3 & 7 & 3 & 8 & 3 & 0 & 4 & 0 \\
\hline
\end{array} \\
& 2 n-1 \\
& \text { (depth) } D \begin{array}{|l|}
\mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\
\hline
\end{array}
\end{aligned}
$$

Solving LCAs using RMQs - efficiency

Preprocessing Summary

1. Construct N and D from T
2. Add a pointer from each

$$
\text { node } i \text { to some } N\left[i^{\prime}\right]=i
$$

3. Preprocess D for RMQs

Query Summary - LCA(i,j)

1. Find (any) i^{\prime} st. $N\left[i^{\prime}\right]=i$
2. Find (any) j^{\prime} st. $N\left[j^{\prime}\right]=j$
3. Compute $\mathrm{RMQ}\left(i^{\prime}, j^{\prime}\right)$ in D

4. $\operatorname{LCA}(i, j)=N\left[\operatorname{RMQ}\left(i^{\prime}, j^{\prime}\right)\right]$

$$
\begin{gathered}
\text { (node) } N \begin{array}{|c|}
\hline 0 & 1 & 5 & 9 & 5 & 10 & 5 & 1 & 6 & 1 & 0 & 2 & 0 & 3 & 7 & 3 & 8 & 3 & 0 & 4 & 0 \\
\hline
\end{array} \\
\text { (depth) } D \\
\begin{array}{|l|l|l|l|l|l|lllllll|l|l|l|l|l|l|l|l|l|l|}
\mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\
\hline
\end{array}
\end{gathered}
$$

Notice anything interesting about D ?

Solving LCAs using RMQs - efficiency

Preprocessing Summary

1. Construct N and D from T
2. Add a pointer from each

$$
\text { node } i \text { to some } N\left[i^{\prime}\right]=i
$$

3. Preprocess D for RMQs

Query Summary - LCA(i, j)

1. Find (any) i^{\prime} st. $N\left[i^{\prime}\right]=i$
2. Find (any) j^{\prime} st. $N\left[j^{\prime}\right]=j$
3. Compute $\mathrm{RMQ}\left(i^{\prime}, j^{\prime}\right)$ in D

4. $\operatorname{LCA}(i, j)=N\left[\operatorname{RMQ}\left(i^{\prime}, j^{\prime}\right)\right]$

$$
\begin{gathered}
\text { (node) } N \begin{array}{|l|}
\hline 0 & 1 & 5 & 9 & 5 & 10 & 5 & 1 & 6 & 1 & 0 & 2 & 0 & 3 & 7 & 3 & 8 & 3 & 0 & 4 & 0 \\
\hline
\end{array} \\
\text { (depth) } D \\
\begin{array}{|l|}
\mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\hline
\end{array} \\
\hline
\end{gathered}
$$

Notice anything interesting about D ?

$$
D[i+1]=D[i] \pm 1
$$

± 1 Range minimum query

Preprocess an integer array A (length n) to answer range minimum queries...

$$
\text { where for all } k \text {, we have } A[k+1]=A[k] \pm 1
$$

After preprocessing, a range minimum query is given by $\mathrm{RMQ}(i, j)$
the output is the location of the smallest element in $A[i, j]$
(in a tie, report the leftmost)
e.g. $\operatorname{RMQ}(3,7)=5$, which is the location of the smallest element in $A[3,7]$

- Can we exploit this ± 1 property to get a more efficient RMQ data structure?
- Ideally we would like $O(n)$ space, $O(n)$ prep. time and $O(1)$ query time

Low-resolution RMQ (again)

Key Idea replace A with a smaller, 'low resolution' array H

$$
\tilde{n}=\frac{2 n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

Preprocess the array H (which has length $\left.\tilde{n}=\frac{2 n}{\log n}\right)$ to answer RMQs... in $O(n)$ space/prep time

Preprocess each array L_{i} (which has length $(\log n) / 2$) to answer RMQs... in $O(\log n \log \log n)$ space/prep time
as there are $O(n / \log n) L_{i}$ arrays, we have $O(n \log \log n)$ total space/prep time
How do we answer a query in A in $O(1)$ time?
Do one query in H and one query in two different L_{i} and return the smallest

Low-resolution RMQ (again)

Key Idea replace A with a smaller, 'low resolution' array H

$$
\tilde{n}=\frac{2 n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

Preprocess the array H (which has length $\tilde{n}=\frac{2 n}{\log n}$) to answer RMQs.. in $O(n)$ space/prep time

Preprocess each array L_{i} (which has length $(\log n) / 2$) to answer RMQs...

as there are $O(n / \log n) L_{i}$ arrays, we have $O(n \log \log n)$ total space/prep time

How do we answer a query in A in $O(1)$ time?
Do one query in H and one query in two different L_{i} and return the smallest

Counting ± 1 RMQ arrays

How many different $\pm 1 \mathrm{RMQ}$ arrays like this... $\square-\frac{\log n}{2}-1$ are there?

Counting ± 1 RMQ arrays

How many different $\pm 1 \mathrm{RMQ}$ arrays like this... \square are there?
We say that $\frac{L_{x}}{\square \frac{\log n}{2} \dashv}$ is equivalent to $\frac{L_{y}}{\square-\frac{\log n}{2} \dashv}$ iff for all $(i, j): \operatorname{RMQ}_{x}(i, j)=\operatorname{RMQ}_{y}(i, j)$

Counting ± 1 RMQ arrays

L

How many different $\pm 1 \mathrm{RMQ}$ arrays like this... $\square \vdash \frac{\log n}{2}-1$ are there?
We say that $\frac{L_{x}}{\square-\frac{\log n}{2}-1}$ is equivalent to $\begin{aligned} & \square \\ & \square \frac{\log n}{2}-1 \text { iff for all }(i, j): \mathrm{RMQ}_{x}(i, j)=\mathrm{RMQ}_{y}(i, j) \\ & \text { (remember these are the locations of the minimum) }\end{aligned}$

Counting ± 1 RMQ arrays

L

How many different $\pm 1 \mathrm{RMQ}$ arrays like this... \square are there?

Counting ± 1 RMQ arrays

How many different ± 1 RMQ arrays like this... $\frac{L}{\square-\frac{\log n}{2}-1}$ are there?

$$
\begin{aligned}
& \operatorname{RMQ}_{x}(0,2)=\operatorname{RMQ}_{y}(0,2)=2 \\
& \operatorname{RMQ}_{x}(3,4)=\operatorname{RMQ}_{y}(3,4)=4 \\
& \operatorname{RMQ}_{x}(0,4)=\operatorname{RMQ}_{y}(0,4)=2 \\
& \operatorname{RMQ}_{x}(0,1)=\operatorname{RMQ}_{y}(0,1)=1
\end{aligned}
$$

Counting ± 1 RMQ arrays

L

How many different $\pm 1 \mathrm{RMQ}$ arrays like this... \square are there?

Counting ± 1 RMQ arrays

L

How many different $\pm 1 \mathrm{RMQ}$ arrays like this... \square are there?

Counting ± 1 RMQ arrays

L

How many different $\pm 1 \mathrm{RMQ}$ arrays like this... $\vdash^{\frac{\log n}{2}-1}$ are there?

Counting ± 1 RMQ arrays

L

How many different $\pm 1 \mathrm{RMQ}$ arrays like this... \square are there?

Counting ± 1 RMQ arrays

L

How many different $\pm 1 \mathrm{RMQ}$ arrays like this... \square are there?

$$
d_{x}=\overline{\mathbf{0}} \mathbf{\overline { 0 }} \mathbf{-} \mathbf{1} \quad \overline{0}=2 \quad d_{y}=\begin{array}{cccc}
\overline{0} & \overline{0} & \mathbf{+} & \overline{0}
\end{array}
$$

Counting ± 1 RMQ arrays

L
How many different $\pm 1 \mathrm{RMQ}$ arrays like this... \square are there?

Fact L_{x} is equivalent to L_{y}

$$
\text { iff } d_{x}=d_{y}
$$

$$
d_{x}=0 \quad 0 \quad 1 \quad 0=2 \quad d_{y}=0 \quad 0 \quad 1 \quad 0=2
$$

Counting ± 1 RMQ arrays

L
How many different $\pm 1 \mathrm{RMQ}$ arrays like this... $\square \vdash \frac{\log n}{2}-1$ are there?

Fact L_{x} is equivalent to L_{y}

$$
\text { iff } d_{x}=d_{y}
$$

$$
d_{x}=\begin{array}{lllllllll}
0 & 0 & 1 & 0 & =2 & d_{y}=0 & 0 & 1 & 0
\end{array}
$$

- We can precompute d_{x} for each L_{x} in $O\left(\left|L_{x}\right|\right)=O(\log n)$ time.

Counting ± 1 RMQ arrays

L
How many different $\pm 1 \mathrm{RMQ}$ arrays like this... $\square \vdash \frac{\log n}{2}-1$ are there?

Fact L_{x} is equivalent to L_{y}

$$
\text { iff } d_{x}=d_{y}
$$

$$
d_{x}=\begin{array}{lllllllll}
0 & 0 & 1 & 0 & =2 & d_{y}=0 & 0 & 1 & 0
\end{array}
$$

- We can precompute d_{x} for each L_{x} in $O\left(\left|L_{x}\right|\right)=O(\log n)$ time.
- How many different values of d are there?

Counting ± 1 RMQ arrays

L
How many different $\pm 1 \mathrm{RMQ}$ arrays like this... \square are there?

Fact L_{x} is equivalent to L_{y}

$$
\text { iff } d_{x}=d_{y}
$$

$$
d_{x}=0 \quad 0 \quad 1 \quad 0=2 \quad d_{y}=0 \quad 0 \quad 1 \quad 0=2
$$

- We can precompute d_{x} for each L_{x} in $O\left(\left|L_{x}\right|\right)=O(\log n)$ time.
- How many different values of d are there? d contains $(\log n) / 2-1$ bits so \ldots

Counting ± 1 RMQ arrays

L
How many different $\pm 1 \mathrm{RMQ}$ arrays like this... \square are there?
We say that $\frac{L_{x}}{\square-\frac{\log n}{2} \dashv}$ is equivalent to $\underset{\square}{\square-\frac{\log n}{2} \dashv}$ iff for all $(i, j): \operatorname{RMQ}_{x}(i, j)=\operatorname{RMQ}_{y}(i, j)$

Fact L_{x} is equivalent to L_{y}

$$
\text { iff } d_{x}=d_{y}
$$

$$
d_{x}=0 \quad 0 \quad 1 \quad 0=2 \quad d_{y}=0 \quad 0 \quad 1 \quad 0=2
$$

- We can precompute d_{x} for each L_{x} in $O\left(\left|L_{x}\right|\right)=O(\log n)$ time.
- How many different values of d are there?
d contains $(\log n) / 2-1$ bits so $\ldots \quad$ at most $2^{(\log n) / 2}$

Counting ± 1 RMQ arrays

L
How many different $\pm 1 \mathrm{RMQ}$ arrays like this... \square are there?
We say that $\frac{L_{x}}{\square-\frac{\log n}{2} \dashv}$ is equivalent to $\underset{\square}{\square-\frac{\log n}{2} \dashv}$ iff for all $(i, j): \operatorname{RMQ}_{x}(i, j)=\operatorname{RMQ}_{y}(i, j)$

Fact L_{x} is equivalent to L_{y}

$$
\text { iff } d_{x}=d_{y}
$$

$$
d_{x}=0 \quad 0 \quad 1 \quad 0=2 \quad d_{y}=0 \quad 0 \quad 1 \quad 0=2
$$

- We can precompute d_{x} for each L_{x} in $O\left(\left|L_{x}\right|\right)=O(\log n)$ time.
- How many different values of d are there?
d contains $(\log n) / 2-1$ bits so $\ldots \quad$ at most $2^{(\log n) / 2}=\left(2^{\log n}\right)^{1 / 2}$

Counting ± 1 RMQ arrays

L
How many different $\pm 1 \mathrm{RMQ}$ arrays like this... \square are there?
We say that $\frac{L_{x}}{\square-\frac{\log n}{2} \dashv}$ is equivalent to $\underset{\square}{\square-\frac{\log n}{2} \dashv}$ iff for all $(i, j): \operatorname{RMQ}_{x}(i, j)=\operatorname{RMQ}_{y}(i, j)$

Fact L_{x} is equivalent to L_{y}

$$
\text { iff } d_{x}=d_{y}
$$

$$
d_{x}=0 \quad 0 \quad 1 \quad 0=2 \quad d_{y}=0 \quad 0 \quad 1 \quad 0=2
$$

- We can precompute d_{x} for each L_{x} in $O\left(\left|L_{x}\right|\right)=O(\log n)$ time.
- How many different values of d are there?
d contains $(\log n) / 2-1$ bits so $\ldots \quad$ at most $2^{(\log n) / 2}=\left(2^{\log n}\right)^{1 / 2} \leqslant \sqrt{n}$

Counting ± 1 RMQ arrays

L
How many different $\pm 1 \mathrm{RMQ}$ arrays like this... \square are there?

Fact L_{x} is equivalent to L_{y}

$$
\text { iff } d_{x}=d_{y}
$$

$$
d_{x}=0 \quad 0 \quad 1 \quad 0=2 \quad d_{y}=0 \quad 0 \quad 1 \quad 0=2
$$

- We can precompute d_{x} for each L_{x} in $O\left(\left|L_{x}\right|\right)=O(\log n)$ time.
- How many different values of d are there?
d contains $(\log n) / 2-1$ bits so $\ldots \quad$ at most $2^{(\log n) / 2}=\left(2^{\log n}\right)^{1 / 2} \leqslant \sqrt{n}$
- For each value of d we store $\mathrm{RMQ}(i, j)$ for all i, j

Counting ± 1 RMQ arrays

L
How many different $\pm 1 \mathrm{RMQ}$ arrays like this... \square are there?

Fact L_{x} is equivalent to L_{y}

$$
\text { iff } d_{x}=d_{y}
$$

$$
d_{x}=0 \quad 0 \quad 1 \quad 0=2 \quad d_{y}=0 \quad 0 \quad 1 \quad 0=2
$$

- We can precompute d_{x} for each L_{x} in $O\left(\left|L_{x}\right|\right)=O(\log n)$ time.
- How many different values of d are there?
d contains $(\log n) / 2-1$ bits so $\ldots \quad$ at most $2^{(\log n) / 2}=\left(2^{\log n}\right)^{1 / 2} \leqslant \sqrt{n}$
- For each value of d we store $\mathrm{RMQ}(i, j)$ for all i, j
\ldots this requires $O\left(\sqrt{n} \log ^{2} n\right)=O(n)$ total space and prep. time

Key Idea replace A with a smaller, ‘low resolution' array H

$$
\tilde{n}=\frac{2 n}{\log n}
$$

Precompute all the RMQ answers for every value $0 \leqslant d \leqslant \sqrt{n}$

To perform a query within some L_{x}

- Look up d_{x}
- Find the row d_{x} in the table
- Find the entry giving $\operatorname{RMQ}_{x}(i, j)$

This takes $O(1)$ time
in $O(n)$ total space and prep. time

Key Idea replace A with a smaller, 'low resolution' array H

$$
\tilde{n}=\frac{2 n}{\log n}
$$

and many small arrays $L_{0}, L_{1}, L_{2} \ldots$ 'for the details'

Preprocess the array H to answer RMQs...
in $O(n)$ space/prep time
Preprocess each array L_{i} (which has length $(\log n) / 2$) to answer RMQs...
build a complete table of answers
$O(n)$ total space/prep time

How do we answer a query in A in $O(1)$ time?
Do one query in H and one query in two different L_{i} and return the smallest

Ongoing Summary

We have seen an $O(n \log \log n)$ space, $O(n \log \log n)$ prep. time and $O(1)$ query time solution for the Lowest Common Ancestor problem which uses solution 3 for RMQ from last lecture

We have seen an $O(n)$ space, $O(n)$ prep. time and $O(1)$ query time solution for the ± 1 Range Minimum Query problem
which improves solution 3 for RMQ from last lecture (but only for ± 1 inputs)

Ongoing Summary

We have seen an $O(n \log \log n)$ space, $O(n \log \log n)$ prep. time and $O(1)$ query time solution for the Lowest Common Ancestor problem which uses solution 3 for RMQ from last lecture

We have seen an $O(n)$ space, $O(n)$ prep. time and $O(1)$ query time solution for the ± 1 Range Minimum Query problem
which improves solution 3 for RMQ from last lecture (but only for ± 1 inputs)

How does this affect our LCA solution?

Solving LCAs using RMQs

Preprocessing Summary

$O(n)$ 1. Construct N and D from T
$O\left(n^{\prime}\right)$ 2. Add a pointer from each node i to some $N\left[i^{\prime}\right]=i$
$O(n)$ 3. Preprocess D for RMQs

Query Summary - LCA(i,j)

$O(1)$ 1. Find (any) i^{\prime} st. $N\left[i^{\prime}\right]=i$
$O\left(1^{\prime}\right)$ 2. Find (any) j^{\prime} st. $N\left[j^{\prime}\right]=j$
$O(1)$ 3. Compute $\mathrm{RMQ}\left(i^{\prime}, j^{\prime}\right)$ in D

Solving LCAs using RMQs

Preprocessing Summary

$O(n)$ 1. Construct N and D from T
$O\left(n^{\prime}\right)$ 2. Add a pointer from each $\because \cdots \quad$ node i to some $N\left[i^{\prime}\right]=i$
$O(n)$ 3í: Preprocess D for RMQs

Query Summary - LCA(i,j)
$O(1)$ 1. Find (any) i^{\prime} st. $N\left[i^{\prime}\right]=i$
Q($\cdot\left(\mathcal{I}^{\prime} 1\right)$.2. Find (any) j^{\prime} st. $N\left[j^{\prime}\right]=j$
$O(1) 3_{r}^{\prime}$ Compute RMQ $\left(i^{\prime}, j^{\prime}\right)$ in D

Solving LCAs using RMQs

Preprocessing Summary

$O(n)$ 1. Construct N and D from T
$O\left(n^{\prime}\right)$ 2. Add a pointer from each node i to some $N\left[i^{\prime}\right]=i$
$O(n)$ 3. Preprocess D for RMQs

Query Summary - LCA(i,j)

$O(1)$ 1. Find (any) i^{\prime} st. $N\left[i^{\prime}\right]=i$
$O(1)$ 2. Find (any) j^{\prime} st. $N\left[j^{\prime}\right]=j$
$O(1)$ 3. Compute $\mathrm{RMQ}\left(i^{\prime}, j^{\prime}\right)$ in D

(node) N				9																			
	$2 n-1$																						
pth) D				,	2	,	,		2		0		0										

This gives us $O(n)$ space, $O(n)$ prep. time and $O(1)$ query time for the LCA problem

Solving LCAs using RMQs

Preprocessing Summary

$O(n)$ 1. Construct N and D from T
$O\left(n^{\prime}\right)$ 2. Add a pointer from each

$$
\text { node } i \text { to some } N\left[i^{\prime}\right]=i
$$

$O(n)$ 3. Preprocess D for RMQs

Query Summary - LCA(i,j)

$O(1)$ 1. Find (any) i^{\prime} st. $N\left[i^{\prime}\right]=i$
$O(1)$ 2. Find (any) j^{\prime} st. $N\left[j^{\prime}\right]=j$
$O(1)$ 3. Compute $\mathrm{RMQ}\left(i^{\prime}, j^{\prime}\right)$ in D

| (node) N | 0 1 5 9 5 10 5 1 6 1 0 2 0 3 7 3 8 3 |
| :---: | :--- |
| \qquad | |

This gives us $O(n)$ space, $O(n)$ prep. time and $O(1)$ query time for the LCA problem by using the solution to $\pm 1 \mathrm{RMQ}$

Ongoing Summary

We have seen an $O(n)$ space, $O(n)$ prep. time and $O(1)$ query time solution for the ± 1 Range Minimum Query problem
which improves solution 3 for RMQ from last lecture (but only for ± 1 inputs)

We have seen an $O(n)$ space, $O(n)$ prep. time and $O(1)$ query time solution for the Lowest Common Ancestor problem
which uses the solution to $\pm 1 \mathrm{RMQ}$

Ongoing Summary

We have seen an $O(n)$ space, $O(n)$ prep. time and $O(1)$ query time solution for the ± 1 Range Minimum Query problem
which improves solution 3 for RMQ from last lecture (but only for ± 1 inputs)

We have seen an $O(n)$ space, $O(n)$ prep. time and $O(1)$ query time solution for the Lowest Common Ancestor problem
which uses the solution to $\pm 1 \mathrm{RMQ}$

What about the general Range Minimum Query problem?
(when the inputs aren't ± 1)

Solving RMQs using LCAs

Build the Cartesian tree, T_{A} of the array A :

Solving RMQs using LCAs

Build the Cartesian tree, T_{A} of the array A :

- The root is the smallest value

$$
\therefore \begin{array}{ll|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 23 & 17 & 8 & 73 & 51 & 82 & 19 & 32 & 5 & 67 & 91 & 14 & 46 & 9 & 21 & 54 \\
\hline
\end{array} \quad \begin{aligned}
& \text { (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (1) (11) (12) (13) (14) (15) }
\end{aligned}
$$

Solving RMQs using LCAs

Build the Cartesian tree, T_{A} of the array A :

- The root is the smallest value
(5)

Solving RMQs using LCAs

Build the Cartesian tree, T_{A} of the array A :

- The root is the smallest value
(5)
- The selected location
partitions the array in two

Solving RMQs using LCAs

Build the Cartesian tree, T_{A} of the array A :

- The root is the smallest value
- The selected location
partitions the array in two

| 23\|17|8|73|51|82|19|32 | 67 91
 $14\|46\| 9\|21\| 54$ |
| :---: | :---: |

Solving RMQs using LCAs

Build the Cartesian tree, T_{A} of the array A :

- The root is the smallest value
(5)
- The selected location
partitions the array in two
- The rest of the tree is given by recursing left and right. . .

| 23\|17|8|73|51|82|19|32 | 67 91
 $14\|46\| 9\|21\| 54$ |
| :---: | :---: |

Solving RMQs using LCAs

Build the Cartesian tree, T_{A} of the array A :

- The root is the smallest value
- The selected location
partitions the array in two
- The rest of the tree is given by recursing left and right. . .

| 23 | 17 | 8 | 73 | 51 | 82 | 19 | 32 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 67 | 91 | 14 | 46 | 9 | 21 | 54 | |

Solving RMQs using LCAs

Build the Cartesian tree, T_{A} of the array A :

- The root is the smallest value
- The selected location
partitions the array in two
- The rest of the tree is given by recursing left and right...

| 23 | 17 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 73 | 51 | 82 | 19 | 32 |
| 67 | 91 | 14 | 46 | |

Solving RMQs using LCAs

Build the Cartesian tree, T_{A} of the array A :

- The root is the smallest value
- The selected location
partitions the array in two
- The rest of the tree is given by recursing left and right. . .

Solving RMQs using LCAs

Build the Cartesian tree, T_{A} of the array A :

- The root is the smallest value
- The selected location
partitions the array in two
- The rest of the tree is given by recursing left and right. . .

Solving RMQs using LCAs

Build the Cartesian tree, T_{A} of the array A :

- The root is the smallest value
- The selected location partitions the array in two
- The rest of the tree is given by recursing left and right. . .

Solving RMQs using LCAs

Build the Cartesian tree, T_{A} of the array A :

- The root is the smallest value
- The selected location partitions the array in two
- The rest of the tree is given by recursing left and right. . .

Solving RMQs using LCAs

Build the Cartesian tree, T_{A} of the array A :

- The root is the smallest value
- The selected location partitions the array in two
- The rest of the tree is given by recursing left and right. . .

A

Solving RMQs using LCAs

Build the Cartesian tree, T_{A} of the array A :

- The root is the smallest value
- The selected location
partitions the array in two
- The rest of the tree is given by recursing left and right. . .

This process isn't very efficient... a better one takes $O(n)$ time

Solving RMQs using LCAs

Build the Cartesian tree, T_{A} of the array A :

- The root is the smallest value
- The selected location
partitions the array in two
- The rest of the tree is given by recursing left and right. . .

This process isn't very efficient...
a better one takes $O(n)$ time
it's not tricky but we don't have time to cover it

Solving RMQs using LCAs

Build the Cartesian tree, T_{A} of the array A :

- The root is the smallest value
- The selected location partitions the array in two
- The rest of the tree is given by recursing left and right. . .

This process isn't very efficient. . .

a better one takes $O(n)$ time
it's not tricky but we don't have time to cover it

Key Fact: The LCA in T_{A} equals the RMQ in A

Solving RMQs using LCAs

Build the Cartesian tree, T_{A} of the array A :

- The root is the smallest value
- The selected location partitions the array in two
- The rest of the tree is given by recursing left and right. . .

This process isn't very efficient. . .
a better one takes $O(n)$ time
it's not tricky but we don't have time to cover it

Key Fact: The LCA in T_{A} equals the RMQ in A

Solving RMQs using LCAs

Build the Cartesian tree, T_{A} of the array A :

- The root is the smallest value
- The selected location partitions the array in two
- The rest of the tree is given by recursing left and right. . .

This process isn't very efficient. . .

a better one takes $O(n)$ time
it's not tricky but we don't have time to cover it

Key Fact: The LCA in T_{A} equals the RMQ in A

Solving RMQs using LCAs

Build the Cartesian tree, T_{A} of the array A :

- The root is the smallest value
- The selected location partitions the array in two
- The rest of the tree is given by recursing left and right. . .

This process isn't very efficient. ..

 a better one takes $O(n)$ timeit's not tricky but we don't have time to cover it

Key Fact: The LCA in T_{A} equals the RMQ in A

Solving RMQs using LCAs

Build the Cartesian tree, T_{A} of the array A :

- The root is the smallest value
- The selected location partitions the array in two
- The rest of the tree is given by recursing left and right. . .

This process isn't very efficient. . .

 a better one takes $O(n)$ timeit's not tricky but we don't have time to cover it

Key Fact: The LCA in T_{A} equals the RMQ in A

This gives us $O(n)$ space, $O(n)$ prep. time and $O(1)$ query time for the RMQ problem

Solving RMQs using LCAs

Build the Cartesian tree, T_{A} of the array A :

- The root is the smallest value
- The selected location partitions the array in two
- The rest of the tree is given by recursing left and right. . .

This process isn't very efficient. . .

 a better one takes $O(n)$ timeit's not tricky but we don't have time to cover it

Key Fact: The LCA in T_{A} equals the RMQ in A

This gives us $O(n)$ space, $O(n)$ prep. time and $O(1)$ query time for the RMQ problem by using the solution to LCA :)

Summary

We have seen an $O(n)$ space, $O(n)$ prep. time and $O(1)$ query time solution

$$
\text { for the } \pm 1 \text { Range Minimum Query problem }
$$

which improves solution 3 for RMQ from last lecture (but only for ± 1 inputs)

We have seen an $O(n)$ space, $O(n)$ prep. time and $O(1)$ query time solution for the Lowest Common Ancestor problem
which uses the solution to $\pm 1 R M Q$

We have seen an $O(n)$ space, $O(n)$ prep. time and $O(1)$ query time solution for the Range Minimum Query problem
which uses the solution to LCA
(which works for all inputs)

