Advanced Algorithms - COMS31900

Hashing part three

Cuckoo Hashing

Raphaël Clifford

Slides by Benjamin Sach

Back to the start (again)

- A dynamic dictionary stores (key, value)-pairs and supports:
add(key, value), lookup(key) (which returns value) and delete(key)

Universe U of u keys.

A hash function maps
a key x to position $h(x)$

Collisions are fixed by chaining

A set H of hash functions is weakly universal if for any two keys $x, y \in U$ (with $x \neq y$),

$$
\operatorname{Pr}(h(x)=h(y)) \leqslant \frac{1}{m}
$$

(h is picked uniformly at random from H)

Using weakly universal hashing:
For any n operations, the expected run-time is $O(1)$ per operation.
in fact this result can be generalised

Back to the start (again)

- A dynamic dictionary stores (key, value)-pairs and supports:

```
add(key, value), lookup(key) (which returns value) and delete(key)
```


If our construction has the property that, for any two keys $x, y \in U$ (with $x \neq y$),
the probability that x and y are in the same bucket is $O\left(\frac{1}{m}\right)$

For any n operations, the expected run-time is $O(1)$ per operation.

Dynamic perfect hashing

- A dynamic dictionary stores (key, value)-pairs and supports: add(key, value), lookup(key) (which returns value) and delete(key)

[Theorem

In the Cuckoo hashing scheme:

- Every lookup and every delete takes $O(1)$ worst-case time,
- The space is $O(n)$ where n is the number of keys stored
- An insert takes amortised expected $O(1)$ time

What does amortised expected $O(1)$ time mean?! let's build it up. . .
" $O(1)$ worst-case time per operation"

means every operation takes constant time

"The total worst-case time complexity of performing any n operations is $O(n)$ "
this does not imply that every operation takes constant time

However, it does mean that the amortised worst-case time complexity of an operation is $O(1)$

Dynamic perfect hashing

- A dynamic dictionary stores (key, value)-pairs and supports: add(key, value), lookup(key) (which returns value) and delete(key)

Theorem

In the Cuckoo hashing scheme:

- Every lookup and every delete takes $O(1)$ worst-case time,
- The space is $O(n)$ where n is the number of keys stored
- An insert takes amortised expected $O(1)$ time

What does amortised expected $O(1)$ time mean?! let's build it up. . .
" $O(1)$ expected time per operation"
means every operation takes constant time in expectation
"The total expected time complexity of performing any n operations is $O(n)$ " this does not imply that every operation takes constant time in expectation

However, it does mean that the amortised expected time complexity of an operation is $O(1)$

Dynamic perfect hashing

- A dynamic dictionary stores (key, value)-pairs and supports:
add(key, value), lookup(key) (which returns value) and delete(key)

Theorem

In the Cuckoo hashing scheme:

- Every lookup and every delete takes $O(1)$ worst-case time,
- The space is $O(n)$ where n is the number of keys stored
- An insert takes amortised expected $O(1)$ time

In Cuckoo hashing there is a single hash table but two hash functions: h_{1} and h_{2}.
Each key in the table is either stored at position $h_{1}(x)$ or $h_{2}(x)$.
Important: We never store multiple keys at the same position

Therefore, as claimed, lookup takes $O(1)$ time. . . but how do we do inserts?

Inserts in Cuckoo hashing

Step 1: Attempt to put x in position $h_{1}(x)$ if that position is empty, stop

Step 2: Let y be the key currently in position $h_{1}(x)$ evict key y and replace it with key x where should we put key y ? in the other position it's allowed in

Pseudocode

$\operatorname{add}(x):$

$-\operatorname{pos} \leftarrow h_{1}(x)$
\rightarrow Repeat at most n times:

- If T [pos] is empty then $T[$ pos $] \leftarrow x$.
- Otherwise,

```
    \(y \leftarrow T[\mathrm{pos}]\),
    \(T[\mathrm{pos}] \leftarrow x\),
    pos \(\leftarrow\) the other possible location for \(y\).
        (i.e. if \(y\) was evicted from \(h_{1}(y)\) then pos \(\leftarrow h_{2}(y)\), otherwise pos \(\leftarrow h_{1}(y)\).)
        \(x \leftarrow y\).
        Repeat
```

- Give up and rehash the whole table.
i.e. empty the table, pick two new hash functions and reinsert every key

Rehashing

If we fail to insert a new key x, (i.e. we still have an "evicted" key after moving around keys n times) then we declare the table "rubbish" and rehash.

What does rehashing involve?
Suppose that the table contains the k keys x_{1}, \ldots, x_{k}
at the time of we fail to insert key x.
To rehash we:
Randomly pick two new hash functions h_{1} and h_{2}. (More about this in a minute.)
Build a new empty hash table of the same size
Reinsert the keys x_{1}, \ldots, x_{k} and then x, one by one, using the normal add operation.

If we fail while rehashing... we start from the beginning again This is rather slow. . . but we will prove that it happens rarely

Assumptions

We will follow the analysis in the paper Cuckoo hashing for undergraduates, 2006, by Rasmus Pagh (see the link on unit web page).

We make the following assumptions:

REASONABLE h_{1} and h_{2} are independent
i.e. $h_{1}(x)$ says nothing about $h_{2}(x)$, and vice versa.

UNREASONADE h_{1} and h_{2} are truly random
ASSUMPTIBLE i.e. each key is independently mapped to each of the m positions in the hash table with probability $\frac{1}{m}$.

QUESTONABLE
Computing the value of $h_{1}(x)$ and $h_{2}(x)$ takes $O(1)$ worst-case time
There are at most n keys in the hash table at any time.

Cuckoo graph

A vertex for each position of the table.
For each key x there is an undirected edge between $h_{1}(x)$ and $h_{2}(x)$.

There is no space for $x_{5} \ldots$ so we make space
by moving x_{2} and then x_{3}
m vertices

The number of moves performed while adding a key is the length of the corresponding path in the cuckoo graph

Cuckoo graph

m vertices

The cuckoo graph:
A vertex for each position of the table.
For each key x there is an undirected edge between $h_{1}(x)$ and $h_{2}(x)$.

The number of moves performed while adding a key is the length of the corresponding path in the cuckoo graph

Inserting key x_{6} creates a cycle.
Cycles are dangerous...
When key x_{7} is inserted where does it go?

$$
\text { there are } 6 \text { keys but only } 5 \text { spaces }
$$

The keys would be moved around in an infinite loop but we stop and rehash after n moves. . .

Cuckoo graph

The cuckoo graph:
A vertex for each position of the table.
For each key x there is an undirected edge

$$
\text { between } h_{1}(x) \text { and } h_{2}(x)
$$

The number of moves performed while adding a key is the length of the corresponding path in the cuckoo graph

Inserting a key into a cycle always causes a rehash
This is the only way a rehash can happen

We will analyse the probability of either a cycle or a long path occuring in the graph while inserting any n keys.

For any positions i and j, and any constant $c>1$, if $m \geqslant 2 c n$ then the probability that there exists a shortest path in the cuckoo graph from i to j with length $\ell \geqslant 1$, is at most $\frac{1}{c^{\ell} \cdot m}$.

$$
\text { (let } c=2 \text { for simplicity) }
$$

What does this say?

Probability of a shortest path of length 3 is at most $\frac{1}{8 \cdot m}$

For any positions i and j, and any constant $c>1$, if $m \geqslant 2 c n$ then the probability that there exists a shortest path in the cuckoo graph from i to j with length $\ell \geqslant 1$, is at most $\frac{1}{c^{\ell} \cdot m}$.

$$
\text { (let } c=2 \text { for simplicity) }
$$

What does this say?

How likely is it that there even is a path?

If a path exists from i to j, there must be a shortest path (from i to j)

Therefore the probability of a path from i to j existing is at most...

$$
\sum_{\ell=1}^{\infty} \frac{1}{c^{\ell} \cdot m}=\frac{1}{m} \sum_{\ell=1}^{\infty} \frac{1}{c^{\ell}}=\frac{1}{m \cdot(c-1)}=\frac{1}{m}
$$

(using the union bound over all possible path lengths.)

So a path from i to j is rather unlikely to exist

LEMMA

For any positions i and j, and any constant $c>1$, if $m \geqslant 2 c n$ then the probability that there exists a shortest path in the cuckoo graph from i to j with length $\ell \geqslant 1$, is at most $\frac{1}{c^{\ell} \cdot m}$.

What is the proof?

The proof is in the directors cut of the slides (see notes)
Can we at least see the pictures?
The proof is by induction on the length ℓ :

Base case: $\ell=1$.
key x

- ○ • • ○ • • • -

Argue that each key has prob $\frac{2}{m^{2}}$ to create an edge (i, j)

Union bound over all n keys

Inductive step:

Pick a third point k to split the path

Union bound over all k then all keys

Back to the start (again) (again)

- A dynamic dictionary stores (key, value)-pairs and supports:

```
add(key, value), lookup(key) (which returns value) and delete(key)
```


If our construction has the property that, for any two keys $x, y \in U$ (with $x \neq y$),
the probability that x and y are in the same bucket is $O\left(\frac{1}{m}\right)$

For any n operations, the expected run-time is $O(1)$ per operation.

We say that two keys x, y are in the same bucket (conceptually) iff there is a path between $h_{1}(x)$ and $h_{1}(y)$ in the cuckoo graph.
For two distinct keys x, y, the probability
that they are in the same bucket is at most

Hash table

$$
\sum_{\ell=1}^{\infty} \frac{4}{c^{\ell} \cdot m}=\frac{4}{m} \cdot \sum_{\ell=1}^{\infty} \frac{1}{c^{\ell}}=\frac{4}{m(c-1)}=O\left(\frac{1}{m}\right)
$$

$$
\text { where } c>1 \text { is a constant. }
$$

(another union bound over all possible path lengths.)

For any positions i and j, and any constant $c>1$, if $m \geqslant 2 c n$ then the probability that there exists a shortest path in the cuckoo graph from i to j with length $\ell \geqslant 1$, is at most $\frac{1}{c^{\ell} \cdot m}$.

Rehashing

The previous analysis on the expected running time holds when there are no cycles.
However, we would expect there to be cycles every now and then, causing a rehash.

How often does this happen? (sketch proof)

Consider inserting n keys into the table...

A cycle is a path from a vertex i back to itself. so use previous result with $i=j \ldots$.

LEMMA
For any positions i and j, and any constant $c>1$, if $m \geqslant 2 c n$ then the probability that there exists a shortest path in the cuckoo graph from i to j with length $\ell \geqslant 1$, is at most $\frac{1}{c^{\ell} \cdot m}$.

Rehashing

The previous analysis on the expected running time holds when there are no cycles.
However, we would expect there to be cycles every now and then, causing a rehash.

How often does this happen? (sketch proof)

Consider inserting n keys into the table...

A cycle is a path from a vertex i back to itself. so use previous result with $i=j \ldots$.

LEMMA
For any positions i and j, and any constant $c>1$, if $m \geqslant 2 c n$ then the probability that there exists a shortest path in the cuckoo graph from i to j with length $\ell \geqslant 1$, is at most $\frac{1}{c^{\ell} \cdot m}$.

The probability that a position i is involved in a cycle is at most

$$
\sum_{\ell=1}^{\infty} \frac{1}{c^{\ell} \cdot m}=\frac{1}{m(c-1)}
$$

Rehashing

The probability that a position i is involved in a cycle is at most

$$
\sum_{\ell=1}^{\infty} \frac{1}{c^{\ell} \cdot m}=\frac{1}{m(c-1)}
$$

(another union bound over all possible path lengths.)
The probability that there is at least one cycle is at most

$$
m \cdot \frac{1}{m(c-1)}=\frac{1}{c-1}
$$

(union bound over all m positions in the table.)
If we set $c=3$, the probability is at most $\frac{1}{2}$ that a cycle occurs
(that there is a rehash) during the n insertions.
The probability that there are two rehashes is $\frac{1}{4}$, and so on.
So the expected number of rehashes during n insertions is at most $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)^{i}=1$.

If the expected time for one rehash is $O(n)$ then the expected time for all rehashes is also $O(n)$
(this is because we only expect there to be one rehash).

Therefore the amortised expected time for the rehashes over the n insertions is $O(1)$ per insertion (i.e. divide the total cost with n).

Why is the expected time per rehash $O(n)$?

First pick a new random h_{1} and h_{2} and construct the cuckoo graph using the at most n keys.

Check for a cycle in the graph in $O(n)$ time (and start again if you find one) (you can do this using breadth-first search)

If there is no cycle, insert all the elements, this takes $O(n)$ time in expectation (as we have seen).

A word about the assumptions

We have assumed true randomness. As we have discussed, this is not realistic.

We have seen that weakly universal hash families are realistic
where any two keys x, y are independent
A set H of hash functions is weakly universal if for any two distinct keys $x, y \in U$, $\operatorname{Pr}(h(x)=h(y)) \leqslant \frac{1}{m}$ (where h is picked uniformly at random from H)

We can define a stronger hash families with k-wise independence.
here the hash values of any choice of k keys are independent.
A set H of hash functions is k-wise independent if
for any k distinct keys $x_{1}, x_{2} \ldots x_{k} \in U$ and k values $v_{1}, v_{2}, \ldots v_{k} \in\{0,1,2 \ldots m-1\}$,

$$
\operatorname{Pr}\left(\bigcap_{i} h\left(x_{i}\right)=v_{i}\right)=\frac{1}{m^{k}}
$$

(where h is picked uniformly at random from H)

A word about the assumptions

We have assumed true randomness. As we have discussed, this is not realistic.

We have seen that weakly universal hash families are realistic
where any two keys x, y are independent
We can define a stronger hash families with k-wise independence.

$$
\text { here the hash values of any choice of } k \text { keys are independent. }
$$

It is feasible to construct a $(\log n)$-wise independent family of hash functions such that $h(x)$ can be computed in $O(1)$ time

By changing the cuckoo hashing algorithm to perform a rehash after $\log n$ moves it can be shown (via a similar but harder proof) that the results still hold
$]^{\text {Theorem }}$
In the Cuckoo hashing scheme:

- Every lookup and every delete takes $O(1)$ worst-case time,
- The space is $O(n)$ where n is the number of keys stored
- An insert takes amortised expected $O(1)$ time

