
Advanced Algorithms – COMS31900

Hashing part three

Cuckoo Hashing

Raphaël Clifford

Slides by Benjamin Sach

Back to the start (again)

� A dynamic dictionary stores (key, value)-pairs and supports:

Universe U of u keys.
Hash table T of size m > n.

Collisions are fixed by chaining

A hash function maps

For any n operations, the expected

run-time is O(1) per operation.

Using weakly universal hashing:

n arbitrary operations arrive online, one at a time.

add(key, value), lookup(key) (which returns value) and delete(key)

in fact this result can be generalised . . .

a key x to position h(x)

A set H of hash functions is weakly universal if for any

two keys x, y ∈ U (with x 6= y),

Pr
(
h(x) = h(y)

)
6

1

m

(h is picked uniformly at random from H)

Back to the start (again)

� A dynamic dictionary stores (key, value)-pairs and supports:

Universe U of u keys.
Hash table T of size m > n.

Collisions are fixed by chaining

n arbitrary operations arrive online, one at a time.

add(key, value), lookup(key) (which returns value) and delete(key)

bucketing

We require that we can recover

any key from its bucket in O(s) time

where s is the number of keys in the bucket

If our construction has the property that,
for any two keys x, y ∈ U (with x 6= y),

the probability that x and y are in the same bucket is O
(

1
m

)
For any n operations, the expected run-time is O(1) per operation.

Locating the bucket containing

a given key takes O(1) time

Dynamic perfect hashing

� A dynamic dictionary stores (key, value)-pairs and supports:

add(key, value), lookup(key) (which returns value) and delete(key)

THEOREM

In the Cuckoo hashing scheme:

• Every lookup and every delete takes O(1) worst-case time,

• The space is O(n) where n is the number of keys stored

• An insert takes amortised expected O(1) time

What does amortised expected O(1) time mean?!
let’s build it up. . .

“O(1) worst-case time per operation”
means every operation takes constant time

“The total worst-case time complexity of performing any n operations is O(n)”
this does not imply that every operation takes constant time

However, it does mean that the amortised worst-case time complexity of an operation is O(1)

Dynamic perfect hashing

� A dynamic dictionary stores (key, value)-pairs and supports:

add(key, value), lookup(key) (which returns value) and delete(key)

THEOREM

In the Cuckoo hashing scheme:

• Every lookup and every delete takes O(1) worst-case time,

• The space is O(n) where n is the number of keys stored

• An insert takes amortised expected O(1) time

What does amortised expected O(1) time mean?!
let’s build it up. . .

“O(1) worst-case time per operation”
means every operation takes constant time in expectation

“The total worst-case time complexity of performing any n operations is O(n)”
this does not imply that every operation takes constant time in expectation

However, it does mean that the amortised worst-case time complexity of an operation is O(1)

expected

expected

expected

Dynamic perfect hashing

In Cuckoo hashing there is a single hash table but two hash functions: h1 and h2.

� A dynamic dictionary stores (key, value)-pairs and supports:

add(key, value), lookup(key) (which returns value) and delete(key)

THEOREM

In the Cuckoo hashing scheme:

• Every lookup and every delete takes O(1) worst-case time,

• The space is O(n) where n is the number of keys stored

• An insert takes amortised expected O(1) time

Each key in the table is either stored at position h1(x) or h2(x).

h1(x) h2(x)

x

Important: We never store multiple keys at the same position

Therefore, as claimed, lookup takes O(1) time. . . but how do we do inserts?

Inserts in Cuckoo hashing

h1(x) h2(x)

Step 1: Attempt to put x in position h1(x)
if that position is empty, stop

Step 2: Let y be the key currently in position h1(x)

evict key y and replace it with key x

where should we put key y?
in the other position it’s allowed in

y

x

h1(y) h2(y)

Inserts in Cuckoo hashing

h1(x) h2(x)

Step 1: Attempt to put x in position h1(x)
if that position is empty, stop

Step 2: Let y be the key currently in position h1(x)

evict key y and replace it with key x

Step 3: Let pos be the other position y is allowed to be in
i.e pos = h2(y) if h1(x) = h1(y) and pos = h1(y) otherwise

Step 4: Attempt to put y in position pos
if that position is empty, stop

Step 5: Let z be the key currently in position pos

evict key z and replace it with key y and so on. . .

h1(y) h2(y)

yx

z

h1(z)h2(z)

Pseudocode

h1(x) h2(x)

h1(y) h2(y)

yx

z

h1(z)h2(z)

add(x):

� pos← h1(x)

� Repeat at most n times:

� If T [pos] is empty then T [pos]← x.

� Otherwise,

y ← T [pos],

T [pos]← x,

pos← the other possible location for y.

(i.e. if y was evicted from h1(y) then pos← h2(y), otherwise pos← h1(y).)

x← y.

Repeat

� Give up and rehash the whole table.
i.e. empty the table, pick two new hash functions and reinsert every key

Rehashing

If we fail to insert a new key x,

� Now try to insert x again.

� If we fail, rehash and try to insert x again. Repeat until it succeeds.

Reinsert the keys x1, . . . , xk and then x,

To rehash we:

(i.e. we still have an “evicted” key after moving around keys n times)
then we declare the table “rubbish” and rehash.

What does rehashing involve?

Suppose that the table contains the k keys x1, . . . , xk
at the time of we fail to insert key x.

Randomly pick two new hash functions h1 and h2. (More about this in a minute.)

Build a new empty hash table of the same size

If we fail while rehashing. . . we start from the beginning again

This is rather slow. . . but we will prove that it happens rarely

one by one, using the normal add operation.

Assumptions

We will follow the analysis in the paper Cuckoo hashing for undergraduates,

2006, by Rasmus Pagh (see the link on unit web page).

We make the following assumptions:

h1 and h2 are truly random

Computing the value of h1(x) and h2(x) takes O(1) worst-case time

i.e. each key is independently mapped to each of the m positions

in the hash table with probability 1
m .

h1 and h2 are independent
i.e. h1(x) says nothing about h2(x), and vice versa.

There are at most n keys in the hash table at any time.

UNREASONABLEASSUMPTION

REASONABLE

ASSUMPTION

QUESTIONABLE

ASSUMPTION

NOT ACTUALLY ANASSUMPTION

Cuckoo graph
Hash table

x2

x4

x5

The cuckoo graph:

For each key x there is an undirected edge

m vertices

(size m)
A vertex for each position of the table.

between h1(x) and h2(x).

x3

h1(x5)

x1

h2(x5)
There is no space for x5. . .

so we make space
by moving x2 and then x3

The number of moves performed while adding a key is
the length of the corresponding path in the cuckoo graph

Cuckoo graph
Hash table

x2

x4

x5

x6

The cuckoo graph:

For each key x there is an undirected edge

m vertices

Inserting key x6 creates a cycle.

x7
When key x7 is inserted where does it go?

(size m)
A vertex for each position of the table.

between h1(x) and h2(x).

Cycles are dangerous. . .

The keys would be moved around in an infinite loop

x3

but we stop and rehash after n moves. . .

x1

there are 6 keys but only 5 spaces

The number of moves performed while adding a key is
the length of the corresponding path in the cuckoo graph

Inserting a key into a cycle always causes a rehash

Cuckoo graph
Hash table

x2

x4

x5

x6

The cuckoo graph:

For each key x there is an undirected edge

m vertices

x7

We will analyse the probability of either a cycle or a long path occuring in the graph

(size m)
A vertex for each position of the table.

between h1(x) and h2(x).

x3

while inserting any n keys.

x1
The number of moves performed while adding a key is

the length of the corresponding path in the cuckoo graph

Inserting a key into a cycle always causes a rehash
This is the only way a rehash can happen

Paths in the cuckoo graph

For any positions i and j, and any constant c > 1, if m > 2cn then the probability that there exists a

shortest path in the cuckoo graph from i to j with length ` > 1, is at most 1
c`·m .

LEMMA

table size is m n keys

What does this say?
(let c = 2 for simplicity)

i j

Probability of a shortest path of length 3 is at most
1

8·m

Paths in the cuckoo graph

For any positions i and j, and any constant c > 1, if m > 2cn then the probability that there exists a

shortest path in the cuckoo graph from i to j with length ` > 1, is at most 1
c`·m .

LEMMA

table size is m n keys

What does this say?
(let c = 2 for simplicity)

How likely is it that there even is a path?

If a path exists from i to j, there must be a shortest path (from i to j)

Therefore the probability of a path from i to j existing is at most. . .∑∞
`=1

1
c`·m

(using the union bound over all possible path lengths.)

= 1
m

∑∞
`=1

1
c`

= 1
m·(c−1) =

1
m

So a path from i to j is rather unlikely to exist

Paths in the cuckoo graph

For any positions i and j, and any constant c > 1, if m > 2cn then the probability that there exists a

shortest path in the cuckoo graph from i to j with length ` > 1, is at most 1
c`·m .

LEMMA

table size is m n keys

What is the proof?

The proof is in the directors cut of the slides (see notes)

Can we at least see the pictures?

The proof is by induction on the length `:

Base case: ` = 1.

i j

key x

ki j

`−1

Inductive step:

Argue that each key has prob 2
m2 to

create an edge (i, j)

Union bound over all n keys

Pick a third point k to split the path

very very unlikely
very

unlikely
Union bound over all k then all keys

Back to the start (again) (again)

� A dynamic dictionary stores (key, value)-pairs and supports:

Universe U of u keys.
Hash table T of size m > n.

Collisions are fixed by chaining

n arbitrary operations arrive online, one at a time.

add(key, value), lookup(key) (which returns value) and delete(key)

bucketing

We require that we can recover

any key from its bucket in O(s) time

where s is the number of keys in the bucket

If our construction has the property that,
for any two keys x, y ∈ U (with x 6= y),

the probability that x and y are in the same bucket is O
(

1
m

)
For any n operations, the expected run-time is O(1) per operation.

Locating the bucket containing

a given key takes O(1) time

table size is m n keys

Don’t put all your eggs in one bucket

Hash table
We say that two keys x, y are in the same bucket (conceptually)

For two distinct keys x, y, the probability

∞∑
`=1

4

c` ·m
=

4

m
·
∞∑
`=1

1

c`
=

4

m(c− 1)
= O

(
1

m

)
x

y

z

where c > 1 is a constant.

w

iff there is a path between h1(x) and h1(y)
in the cuckoo graph.

that they are in the same bucket is at most

(another union bound over all possible path lengths.)

table size is m n keys

For any positions i and j, and any constant c > 1, if m > 2cn then the probability that there exists a

shortest path in the cuckoo graph from i to j with length ` > 1, is at most 1
c`·m .

LEMMA

Rehashing

The previous analysis on the expected running time holds when there are no cycles.

However, we would expect there to be cycles every now and then, causing a rehash.

A cycle is a path from a vertex i back to itself.

How often does this happen? (sketch proof)

Consider inserting n keys into the table. . .

so use previous result with i = j.. . .

For any positions i and j, and any constant c > 1, if m > 2cn then the probability that there exists a

shortest path in the cuckoo graph from i to j with length ` > 1, is at most 1
c`·m .

LEMMA

i

Rehashing

The previous analysis on the expected running time holds when there are no cycles.

However, we would expect there to be cycles every now and then, causing a rehash.

A cycle is a path from a vertex i back to itself.

How often does this happen? (sketch proof)

Consider inserting n keys into the table. . .

so use previous result with i = j.. . .

For any positions i and j, and any constant c > 1, if m > 2cn then the probability that there exists a

shortest path in the cuckoo graph from i to j with length ` > 1, is at most 1
c`·m .

LEMMA

The probability that a position i is involved in a cycle is at most

∞∑
`=1

1

c` ·m
=

1

m(c− 1)
.

(another union bound over all possible path lengths.)

i

Rehashing

The probability that a position i is involved in a cycle is at most

∞∑
`=1

1

c` ·m
=

1

m(c− 1)
.

The probability that there is at least one cycle is at most

m ·
1

m(c− 1)
=

1

c− 1
.

If we set c = 3, the probability is at most 1
2 that a cycle occurs

The probability that there are two rehashes is 1
4 , and so on.

So the expected number of rehashes during n insertions is at most
∑∞

i=1

(1
2

)i
= 1.

(another union bound over all possible path lengths.)

(union bound over all m positions in the table.)

(that there is a rehash) during the n insertions.

Rehashing

If the expected time for one rehash is O(n) then

Therefore the amortised expected time for the rehashes over the n insertions is

Why is the expected time per rehash O(n)?

If there is no cycle, insert all the elements,

First pick a new random h1 and h2 and construct the cuckoo graph

the expected time for all rehashes is also O(n)

(this is because we only expect there to be one rehash).

O(1) per insertion (i.e. divide the total cost with n).

using the at most n keys.

Check for a cycle in the graph in O(n) time (and start again if you find one)

(you can do this using breadth-first search)

this takes O(n) time in expectation (as we have seen).

A word about the assumptions

We have assumed true randomness. As we have discussed, this is not realistic.

We have seen that weakly universal hash families are realistic

We can define a stronger hash families with k-wise independence.

here the hash values of any choice of k keys are independent.

where any two keys x, y are independent

A set H of hash functions is weakly universal if for any two distinct keys x, y ∈ U ,

Pr
(
h(x) = h(y)

)
6 1

m (where h is picked uniformly at random from H)

A set H of hash functions is k-wise independent if

for any k distinct keys x1, x2 . . . xk ∈ U and k values v1, v2, . . . vk ∈ {0, 1, 2 . . .m− 1},

Pr

⋂
i

h(xi) = vi

 =
1

mk

(where h is picked uniformly at random from H)

A word about the assumptions

We have assumed true randomness. As we have discussed, this is not realistic.

We have seen that weakly universal hash families are realistic

We can define a stronger hash families with k-wise independence.

here the hash values of any choice of k keys are independent.

where any two keys x, y are independent

THEOREM

In the Cuckoo hashing scheme:

• Every lookup and every delete takes O(1) worst-case time,

• The space is O(n) where n is the number of keys stored

• An insert takes amortised expected O(1) time

It is feasible to construct a (logn)-wise independent family of hash functions

such that h(x) can be computed in O(1) time

By changing the cuckoo hashing algorithm to perform a rehash after logn moves
it can be shown (via a similar but harder proof) that the results still hold

	Back to the start (again)
	Pseudocode
	Rehashing
	Assumptions
	Cuckoo graph
	Paths in the cuckoo graph
	Back to the start (again) (again)

