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Introduction

In this lecture we are interested in space efficient data structures for storing a set S
which support only two, basic operations:

INSERT (k) - inserts the key & from U into .S

MeMBER(k) - output ‘yes’if k& € S
and ‘no’ otherwise

U is the universe, containing
all possible keys

Let n be an upper bound on the
number of keys that will ever be in .S

Our motivation comes from applications where
the size of the universe U is much much larger than n
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Introduction

In this lecture we are interested in space efficient data structures for storing a set S
which support only two, basic operations:

INSERT (k) - inserts the key & from U into .S

MeMBER(k) - output ‘yes’if k& € S
and ‘no’ otherwise

U is the universe, containing
all possible keys

Let n be an upper bound on the
number of keys that will ever be in .S

akeyin S

Our motivation comes from applications where
the size of the universe U is much much larger than n

Important: You cannot ask “which keys are in S?”, only “is this key in S'?”
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Example and Motivation

Imagine you are attempting to build a blacklist of unsafe URLs
that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure

Whenever we want to visit a URL we check the data structure.



B s

Example and Motivation

Imagine you are attempting to build a blacklist of unsafe URLs
that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure

Whenever we want to visit a URL we check the data structure.

INSERT(WWW . AwfulVirus. com)



B s

Example and Motivation

Imagine you are attempting to build a blacklist of unsafe URLs
that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure

Whenever we want to visit a URL we check the data structure.

INSERT(WWW . AwfulVirus. com)

INSERT(WWW . VirusStore. com)



B s

Example and Motivation

Imagine you are attempting to build a blacklist of unsafe URLs
that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure

Whenever we want to visit a URL we check the data structure.

INSERT(WWW . AwfulVirus. com)

INSERT(WWW . VirussStore.com)

Disclaimer: | take no responsability for the contents of these websites



B s

Example and Motivation

Imagine you are attempting to build a blacklist of unsafe URLs
that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure

Whenever we want to visit a URL we check the data structure.

INSERT(WWW . AwfulVirus. com)
INSERT(WWW . VirusStore. com)

MemBER(WWW . BBC. co . uk) - returns ‘no’

Disclaimer: | take no responsability for the contents of these websites



B s

Example and Motivation
Imagine you are attempting to build a blacklist of unsafe URLs
that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure

Whenever we want to visit a URL we check the data structure.

INSERT(WWW . AwfulVirus. com)
INSERT(WWW . VirussStore.com)
MemBER(WWW . BBC. co.uk) - returns ‘no’

MEMBER(WWW . VirusStore. com) - returns ‘yes’

Disclaimer: | take no responsability for the contents of these websites



B s

Example and Motivation
Imagine you are attempting to build a blacklist of unsafe URLs
that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure

Whenever we want to visit a URL we check the data structure.

INSERT(WWW . AwfulVirus. com)
INSERT(WWW . VirussStore.com)
MemBER(WWW . BBC. co.uk) - returns ‘no’

MEMBER(WWW . VirusStore. com) - returns ‘yes’



B SRt

Example and Motivation
Imagine you are attempting to build a blacklist of unsafe URLs
that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure

Whenever we want to visit a URL we check the data structure.

INSERT(WWW . AwfulVirus. com)
INSERT(WWW . VirussStore.com)
MemBER(WWW . BBC. co.uk) - returns ‘no’
MEMBER(WWW . VirusStore. com) - returns ‘yes’

INSERT(WWW . CleanUpPC. com)



B SRt

Example and Motivation
Imagine you are attempting to build a blacklist of unsafe URLs
that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure

Whenever we want to visit a URL we check the data structure.

INSERT(WWW . AwfulVirus. com)
INSERT(WWW . VirussStore.com)
MemBER(WWW . BBC. co.uk) - returns ‘no’
MEMBER(WWW . VirusStore. com) - returns ‘yes’
INSERT(WWW . CleanUpPC. com)

MeMBER(WWW . BBC. co . uk) - returns ‘yes’



B SRt

Example and Motivation
Imagine you are attempting to build a blacklist of unsafe URLs
that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure

Whenever we want to visit a URL we check the data structure.

INSERT(WWW . AwfulVirus. com)
INSERT(WWW . VirussStore.com)
MemBER(WWW . BBC. co.uk) - returns ‘no’
MEMBER(WWW . VirusStore. com) - returns ‘yes’
INSERT(WWW . CleanUpPC. com)

MeMBER(WWW . BBC. co . uk) - returns ‘yes’



B SRt

Example and Motivation
Imagine you are attempting to build a blacklist of unsafe URLs
that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure

Whenever we want to visit a URL we check the data structure.

INSERT(WWW . AwfulVirus. com)
INSERT(WWW . VirussStore.com)
MemBER(WWW . BBC. co.uk) - returns ‘no’
MEMBER(WWW . VirusStore. com) - returns ‘yes’
INSERT(WWW . CleanUpPC. com)

MeMBER(WWW . BBC. co . uk) - returns ‘yes’

a Bloom filter is a randomised data structure - sometimes it gets the answer wrong
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Bloom filters

A Bloom filter is a randomised data structure for storing a set S
which supports two operations

The INSERT(k ) operation inserts the key k from U into S
(it never does this incorrectly)

In a bloom filter, the MEMBER (k) operation

always returns ‘yes’ if k € S

however, if k£ is notin .S
there is a small chance (say 1%) that it will still say ‘yes’
Why use a Bloom filter then?
Both operations run in O (1) time and the space used is very very good

It will use O (n) bits of space to store up to 72 keys

- the exact number of bits will depend on the failure probability
we’ll come back to this at the end
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Before discussing Bloom filters, lets consider a naive approach using an array. ..

For simplicity, let us think of the universe U as containing numbers 1,2, 3 ... |U|.

We could maintain a bit string 5
where B|k] = 1if k € S and B|k| = 0 otherwise

Example:

— | w

here (U | = 10 and S contains 3,6 and 8

While the operations take O (1) time, this array is |U | bits long!

It certainly isn’t suitable for the application we have seen
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Approach 2: build a hash table

The problem with hashing is that if 72 << |U| then

there will be some keys that hash to the same positions
(these are called )

If we call MEMBER( k) for some key k notin .S
but there is a key k' € S with h(k) = h(k")

we will incorrectly output ‘yes’

To make sure that the probability of an error is low for every operation sequence,

we pick the hash function / at random

Important: h is chosen before any operations happen and never changes

For every key k € U, the value of h(k) is chosen independently and uniformly at random:

that is, the probability that /(k) = j is % for all 7 between 1 and m

(each position is equally likely)
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What is the probability of an error?
Assume we have already INSERTED 7 keys into the structure

Further, we have just called
MEMBER(k) for some key £ notin S
(which will check whether B|h(k)| = 1)

We want to know the probability that the answer returned is ‘yes’ (which would be bad)

The bit-string 5 contains at most 72 1’s among the 1 positions

By definition, /(&) is equally likely to be any position between 1 and m
Therefore the probability that B[/(k)| = 1 is at most

If we choose m = 100n then we get a failure probability of at most 1%
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We have developed a randomised data structure for storing a set S
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Approach 2: build a hash table

We have developed a randomised data structure for storing a set S
which supports two operations

The INSERT(k ) operation inserts the key k from U into S
(it never does this incorrectly)

Like in a bloom filter, the MEMBER (k) operation
always returns ‘yes’ if k € S

however, if k is notin S

there is a small chance (in fact 1%) that it will still say ‘yes’

Both operations run in O (1) time and the space used is 1007 bits
when storing up to 1. keys

neither the space nor the failure probability depend on |U |
if we wanted a better probability, we could use more space

Why use a Bloom filter then?
we will get much better space usage for the same probability
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Approach 3: build a bloom filter

We still maintain a bit string 3 of some length m < |U|

Now we have 1 hash functions: hl, hg, c o ey hr ,
(we will choose  and m later)

Each hash function /; maps a key k, to an integer /; (k) between 1 and m

INSERT(k) sets Blh; (k)] =1 MEMBER(k ) returns ‘yes’ if and only if
for all 2 between 1 and r forall 4, Blh; (k)| =

For every key k € U,
the value of each h; (k) is chosen independently and uniformly at random:

that is, the probability that /., (k) = 7 is L forall 7 between 1 and m
¢ m

(each position is equally likely)

but what is the probability of a wrong answer?
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What is the probability of an error?

Assume we have already INSERTED 1 keys into the bloom filter

Further, we have just called MEMBER(k ) for some key £ notin .S
this will check whether B|h; (k)] = 1forallj = 1,2,...7

This is the same as checking whether r randomly chosen bits of B all equal 1

We will now show that there is only a small probability of this happening

As there are at most 1 keys in the filter,
at most n.r bits of B are setto 1
(each INSERT sets at most r bits to 1) TTTTTTTTTTTTTTTTTTTTTmTTTmooooes :

A S A

, _ , nr v ]
So the fraction of bits setto 1 isatmost —  '-------- TTTTTTTTTToToTmmemmemeees
m (do this independently r times)

nr
so the probability that a randomly chosen bit is 1 is at most o

r
so the probability that 7 randomly chosen bits all equal 1 is at most (M)
m
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What is the probability of a collision?
We now choose 7 to minimise this probability. . .

nr

By differentiating, we can find that (
m

-
) is minimised by
letting 7 = m./(ne) where e = 2.7813 . ..

If we plug this in we get that, m
the probability of failure, is at most (l) ne ~g (069)
e

m
n

In particular to achieve a 1% failure probability,

we can set m ~ 12.52n bits

neither the space nor the failure probability depend on |U |

if we wanted a better probability, we could use more space

This is much better than the 1001 bits we needed with a single hash function

fo achieve the same probability
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Bloom filter summary

A Bloom filter is a randomised data structure for storing a set S
which supports two operations, each in O(1) time

The INSERT(k ) operation inserts the key k from U into S
(it never does this incorrectly)

In a bloom filter, the MEMBER (k) operation

always returns ‘yes' if &k € S

however, if k is not in .S

there is a small chance, ¢, that it will still say ‘yes’

We have seen that if e = 0.01 (1%) the the space used is ™ ~ 12.52n bits
when storing up to 1 keys

By impoving the analysis, one can show that only ~ 1.44 log (1 /¢) bits are needed
(=~ 9.57n bits when ¢ = 0.01)
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Practical hash functions
We made the unrealistic assumption that each hash function /; maps a key k to a
uniformly random integer between 1 and m.

In practice, we pick each hash function /; randomly from a fixed set of hash functions.

One way of doing this for integer keys is the following: (see CLRS 11.3.3)

For each 7:

1. Pick a prime number p > |U|.
2. Pick randomintegersa € {1,...,p— 1}, bec {0,...,p— 1}
3. Let h; be definedby h; (k) =1+ ((ak +b) mod p) mod m.

Some number theory can be used to prove that this set of hash functions is “pseudorandom” in some

sense; however, technically they are not “random enough” for our analysis above to go through.

Nevertheless, in practice hash functions like this are very effective.
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Bloom filter summary

A Bloom filter is a randomised data structure for storing a set S
which supports two operations, each in O(1) time

The INSERT(k ) operation inserts the key k from U into S
(it never does this incorrectly)

In a bloom filter, the MEMBER (k) operation

always returns ‘yes' if &k € S

however, if k is not in .S

there is a small chance, ¢, that it will still say ‘yes’

We have seen that if e = 0.01 (1%) the the space used is ™ ~ 12.52n bits
when storing up to 1 keys

By impoving the analysis, one can show that only ~ 1.44 log (1 /¢) bits are needed
(=~ 9.57n bits when ¢ = 0.01)



