Data Structures and Algorithms－COMS21103

Bloom Filters

Raphaël Clifford

（Slides by Benjamin Sach and Ashley Montanaro）

Introduction

In this lecture we are interested in space efficient data structures for storing a set S which support only two, basic operations:
$\operatorname{InSERT}(k)$ - inserts the key k from U into S
$\operatorname{Member}(k)$ - output 'yes' if $k \in S$ and 'no' otherwise
U is the universe, containing
all possible keys

Let n be an upper bound on the number of keys that will ever be in S

Our motivation comes from applications where the size of the universe U is much much larger than n

Introduction

In this lecture we are interested in space efficient data structures for storing a set S which support only two, basic operations:
$\operatorname{INSERT}(k)$ - inserts the key k from U into S
$\operatorname{Member}(k)$ - output 'yes' if $k \in S$ and 'no' otherwise
U is the universe, containing
all possible keys

Let n be an upper bound on the number of keys that will ever be in S

Our motivation comes from applications where the size of the universe U is much much larger than n

Introduction

In this lecture we are interested in space efficient data structures for storing a set S which support only two, basic operations:
$\operatorname{INSERT}(k)$ - inserts the key k from U into S
$\operatorname{Member}(k)$ - output 'yes' if $k \in S$ and 'no' otherwise
U is the universe, containing
all possible keys

Let n be an upper bound on the number of keys that will ever be in S

Our motivation comes from applications where the size of the universe U is much much larger than n

Introduction

In this lecture we are interested in space efficient data structures for storing a set S which support only two, basic operations:
$\operatorname{INSERT}(k)$ - inserts the key k from U into S
$\operatorname{Member}(k)$ - output 'yes' if $k \in S$ and 'no' otherwise
U is the universe, containing
all possible keys

Let n be an upper bound on the number of keys that will ever be in S

Our motivation comes from applications where
the size of the universe U is much much larger than n
Important: You cannot ask "which keys are in S ?", only "is this key in S ?"

Example and Motivation

Imagine you are attempting to build a blacklist of unsafe URLs
that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure Whenever we want to visit a URL we check the data structure.

Example and Motivation

Imagine you are attempting to build a blacklist of unsafe URLs that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure Whenever we want to visit a URL we check the data structure.
INSERT(WWW . AwfulVirus. com)

Example and Motivation

Imagine you are attempting to build a blacklist of unsafe URLs that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure Whenever we want to visit a URL we check the data structure.

$$
\begin{aligned}
& \text { INSERT(WWW . AwfulVirus.com) } \\
& \text { INSERT(WWW . VirusStore. com) }
\end{aligned}
$$

Example and Motivation

Imagine you are attempting to build a blacklist of unsafe URLs that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure Whenever we want to visit a URL we check the data structure.

$$
\begin{aligned}
& \text { INSERT(WWW . AwfulVirus. com) } \\
& \text { INSERT(WWW . VirusStore. com) }
\end{aligned}
$$

Disclaimer: I take no responsability for the contents of these websites

Example and Motivation

Imagine you are attempting to build a blacklist of unsafe URLs that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure Whenever we want to visit a URL we check the data structure.

$$
\begin{aligned}
& \text { INSERT(WWW . AwfulVirus . com) } \\
& \text { INSERT(WWW . VirusStore . com) } \\
& \text { MEMBER(WWW . BBC . co . uk) - returns 'no' }
\end{aligned}
$$

Disclaimer: I take no responsability for the contents of these websites

Example and Motivation

Imagine you are attempting to build a blacklist of unsafe URLs that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure Whenever we want to visit a URL we check the data structure.

$$
\begin{aligned}
& \text { INSERT(WWW . AwfulVirus . com) } \\
& \text { INSERT(WWW . VirusStore . com) } \\
& \quad \text { Member(wWw . BBC . co . uk) - returns 'no' } \\
& \text { Member(wWW . VirusStore . com) - returns 'yes' }
\end{aligned}
$$

Disclaimer: I take no responsability for the contents of these websites

Example and Motivation

Imagine you are attempting to build a blacklist of unsafe URLs that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure Whenever we want to visit a URL we check the data structure.

$$
\begin{aligned}
& \text { INSERT(WWW . AwfulVirus . com) } \\
& \text { INSERT(WWW . VirusStore . com) } \\
& \quad \text { Member(wWw . BBC . co . uk) - returns 'no' } \\
& \text { Member(wWw . VirusStore . com) - returns 'yes' }
\end{aligned}
$$

Example and Motivation

Imagine you are attempting to build a blacklist of unsafe URLs that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure Whenever we want to visit a URL we check the data structure.

$$
\begin{aligned}
& \text { Insert(wWW. AwfulVirus.com) } \\
& \text { INSERT(WWW.VirusStore.com) } \\
& \quad \text { MEMBER(WWW . BBC. co .uk) - returns 'no' } \\
& \text { MEMBER(WWW . VirusStore . com) - returns 'yes' } \\
& \text { INSERT(WWW . CleanUpPC . com) }
\end{aligned}
$$

Example and Motivation

Imagine you are attempting to build a blacklist of unsafe URLs that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure Whenever we want to visit a URL we check the data structure.

$$
\begin{aligned}
& \text { Insert(WWW.AwfulVirus.com) } \\
& \text { Insert(WWW.VirusStore.com) } \\
& \text { Member(www . BBC. co.uk) - returns 'no' } \\
& \text { Member(WWw. VirusStore.com) - returns 'yes' } \\
& \text { Insert(wWw . CleanUpPC . com) } \\
& \text { Member(wWw. BBC.co.uk) - returns 'yes' }
\end{aligned}
$$

Example and Motivation

Imagine you are attempting to build a blacklist of unsafe URLs that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure Whenever we want to visit a URL we check the data structure.

$$
\begin{aligned}
& \text { Insert(WWW. AwfulVirus.com) } \\
& \text { Insert(WWW.VirusStore.com) } \\
& \text { Member(www . BBC. co.uk) - returns 'no' } \\
& \text { Member(WWw. VirusStore.com) - returns 'yes' } \\
& \text { Insert(wWw . CleanUpPC. com) } \\
& \text { Member(wWw. BBC. co.uk) - returns 'yes' }
\end{aligned}
$$

Example and Motivation

Imagine you are attempting to build a blacklist of unsafe URLs that users should not visit

The universe contains all possible URLs

Whenever a new unsafe URL is discovered it is inserted into the data structure Whenever we want to visit a URL we check the data structure.

$$
\begin{aligned}
& \text { Insert(WWW. AwfulVirus. com) } \\
& \text { Insert(WWW.VirusStore.com) } \\
& \text { Member(www . BBC. co.uk) - returns 'no' } \\
& \text { Member(WWw. VirusStore.com) - returns 'yes' } \\
& \text { Insert(wWW. CleanUpPC. com) } \\
& \text { Member(wWw. BBC. co.uk) - returns 'yes' }
\end{aligned}
$$

Bloom filters

A Bloom filter is a randomised data structure for storing a set S which supports two operations

Bloom filters

A Bloom filter is a randomised data structure for storing a set S which supports two operations

The Insert (k) operation inserts the key k from U into S

Bloom filters

A Bloom filter is a randomised data structure for storing a set S which supports two operations

The Insert (k) operation inserts the key k from U into S
(it never does this incorrectly)

Bloom filters

A Bloom filter is a randomised data structure for storing a set S which supports two operations

The Insert (k) operation inserts the key k from U into S
(it never does this incorrectly)
In a bloom filter, the $\operatorname{Member}(k)$ operation

Bloom filters

A Bloom filter is a randomised data structure for storing a set S which supports two operations

The Insert (k) operation inserts the key k from U into S
(it never does this incorrectly)
In a bloom filter, the $\operatorname{Member}(k)$ operation

$$
\text { always returns 'yes' if } k \in S
$$

Bloom filters

A Bloom filter is a randomised data structure for storing a set S which supports two operations

The Insert (k) operation inserts the key k from U into S
(it never does this incorrectly)
In a bloom filter, the $\operatorname{Member}(k)$ operation
always returns 'yes' if $k \in S$
however, if k is not in S
there is a small chance (say 1%) that it will still say 'yes'

Bloom filters

A Bloom filter is a randomised data structure for storing a set S which supports two operations

The Insert (k) operation inserts the key k from U into S
(it never does this incorrectly)
In a bloom filter, the $\operatorname{Member}(k)$ operation
always returns 'yes' if $k \in S$
however, if k is not in S
there is a small chance (say 1%) that it will still say 'yes'

Why use a Bloom filter then?

Bloom filters

A Bloom filter is a randomised data structure for storing a set S which supports two operations

The Insert (k) operation inserts the key k from U into S
(it never does this incorrectly)
In a bloom filter, the $\operatorname{Member}(k)$ operation

$$
\begin{aligned}
& \text { always returns 'yes' if } k \in S \\
& \text { however, if } k \text { is not in } S \\
& \text { there is a small chance (say } 1 \% \text {) that it will still say 'yes' }
\end{aligned}
$$

Why use a Bloom filter then?
Both operations run in $O(1)$ time and the space used is very very good

Bloom filters

A Bloom filter is a randomised data structure for storing a set S which supports two operations

The Insert (k) operation inserts the key k from U into S
(it never does this incorrectly)
In a bloom filter, the $\operatorname{Member}(k)$ operation

$$
\begin{aligned}
& \text { always returns 'yes' if } k \in S \\
& \text { however, if } k \text { is not in } S \\
& \text { there is a small chance (say } 1 \% \text {) that it will still say 'yes' }
\end{aligned}
$$

Why use a Bloom filter then?
Both operations run in $O(1)$ time and the space used is very very good

It will use $O(n)$ bits of space to store up to n keys

Bloom filters

A Bloom filter is a randomised data structure for storing a set S which supports two operations

The Insert (k) operation inserts the key k from U into S
(it never does this incorrectly)
In a bloom filter, the $\operatorname{Member}(k)$ operation

$$
\begin{aligned}
& \text { always returns 'yes' if } k \in S \\
& \text { however, if } k \text { is not in } S \\
& \text { there is a small chance (say } 1 \% \text {) that it will still say 'yes' }
\end{aligned}
$$

Why use a Bloom filter then?
Both operations run in $O(1)$ time and the space used is very very good

It will use $O(n)$ bits of space to store up to n keys

- the exact number of bits will depend on the failure probability

Bloom filters

A Bloom filter is a randomised data structure for storing a set S which supports two operations

The Insert (k) operation inserts the key k from U into S
(it never does this incorrectly)
In a bloom filter, the $\operatorname{Member}(k)$ operation

$$
\begin{aligned}
& \text { always returns 'yes' if } k \in S \\
& \text { however, if } k \text { is not in } S \\
& \text { there is a small chance (say } 1 \% \text {) that it will still say 'yes' }
\end{aligned}
$$

Why use a Bloom filter then?
Both operations run in $O(1)$ time and the space used is very very good

It will use $O(n)$ bits of space to store up to n keys

- the exact number of bits will depend on the failure probability

Approach 1: build an array

Before discussing Bloom filters, lets consider a naive approach using an array...

For simplicity, let us think of the universe U as containing numbers $1,2,3 \ldots|U|$.

Approach 1: build an array

Before discussing Bloom filters, lets consider a naive approach using an array...

For simplicity, let us think of the universe U as containing numbers $1,2,3 \ldots|U|$.

We could maintain a bit string B

Approach 1: build an array

Before discussing Bloom filters, lets consider a naive approach using an array...

For simplicity, let us think of the universe U as containing numbers $1,2,3 \ldots|U|$.

We could maintain a bit string B

Example:

$$
B \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
\hline
\end{array}
$$

Approach 1: build an array

Before discussing Bloom filters, lets consider a naive approach using an array...

For simplicity, let us think of the universe U as containing numbers $1,2,3 \ldots|U|$.

We could maintain a bit string B

$$
\text { where } B[k]=1 \text { if } k \in S \text { and } B[k]=0 \text { otherwise }
$$

Example:

$$
B \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
\hline
\end{array}
$$

Approach 1: build an array

Before discussing Bloom filters, lets consider a naive approach using an array...

For simplicity, let us think of the universe U as containing numbers $1,2,3 \ldots|U|$.

We could maintain a bit string B

$$
\text { where } B[k]=1 \text { if } k \in S \text { and } B[k]=0 \text { otherwise }
$$

Example:

$$
\begin{gathered}
B \\
\\
\\
\\
\text { here }|U|=10 \text { and } S \text { contains } 3,6 \text { and } 8
\end{gathered}
$$

Approach 1: build an array

Before discussing Bloom filters, lets consider a naive approach using an array...

For simplicity, let us think of the universe U as containing numbers $1,2,3 \ldots|U|$.

We could maintain a bit string B

$$
\text { where } B[k]=1 \text { if } k \in S \text { and } B[k]=0 \text { otherwise }
$$

Example:

$$
\begin{gathered}
B \\
\\
\\
\\
\text { here }|U|=10 \text { and } S \text { contains } 3,6 \text { and } 8
\end{gathered}
$$

While the operations take $O(1)$ time, this array is $|U|$ bits long!

Approach 1: build an array

Before discussing Bloom filters, lets consider a naive approach using an array...

For simplicity, let us think of the universe U as containing numbers $1,2,3 \ldots|U|$.

We could maintain a bit string B

$$
\text { where } B[k]=1 \text { if } k \in S \text { and } B[k]=0 \text { otherwise }
$$

Example:

$$
\begin{aligned}
& \text { here }|U|=10 \text { and } S \text { contains } 3,6 \text { and } 8
\end{aligned}
$$

While the operations take $O(1)$ time, this array is $|U|$ bits long!

Approach 2: build a hash table

We could solve the problem by hashing...

We now maintain a much shorter bit string B of some length $m<|U|$
(to be determined later)

Example:	1		2	3
	B			
	0			

Approach 2: build a hash table

We could solve the problem by hashing...

We now maintain a much shorter bit string B of some length $m<|U|$
(to be determined later)

Assume we have access to a hash function h which maps each key $k \in U$ to an integer $h(k)$ between 1 and m

Example:

1	2	3
0	0	0

Approach 2: build a hash table

We could solve the problem by hashing...

We now maintain a much shorter bit string B of some length $m<|U|$
(to be determined later)

Assume we have access to a hash function h which maps each key $k \in U$ to an integer $h(k)$ between 1 and m

Imagine that $m=3$ and

$$
\begin{aligned}
& h(\text { www. AwfulVirus.com })=2 \\
& h(\text { www.VirusStore.com })=3 \\
& h(w w w . B B C . c o . u k)=3
\end{aligned}
$$

Approach 2: build a hash table

We could solve the problem by hashing...
We now maintain a much shorter bit string B of some length $m<|U|$
(to be determined later)

Assume we have access to a hash function h which maps each key $k \in U$ to an integer $h(k)$ between 1 and m
$\operatorname{Insert}(k)$ sets $B[h(k)]=1$

Imagine that $m=3$ and

$$
\begin{array}{r}
h(\text { wWW } \cdot \text { AwfulVirus.com })=2 \\
h(\text { wWW } \cdot \text { VirusStore.com })=3 \\
h(\text { www.BBC.co.uk })=3
\end{array}
$$

Approach 2: build a hash table

We could solve the problem by hashing...
We now maintain a much shorter bit string B of some length $m<|U|$
(to be determined later)

Assume we have access to a hash function h which maps each key $k \in U$ to an integer $h(k)$ between 1 and m

$$
\begin{array}{r}
\operatorname{INSERT}(k) \text { sets } B[h(k)]=1 \quad \operatorname{Member}(k) \text { returns 'yes' if } B[h(k)]=1 \\
\text { and 'no' if } B[h(k)]=0
\end{array}
$$

Example:

Imagine that $m=3$ and

$$
\begin{array}{r}
h(\text { www } \cdot \text { AwfulVirus.com })=2 \\
h(\text { www } \cdot \text { VirusStore.com })=3 \\
h(\text { www.BBC.co.uk })=3
\end{array}
$$

Approach 2: build a hash table

We could solve the problem by hashing...
We now maintain a much shorter bit string B of some length $m<|U|$
(to be determined later)

Assume we have access to a hash function h which maps each key $k \in U$ to an integer $h(k)$ between 1 and m

$$
\begin{array}{r}
\operatorname{INSERT}(k) \text { sets } B[h(k)]=1 \quad \operatorname{Member}(k) \text { returns 'yes' if } B[h(k)]=1 \\
\text { and 'no' if } B[h(k)]=0
\end{array}
$$

Imagine that $m=3$ and

$$
\begin{aligned}
h(\text { www } \cdot \text { AwfulVirus } \cdot \text { com }) & =2 \\
h(\text { www } \cdot \text { VirusStore } \cdot \text { com }) & =3 \\
h(\text { www } \cdot \text { BBC } \cdot \text { co } \cdot \mathrm{uk}) & =3
\end{aligned}
$$

Approach 2: build a hash table

We could solve the problem by hashing...
We now maintain a much shorter bit string B of some length $m<|U|$
(to be determined later)

Assume we have access to a hash function h which maps each key $k \in U$ to an integer $h(k)$ between 1 and m

$$
\begin{array}{r}
\operatorname{INsert}(k) \text { sets } B[h(k)]=1 \quad \operatorname{Member}(k) \text { returns 'yes' if } B[h(k)]=1 \\
\text { and 'no' if } B[h(k)]=0
\end{array}
$$

Example: \begin{tabular}{c}

\multicolumn{3}{l|}{| 1 |
| :--- |
| $l\|l\| l \mid$ | | 0 | 1 | 3 |
| :--- | :--- | :--- |}

INSERT(WWW. AwfulVirus.com)
\end{tabular}

Imagine that $m=3$ and

$$
\begin{aligned}
h(\text { www } \cdot \text { AwfulVirus } \cdot \text { com }) & =2 \\
h(\text { www } \cdot \text { VirusStore } \cdot \text { com }) & =3 \\
h(\text { www } \cdot \text { BBC } \cdot \text { co } \cdot \mathrm{uk}) & =3
\end{aligned}
$$

Approach 2: build a hash table

We could solve the problem by hashing...
We now maintain a much shorter bit string B of some length $m<|U|$
(to be determined later)

Assume we have access to a hash function h which maps each key $k \in U$ to an integer $h(k)$ between 1 and m

$$
\begin{array}{r}
\operatorname{INSERT}(k) \text { sets } B[h(k)]=1 \quad \operatorname{Member}(k) \text { returns 'yes' if } B[h(k)]=1 \\
\text { and 'no' if } B[h(k)]=0
\end{array}
$$

Imagine that $m=3$ and

```
h(www.AwfulVirus.com)=2
h(www.VirusStore.com)=3
    h(www.BBC.co.uk)=3
```


Approach 2: build a hash table

We could solve the problem by hashing...
We now maintain a much shorter bit string B of some length $m<|U|$
(to be determined later)

Assume we have access to a hash function h which maps each key $k \in U$ to an integer $h(k)$ between 1 and m

$$
\begin{array}{r}
\operatorname{INSERT}(k) \text { sets } B[h(k)]=1 \quad \operatorname{Member}(k) \text { returns 'yes' if } B[h(k)]=1 \\
\text { and 'no' if } B[h(k)]=0
\end{array}
$$

Imagine that $m=3$ and

$$
\begin{aligned}
h(\text { www } \cdot \text { AwfulVirus } \cdot \text { com }) & =2 \\
h(\text { www } \cdot \text { VirusStore } \cdot \text { com }) & =3 \\
h(\text { www } \cdot \text { BBC } \cdot \text { co } \cdot \mathrm{uk}) & =3
\end{aligned}
$$

Approach 2: build a hash table

We could solve the problem by hashing...
We now maintain a much shorter bit string B of some length $m<|U|$
(to be determined later)

Assume we have access to a hash function h which maps each key $k \in U$ to an integer $h(k)$ between 1 and m

$$
\begin{array}{r}
\operatorname{INSERT}(k) \text { sets } B[h(k)]=1 \quad \operatorname{Member}(k) \text { returns 'yes' if } B[h(k)]=1 \\
\text { and 'no' if } B[h(k)]=0
\end{array}
$$

Example:

B| 0 | 1 | 1 |
| :--- | :--- | :--- |

INSERT(WWW.AwfulVirus.com)
INSERT(WWW.VirusStore.com)
Member(www. BBC.co.uk)-returns 'yes'

Approach 2: build a hash table

We could solve the problem by hashing...
We now maintain a much shorter bit string B of some length $m<|U|$
(to be determined later)

Assume we have access to a hash function h which maps each key $k \in U$ to an integer $h(k)$ between 1 and m

$$
\begin{array}{r}
\operatorname{INSERT}(k) \text { sets } B[h(k)]=1 \quad \operatorname{Member}(k) \text { returns 'yes' if } B[h(k)]=1 \\
\text { and 'no' if } B[h(k)]=0
\end{array}
$$

Approach 2: build a hash table

The problem with hashing is that if $m<|U|$ then
there will be some keys that hash to the same positions
(these are called collisions)

Approach 2: build a hash table

The problem with hashing is that if $m<|U|$ then
there will be some keys that hash to the same positions (these are called collisions)

If we call $\operatorname{Member}(k)$ for some key k not in S
but there is a key $k^{\prime} \in S$ with $h(k)=h\left(k^{\prime}\right)$
we will incorrectly output 'yes'

Approach 2: build a hash table

The problem with hashing is that if $m<|U|$ then
there will be some keys that hash to the same positions (these are called collisions)

If we call $\operatorname{Member}(k)$ for some key k not in S
but there is a key $k^{\prime} \in S$ with $h(k)=h\left(k^{\prime}\right)$ we will incorrectly output 'yes'

To make sure that the probability of an error is low for every operation sequence, we pick the hash function h at random

Approach 2: build a hash table

The problem with hashing is that if $m<|U|$ then
there will be some keys that hash to the same positions (these are called collisions)

If we call $\operatorname{Member}(k)$ for some key k not in S
but there is a key $k^{\prime} \in S$ with $h(k)=h\left(k^{\prime}\right)$ we will incorrectly output 'yes'

To make sure that the probability of an error is low for every operation sequence, we pick the hash function h at random

Important: h is chosen before any operations happen and never changes

Approach 2: build a hash table

The problem with hashing is that if $m<|U|$ then
there will be some keys that hash to the same positions (these are called collisions)

If we call $\operatorname{Member}(k)$ for some key k not in S
but there is a key $k^{\prime} \in S$ with $h(k)=h\left(k^{\prime}\right)$ we will incorrectly output 'yes'

To make sure that the probability of an error is low for every operation sequence, we pick the hash function h at random

Important: h is chosen before any operations happen and never changes

For every key $k \in U$, the value of $h(k)$ is chosen independently and uniformly at random: that is, the probability that $h(k)=j$ is $\frac{1}{m}$ for all j between 1 and m

What is the probability of an error?

Assume we have already INSERTED n keys into the structure
Further, we have just called
$\operatorname{Member}(k)$ for some key k not in S
(which will check whether $B[h(k)]=1$)

What is the probability of an error?

Assume we have already INSERTED n keys into the structure
Further, we have just called
$\operatorname{Member}(k)$ for some key k not in S
(which will check whether $B[h(k)]=1$)
We want to know the probability that the answer returned is 'yes' (which would be bad)

What is the probability of an error?

Assume we have already INSERTED n keys into the structure
Further, we have just called
$\operatorname{Member}(k)$ for some key k not in S
(which will check whether $B[h(k)]=1$)
We want to know the probability that the answer returned is 'yes' (which would be bad)

The bit-string B contains at most n 1's among the m positions

What is the probability of an error?

Assume we have already INSERTED n keys into the structure
Further, we have just called
$\operatorname{Member}(k)$ for some key k not in S
(which will check whether $B[h(k)]=1$)
We want to know the probability that the answer returned is 'yes' (which would be bad)

The bit-string B contains at most n 1's among the m positions

What is the probability of an error?

Assume we have already INSERTED n keys into the structure
Further, we have just called
$\operatorname{Member}(k)$ for some key k not in S
(which will check whether $B[h(k)]=1$)
We want to know the probability that the answer returned is 'yes' (which would be bad)

The bit-string B contains at most n 1's among the m positions

By definition, $h(k)$ is equally likely to be any position between 1 and m

What is the probability of an error?

Assume we have already INSERTED n keys into the structure
Further, we have just called
$\operatorname{Member}(k)$ for some key k not in S
(which will check whether $B[h(k)]=1$)
We want to know the probability that the answer returned is 'yes' (which would be bad)

The bit-string B contains at most n 1's among the m positions

By definition, $h(k)$ is equally likely to be any position between 1 and m

What is the probability of an error?

Assume we have already INSERTED n keys into the structure
Further, we have just called
$\operatorname{Member}(k)$ for some key k not in S
(which will check whether $B[h(k)]=1$)
We want to know the probability that the answer returned is 'yes' (which would be bad)

The bit-string B contains at most n 1's among the m positions

By definition, $h(k)$ is equally likely to be any position between 1 and m

What is the probability of an error?

Assume we have already INSERTED n keys into the structure
Further, we have just called
$\operatorname{Member}(k)$ for some key k not in S
(which will check whether $B[h(k)]=1$)
We want to know the probability that the answer returned is 'yes' (which would be bad)

The bit-string B contains at most n 1's among the m positions

By definition, $h(k)$ is equally likely to be any position between 1 and m
Therefore the probability that $B[h(k)]=1$ is at most $\frac{n}{m}$

What is the probability of an error?

Assume we have already INSERTED n keys into the structure
Further, we have just called
$\operatorname{Member}(k)$ for some key k not in S
(which will check whether $B[h(k)]=1$)
We want to know the probability that the answer returned is 'yes' (which would be bad)

The bit-string B contains at most n 1's among the m positions

By definition, $h(k)$ is equally likely to be any position between 1 and m
Therefore the probability that $B[h(k)]=1$ is at most $\frac{n}{m}$
If we choose $m=100 n$ then we get a failure probability of at most 1%

Approach 2: build a hash table

We have developed a randomised data structure for storing a set S which supports two operations

Approach 2: build a hash table

We have developed a randomised data structure for storing a set S which supports two operations

The Insert (k) operation inserts the key k from U into S

Approach 2: build a hash table

We have developed a randomised data structure for storing a set S which supports two operations

The Insert (k) operation inserts the key k from U into S
(it never does this incorrectly)

Approach 2: build a hash table

We have developed a randomised data structure for storing a set S which supports two operations

The Insert (k) operation inserts the key k from U into S
(it never does this incorrectly)
Like in a bloom filter, the $\operatorname{MEMber}(k)$ operation

Approach 2: build a hash table

We have developed a randomised data structure for storing a set S which supports two operations

The Insert (k) operation inserts the key k from U into S
(it never does this incorrectly)
Like in a bloom filter, the $\operatorname{MEmber}(k)$ operation
always returns 'yes' if $k \in S$

Approach 2: build a hash table

We have developed a randomised data structure for storing a set S which supports two operations

The Insert (k) operation inserts the key k from U into S
(it never does this incorrectly)
Like in a bloom filter, the $\operatorname{Member}(k)$ operation
always returns 'yes' if $k \in S$
however, if k is not in S
there is a small chance (in fact 1\%) that it will still say 'yes'

Approach 2: build a hash table

We have developed a randomised data structure for storing a set S which supports two operations

The INSERT (k) operation inserts the key k from U into S
(it never does this incorrectly)
Like in a bloom filter, the $\operatorname{Member}(k)$ operation
always returns 'yes' if $k \in S$
however, if k is not in S
there is a small chance (in fact 1\%) that it will still say 'yes'

Both operations run in $O(1)$ time and the space used is 100 n bits

Approach 2: build a hash table

We have developed a randomised data structure for storing a set S which supports two operations

The Insert (k) operation inserts the key k from U into S
(it never does this incorrectly)
Like in a bloom filter, the $\operatorname{Member}(k)$ operation
always returns 'yes' if $k \in S$
however, if k is not in S
there is a small chance (in fact 1\%) that it will still say 'yes'

Both operations run in $O(1)$ time and the space used is 100 n bits when storing up to n keys

Approach 2: build a hash table

We have developed a randomised data structure for storing a set S which supports two operations

The Insert (k) operation inserts the key k from U into S
(it never does this incorrectly)
Like in a bloom filter, the $\operatorname{Member}(k)$ operation
always returns 'yes' if $k \in S$
however, if k is not in S
there is a small chance (in fact 1\%) that it will still say 'yes'

Both operations run in $O(1)$ time and the space used is $100 n$ bits when storing up to n keys
neither the space nor the failure probability depend on $|U|$

Approach 2: build a hash table

We have developed a randomised data structure for storing a set S which supports two operations

The Insert (k) operation inserts the key k from U into S
(it never does this incorrectly)
Like in a bloom filter, the $\operatorname{Member}(k)$ operation
always returns 'yes' if $k \in S$
however, if k is not in S
there is a small chance (in fact 1\%) that it will still say 'yes'

Both operations run in $O(1)$ time and the space used is $100 n$ bits when storing up to n keys
neither the space nor the failure probability depend on $|U|$
if we wanted a better probability, we could use more space

Approach 2: build a hash table

We have developed a randomised data structure for storing a set S which supports two operations

The Insert (k) operation inserts the key k from U into S
(it never does this incorrectly)
Like in a bloom filter, the $\operatorname{Member}(k)$ operation
always returns 'yes' if $k \in S$
however, if k is not in S
there is a small chance (in fact 1\%) that it will still say 'yes'

Both operations run in $O(1)$ time and the space used is $100 n$ bits when storing up to n keys
neither the space nor the failure probability depend on $|U|$
if we wanted a better probability, we could use more space
Why use a Bloom filter then?

Approach 2: build a hash table

We have developed a randomised data structure for storing a set S which supports two operations

The Insert (k) operation inserts the key k from U into S
(it never does this incorrectly)
Like in a bloom filter, the $\operatorname{Member}(k)$ operation
always returns 'yes' if $k \in S$
however, if k is not in S
there is a small chance (in fact 1\%) that it will still say 'yes'

Both operations run in $O(1)$ time and the space used is $100 n$ bits when storing up to n keys
neither the space nor the failure probability depend on $|U|$
if we wanted a better probability, we could use more space
Why use a Bloom filter then?

Approach 3: build a bloom filter

We still maintain a bit string B of some length $m<|U|$
Now we have r hash functions: $h_{1}, h_{2}, \ldots, h_{r}$
(we will choose r and m later)
Each hash function h_{i} maps a key k, to an integer $h_{i}(k)$ between 1 and m

Approach 3: build a bloom filter

We still maintain a bit string B of some length $m<|U|$
Now we have r hash functions: $h_{1}, h_{2}, \ldots, h_{r}$

Each hash function h_{i} maps a key k, to an integer $h_{i}(k)$ between 1 and m

Imagine that $m=4, r=2$ and

Example: \quad| | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |

$$
\begin{array}{cc}
h_{1}(\mathrm{AwVi} . \mathrm{com})=2 & h_{2}(\mathrm{AwVi} . \mathrm{com})=1 \\
h_{1}(\mathrm{ViSt} . \mathrm{com})=3 & h_{2}(\text { ViSt } . \mathrm{com})=2 \\
h_{1}(\mathrm{BBC} . \mathrm{com})=2 & h_{2}(\mathrm{BBC} . \mathrm{com})=4
\end{array}
$$

Approach 3: build a bloom filter

We still maintain a bit string B of some length $m<|U|$
Now we have r hash functions: $h_{1}, h_{2}, \ldots, h_{r}$

Each hash function h_{i} maps a key k, to an integer $h_{i}(k)$ between 1 and m
$\operatorname{Insert}(k)$ sets $B\left[h_{i}(k)\right]=1 \quad \operatorname{Member}(k)$ returns 'yes' if and only if for all i between 1 and r for all $i, B\left[h_{i}(k)\right]=1$

Imagine that $m=4, r=2$ and

Example: $\left.\quad$| | 2 | 2 | 3 |
| :--- | :--- | :--- | :--- | \right\rvert\,

$$
\begin{array}{cc}
h_{1}(\mathrm{AwVi} . \mathrm{com})=2 & h_{2}(\mathrm{AwVi} . \mathrm{com})=1 \\
h_{1}(\mathrm{ViSt} . \mathrm{com})=3 & h_{2}(\text { ViSt } . \mathrm{com})=2 \\
h_{1}(\mathrm{BBC} . \mathrm{com})=2 & h_{2}(\mathrm{BBC} . \mathrm{com})=4
\end{array}
$$

Approach 3: build a bloom filter

We still maintain a bit string B of some length $m<|U|$
Now we have r hash functions: $h_{1}, h_{2}, \ldots, h_{r}$

Each hash function h_{i} maps a key k, to an integer $h_{i}(k)$ between 1 and m
$\operatorname{Insert}(k)$ sets $B\left[h_{i}(k)\right]=1 \quad \operatorname{Member}(k)$ returns 'yes' if and only if for all i between 1 and r for all $i, B\left[h_{i}(k)\right]=1$

Imagine that $m=4, r=2$ and

Example: | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |

$$
\begin{array}{cc}
h_{1}(\mathrm{AwVi} . \mathrm{com})=2 & h_{2}(\mathrm{AwVi} . \mathrm{com})=1 \\
h_{1}(\text { ViSt } . \mathrm{com})=3 & h_{2}(\text { ViSt } . \mathrm{com})=2 \\
h_{1}(\mathrm{BBC} . \mathrm{com})=2 & h_{2}(\text { BBC } . \text { com })=4
\end{array}
$$

Approach 3: build a bloom filter

We still maintain a bit string B of some length $m<|U|$
Now we have r hash functions: $h_{1}, h_{2}, \ldots, h_{r}$

Each hash function h_{i} maps a key k, to an integer $h_{i}(k)$ between 1 and m
$\operatorname{Insert}(k)$ sets $B\left[h_{i}(k)\right]=1 \quad \operatorname{Member}(k)$ returns 'yes' if and only if for all i between 1 and r for all $i, B\left[h_{i}(k)\right]=1$

Imagine that $m=4, r=2$ and

Example: \begin{tabular}{c}

\multicolumn{3}{c}{| | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 0 |}

Insert(AwVi. com)
\end{tabular}

$$
\begin{array}{cc}
h_{1}(\mathrm{AwVi} . \mathrm{com})=2 & h_{2}(\mathrm{AwVi} . \mathrm{com})=1 \\
h_{1}(\text { ViSt } . \mathrm{com})=3 & h_{2}(\text { ViSt } . \mathrm{com})=2 \\
h_{1}(\mathrm{BBC} . \mathrm{com})=2 & h_{2}(\text { BBC } . \text { com })=4
\end{array}
$$

Approach 3: build a bloom filter

We still maintain a bit string B of some length $m<|U|$
Now we have r hash functions: $h_{1}, h_{2}, \ldots, h_{r}$

Each hash function h_{i} maps a key k, to an integer $h_{i}(k)$ between 1 and m
$\operatorname{Insert}(k)$ sets $B\left[h_{i}(k)\right]=1 \quad \operatorname{Member}(k)$ returns 'yes' if and only if for all i between 1 and r for all $i, B\left[h_{i}(k)\right]=1$

Imagine that $m=4, r=2$ and

Example: | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 0 |

$$
\begin{array}{cc}
h_{1}(\mathrm{AwVi} . \mathrm{com})=2 & h_{2}(\mathrm{AwVi} . \mathrm{com})=1 \\
h_{1}(\mathrm{ViSt} . \mathrm{com})=3 & h_{2}(\text { ViSt } . \mathrm{com})=2 \\
h_{1}(\mathrm{BBC} . \mathrm{com})=2 & h_{2}(\mathrm{BBC} . \mathrm{com})=4
\end{array}
$$

Approach 3: build a bloom filter

We still maintain a bit string B of some length $m<|U|$
Now we have r hash functions: $h_{1}, h_{2}, \ldots, h_{r}$

Each hash function h_{i} maps a key k, to an integer $h_{i}(k)$ between 1 and m
$\operatorname{Insert}(k)$ sets $B\left[h_{i}(k)\right]=1 \quad \operatorname{Member}(k)$ returns 'yes' if and only if for all i between 1 and r for all $i, B\left[h_{i}(k)\right]=1$

Imagine that $m=4, r=2$ and

Example: | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 |

$$
\begin{array}{cc}
h_{1}(\mathrm{AwVi} . \mathrm{com})=2 & h_{2}(\mathrm{AwVi} . \mathrm{com})=1 \\
h_{1}(\text { ViSt } . \mathrm{com})=3 & h_{2}(\text { ViSt } . \mathrm{com})=2 \\
h_{1}(\mathrm{BBC} . \mathrm{com})=2 & h_{2}(\mathrm{BBC} . \mathrm{com})=4
\end{array}
$$

Approach 3: build a bloom filter

We still maintain a bit string B of some length $m<|U|$
Now we have r hash functions: $h_{1}, h_{2}, \ldots, h_{r}$

Each hash function h_{i} maps a key k, to an integer $h_{i}(k)$ between 1 and m
$\operatorname{Insert}(k)$ sets $B\left[h_{i}(k)\right]=1 \quad \operatorname{Member}(k)$ returns 'yes' if and only if for all i between 1 and r for all $i, B\left[h_{i}(k)\right]=1$

Imagine that $m=4, r=2$ and

Example:

$$
\begin{array}{cc}
h_{1}(\mathrm{AwVi} . \mathrm{com})=2 & h_{2}(\mathrm{AwVi} . \mathrm{com})=1 \\
h_{1}(\text { ViSt } . \mathrm{com})=3 & h_{2}(\text { ViSt } . \mathrm{com})=2 \\
h_{1}(\mathrm{BBC} . \mathrm{com})=2 & h_{2}(\mathrm{BBC} . \mathrm{com})=4
\end{array}
$$

Approach 3: build a bloom filter

We still maintain a bit string B of some length $m<|U|$
Now we have r hash functions: $h_{1}, h_{2}, \ldots, h_{r}$

Each hash function h_{i} maps a key k, to an integer $h_{i}(k)$ between 1 and m
$\operatorname{Insert}(k)$ sets $B\left[h_{i}(k)\right]=1 \quad \operatorname{Member}(k)$ returns 'yes' if and only if for all i between 1 and r for all $i, B\left[h_{i}(k)\right]=1$

Imagine that $m=4, r=2$ and

Example:

$$
\begin{array}{cc}
h_{1}(\mathrm{AwVi} . \mathrm{com})=2 & h_{2}(\mathrm{AwVi} . \mathrm{com})=1 \\
h_{1}(\text { ViSt } . \mathrm{com})=3 & h_{2}(\text { ViSt } . \mathrm{com})=2 \\
h_{1}(\mathrm{BBC} . \mathrm{com})=2 & h_{2}(\mathrm{BBC} . \mathrm{com})=4
\end{array}
$$

Much better!

Approach 3: build a bloom filter

We still maintain a bit string B of some length $m<|U|$
Now we have r hash functions: $h_{1}, h_{2}, \ldots, h_{r}$

Each hash function h_{i} maps a key k, to an integer $h_{i}(k)$ between 1 and m
$\operatorname{Insert}(k)$ sets $B\left[h_{i}(k)\right]=1 \quad \operatorname{Member}(k)$ returns 'yes' if and only if for all i between 1 and r

Imagine that $m=4, r=2$ and
Example:

Approach 3: build a bloom filter

We still maintain a bit string B of some length $m<|U|$
Now we have r hash functions: $h_{1}, h_{2}, \ldots, h_{r}$

Each hash function h_{i} maps a key k, to an integer $h_{i}(k)$ between 1 and m
$\operatorname{Insert}(k)$ sets $B\left[h_{i}(k)\right]=1 \quad \operatorname{Member}(k)$ returns 'yes' if and only if for all i between 1 and $r \quad$ for all $i, B\left[h_{i}(k)\right]=1$

For every key $k \in U$,
the value of each $h_{i}(k)$ is chosen independently and uniformly at random:
that is, the probability that $h_{i}(k)=j$ is $\frac{1}{m}$ for all j between 1 and m
(each position is equally likely)

Approach 3: build a bloom filter

We still maintain a bit string B of some length $m<|U|$
Now we have r hash functions: $h_{1}, h_{2}, \ldots, h_{r}$

Each hash function h_{i} maps a key k, to an integer $h_{i}(k)$ between 1 and m
$\operatorname{Insert}(k)$ sets $B\left[h_{i}(k)\right]=1 \quad \operatorname{Member}(k)$ returns 'yes' if and only if for all i between 1 and $r \quad$ for all $i, B\left[h_{i}(k)\right]=1$

For every key $k \in U$,
the value of each $h_{i}(k)$ is chosen independently and uniformly at random:
that is, the probability that $h_{i}(k)=j$ is $\frac{1}{m}$ for all j between 1 and m
(each position is equally likely)

What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter
Further, we have just called $\operatorname{Member}(k)$ for some key k not in S
this will check whether $B\left[h_{i}(k)\right]=1$ for all $j=1,2, \ldots r$

What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter
Further, we have just called $\operatorname{Member}(k)$ for some key k not in S
this will check whether $B\left[h_{i}(k)\right]=1$ for all $j=1,2, \ldots r$
This is the same as checking whether r randomly chosen bits of B all equal 1

What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter
Further, we have just called $\operatorname{Member}(k)$ for some key k not in S
this will check whether $B\left[h_{i}(k)\right]=1$ for all $j=1,2, \ldots r$
This is the same as checking whether r randomly chosen bits of B all equal 1
We will now show that there is only a small probability of this happening

What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter
Further, we have just called $\operatorname{Member}(k)$ for some key k not in S this will check whether $B\left[h_{i}(k)\right]=1$ for all $j=1,2, \ldots r$

This is the same as checking whether r randomly chosen bits of B all equal 1
We will now show that there is only a small probability of this happening

As there are at most n keys in the filter, at most $n r$ bits of B are set to 1

What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter
Further, we have just called $\operatorname{Member}(k)$ for some key k not in S this will check whether $B\left[h_{i}(k)\right]=1$ for all $j=1,2, \ldots r$

This is the same as checking whether randomly chosen bits of B all equal 1
We will now show that there is only a small probability of this happening

As there are at most n keys in the filter, at most $n r$ bits of B are set to 1
(each INSERT sets at mostr bits to 1)

What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter
Further, we have just called $\operatorname{Member}(k)$ for some key k not in S this will check whether $B\left[h_{i}(k)\right]=1$ for all $j=1,2, \ldots r$

This is the same as checking whether randomly chosen bits of B all equal 1
We will now show that there is only a small probability of this happening

As there are at most n keys in the filter, at most $n r$ bits of B are set to 1
(each INSERT sets at mostr bits to 1)

What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter
Further, we have just called $\operatorname{Member}(k)$ for some key k not in S this will check whether $B\left[h_{i}(k)\right]=1$ for all $j=1,2, \ldots r$

This is the same as checking whether r randomly chosen bits of B all equal 1
We will now show that there is only a small probability of this happening

As there are at most n keys in the filter, at most $n r$ bits of B are set to 1
(each INSERT sets at mostr bits to 1)

So the fraction of bits set to 1 is at most $\frac{n r}{m}$

What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter
Further, we have just called $\operatorname{Member}(k)$ for some key k not in S this will check whether $B\left[h_{i}(k)\right]=1$ for all $j=1,2, \ldots r$

This is the same as checking whether randomly chosen bits of B all equal 1
We will now show that there is only a small probability of this happening

As there are at most n keys in the filter, at most $n r$ bits of B are set to 1
(each INSERT sets at mostr bits to 1)

So the fraction of bits set to 1 is at most $\frac{n r}{m}$
so the probability that a randomly chosen bit is 1 is at most $\frac{n r}{m}$

What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter
Further, we have just called $\operatorname{Member}(k)$ for some key k not in S this will check whether $B\left[h_{i}(k)\right]=1$ for all $j=1,2, \ldots r$

This is the same as checking whether randomly chosen bits of B all equal 1
We will now show that there is only a small probability of this happening

As there are at most n keys in the filter, at most $n r$ bits of B are set to 1
(each INSERT sets at mostr bits to 1)

So the fraction of bits set to 1 is at most $\frac{n r}{m}$

so the probability that a randomly chosen bit is 1 is at most $\frac{n r}{m}$

What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter
Further, we have just called $\operatorname{Member}(k)$ for some key k not in S this will check whether $B\left[h_{i}(k)\right]=1$ for all $j=1,2, \ldots r$

This is the same as checking whether r randomly chosen bits of B all equal 1
We will now show that there is only a small probability of this happening

As there are at most n keys in the filter, at most $n r$ bits of B are set to 1
(each INSERT sets at mostr bits to 1)

So the fraction of bits set to 1 is at most $\frac{n r}{m}$

so the probability that a randomly chosen bit is 1 is at most $\frac{n r}{m}$
so the probability that r randomly chosen bits all equal 1 is at most $\left(\frac{n r}{m}\right)^{r}$

What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter
Further, we have just called $\operatorname{Member}(k)$ for some key k not in S this will check whether $B\left[h_{i}(k)\right]=1$ for all $j=1,2, \ldots r$

This is the same as checking whether randomly chosen bits of B all equal 1
We will now show that there is only a small probability of this happening

As there are at most n keys in the filter, at most $n r$ bits of B are set to 1
(each INSERT sets at mostr bits to 1)

So the fraction of bits set to 1 is at most $\frac{n r}{m}$

so the probability that a randomly chosen bit is 1 is at most $\frac{n r}{m}$
so the probability that r randomly chosen bits all equal 1 is at most $\left(\frac{n r}{m}\right)^{r}$

What is the probability of a collision?

We now choose r to minimise this probability...

What is the probability of a collision?

We now choose r to minimise this probability...
By differentiating, we can find that $\left(\frac{n r}{m}\right)^{r}$ is minimised by

$$
\text { letting } r=m /(n e) \text { where } e=2.7813 \ldots
$$

What is the probability of a collision?

We now choose r to minimise this probability...
By differentiating, we can find that $\left(\frac{n r}{m}\right)^{r}$ is minimised by

$$
\text { letting } r=m /(n e) \text { where } e=2.7813 \ldots
$$

If we plug this in we get that,
the probability of failure, is at most

$$
\left(\frac{1}{e}\right)^{\frac{m}{n e}} \approx(0.69)^{\frac{m}{n}}
$$

What is the probability of a collision?

We now choose r to minimise this probability...
By differentiating, we can find that $\left(\frac{n r}{m}\right)^{r}$ is minimised by

$$
\text { letting } r=m /(n e) \text { where } e=2.7813 \ldots
$$

If we plug this in we get that,
the probability of failure, is at most $\quad\left(\frac{1}{e}\right)^{\frac{m}{n e}} \approx(0.69)^{\frac{m}{n}}$

In particular to achieve a 1\% failure probability,

$$
\text { we can set } m \approx 12.52 n \text { bits }
$$

What is the probability of a collision?

We now choose r to minimise this probability...
By differentiating, we can find that $\left(\frac{n r}{m}\right)^{r}$ is minimised by

$$
\text { letting } r=m /(n e) \text { where } e=2.7813 \ldots
$$

If we plug this in we get that,
the probability of failure, is at most $\quad\left(\frac{1}{e}\right)^{\frac{m}{n e}} \approx(0.69)^{\frac{m}{n}}$

In particular to achieve a 1\% failure probability,

$$
\text { we can set } m \approx 12.52 n \text { bits }
$$

neither the space nor the failure probability depend on $|U|$

What is the probability of a collision?

We now choose r to minimise this probability...
By differentiating, we can find that $\left(\frac{n r}{m}\right)^{r}$ is minimised by

$$
\text { letting } r=m /(n e) \text { where } e=2.7813 \ldots
$$

If we plug this in we get that,
the probability of failure, is at most $\quad\left(\frac{1}{e}\right)^{\frac{m}{n e}} \approx(0.69)^{\frac{m}{n}}$

In particular to achieve a 1\% failure probability,

$$
\text { we can set } m \approx 12.52 n \text { bits }
$$

neither the space nor the failure probability depend on $|U|$
if we wanted a better probability, we could use more space

What is the probability of a collision?

We now choose r to minimise this probability...
By differentiating, we can find that $\left(\frac{n r}{m}\right)^{r}$ is minimised by

$$
\text { letting } r=m /(n e) \text { where } e=2.7813 \ldots
$$

If we plug this in we get that,
the probability of failure, is at most $\quad\left(\frac{1}{e}\right)^{\frac{m}{n e}} \approx(0.69)^{\frac{m}{n}}$

In particular to achieve a 1\% failure probability,

$$
\text { we can set } m \approx 12.52 n \text { bits }
$$

neither the space nor the failure probability depend on $|U|$
if we wanted a better probability, we could use more space

This is much better than the 100 n bits we needed with a single hash function to achieve the same probability

Bloom filter summary

A Bloom filter is a randomised data structure for storing a set S
which supports two operations, each in $O(1)$ time

The Insert (k) operation inserts the key k from U into S
(it never does this incorrectly)
In a bloom filter, the $\operatorname{Member}(k)$ operation

$$
\text { always returns 'yes' if } k \in S
$$

however, if k is not in S
there is a small chance, ϵ, that it will still say 'yes'

We have seen that if $\epsilon=0.01(1 \%)$ the the space used is $m \approx 12.52 n$ bits when storing up to n keys

By impoving the analysis, one can show that only $\approx 1.44 \log _{2}(1 / \epsilon)$ bits are needed $(\approx 9.57 n$ bits when $\epsilon=0.01)$

Practical hash functions

We made the unrealistic assumption that each hash function h_{i} maps a key k to a uniformly random integer between 1 and m.

Practical hash functions

We made the unrealistic assumption that each hash function h_{i} maps a key k to a uniformly random integer between 1 and m.

In practice, we pick each hash function h_{i} randomly from a fixed set of hash functions.

Practical hash functions

We made the unrealistic assumption that each hash function h_{i} maps a key k to a uniformly random integer between 1 and m.

In practice, we pick each hash function h_{i} randomly from a fixed set of hash functions.

One way of doing this for integer keys is the following: (see CLRS 11.3.3)
For each i :

1. Pick a prime number $p>|U|$.
2. Pick random integers $a \in\{1, \ldots, p-1\}, b \in\{0, \ldots, p-1\}$.
3. Let h_{i} be defined by $h_{i}(k)=1+((a k+b) \bmod p) \bmod m$.

Practical hash functions

We made the unrealistic assumption that each hash function h_{i} maps a key k to a uniformly random integer between 1 and m.

In practice, we pick each hash function h_{i} randomly from a fixed set of hash functions.

One way of doing this for integer keys is the following: (see CLRS 11.3.3)

For each i :

1. Pick a prime number $p>|U|$.
2. Pick random integers $a \in\{1, \ldots, p-1\}, b \in\{0, \ldots, p-1\}$.
3. Let h_{i} be defined by $h_{i}(k)=1+((a k+b) \bmod p) \bmod m$.

Some number theory can be used to prove that this set of hash functions is "pseudorandom" in some sense; however, technically they are not "random enough" for our analysis above to go through.

Practical hash functions

We made the unrealistic assumption that each hash function h_{i} maps a key k to a uniformly random integer between 1 and m.

In practice, we pick each hash function h_{i} randomly from a fixed set of hash functions.

One way of doing this for integer keys is the following: (see CLRS 11.3.3)

For each i :

1. Pick a prime number $p>|U|$.
2. Pick random integers $a \in\{1, \ldots, p-1\}, b \in\{0, \ldots, p-1\}$.
3. Let h_{i} be defined by $h_{i}(k)=1+((a k+b) \bmod p) \bmod m$.

Some number theory can be used to prove that this set of hash functions is "pseudorandom" in some sense; however, technically they are not "random enough" for our analysis above to go through.

Nevertheless, in practice hash functions like this are very effective.

Bloom filter summary

A Bloom filter is a randomised data structure for storing a set S
which supports two operations, each in $O(1)$ time

The Insert (k) operation inserts the key k from U into S
(it never does this incorrectly)
In a bloom filter, the $\operatorname{Member}(k)$ operation

$$
\text { always returns 'yes' if } k \in S
$$

however, if k is not in S
there is a small chance, ϵ, that it will still say 'yes'

We have seen that if $\epsilon=0.01(1 \%)$ the the space used is $m \approx 12.52 n$ bits when storing up to n keys

By impoving the analysis, one can show that only $\approx 1.44 \log _{2}(1 / \epsilon)$ bits are needed $(\approx 9.57 n$ bits when $\epsilon=0.01)$

