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Introduction

Our motivation comes from applications where
the size of the universe U is much much larger than n

INSERT(k) - inserts the key k from U into S

MEMBER(k) - output ‘yes’ if k ∈ S

In this lecture we are interested in space efficient data structures for storing a set S
which support only two, basic operations:

and ‘no’ otherwise

U is the universe, containing
all possible keys

Let n be an upper bound on the
number of keys that will ever be in S
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Our motivation comes from applications where
the size of the universe U is much much larger than n

INSERT(k) - inserts the key k from U into S

MEMBER(k) - output ‘yes’ if k ∈ S

In this lecture we are interested in space efficient data structures for storing a set S
which support only two, basic operations:

and ‘no’ otherwise

U is the universe, containing
all possible keys

Let n be an upper bound on the
number of keys that will ever be in S

Important: You cannot ask “which keys are in S?”, only “is this key in S?”

UU
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Whenever a new unsafe URL is discovered it is inserted into the data structure

Whenever we want to visit a URL we check the data structure.

INSERT(www.AwfulVirus.com)

INSERT(www.VirusStore.com)

MEMBER(www.BBC.co.uk) - returns ‘no’

MEMBER(www.VirusStore.com) - returns ‘yes’

INSERT(www.CleanUpPC.com)

MEMBER(www.BBC.co.uk) - returns ‘yes’

?!

a Bloom filter is a randomised data structure - sometimes it gets the answer wrong
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Bloom filters

In a bloom filter, the MEMBER(k) operation

A Bloom filter is a randomised data structure for storing a set S

Both operations run inO(1) time and the space used is very very good

which supports two operations

always returns ‘yes’ if k ∈ S

however, if k is not in S

there is a small chance (say 1%) that it will still say ‘yes’

Why use a Bloom filter then?

It will useO(n) bits of space to store up to n keys

- the exact number of bits will depend on the failure probability
we’ll come back to this at the end

The INSERT(k) operation inserts the key k from U into S
(it never does this incorrectly)
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Approach 1: build an array

Before discussing Bloom filters, lets consider a naive approach using an array. . .

For simplicity, let us think of the universe U as containing numbers 1, 2, 3 . . . |U |.

We could maintain a bit stringB

Example:

here |U | = 10 and S contains 3,6 and 8

While the operations takeO(1) time, this array is |U | bits long!

It certainly isn’t suitable for the application we have seen

0 1 1 10 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10

B

whereB[k] = 1 if k ∈ S andB[k] = 0 otherwise

|U |
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Approach 2: build a hash table

The problem with hashing is that ifm < |U | then

there will be some keys that hash to the same positions
(these are called collisions)

If we call MEMBER(k) for some key k not in S

but there is a key k′ ∈ S with h(k) = h(k′)
we will incorrectly output ‘yes’

To make sure that the probability of an error is low for every operation sequence,

we pick the hash function h at random

For every key k ∈ U , the value of h(k) is chosen independently and uniformly at random:

that is, the probability that h(k) = j is 1
m for all j between 1 andm

(each position is equally likely)

Important: h is chosen before any operations happen and never changes
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What is the probability of an error?

Assume we have already INSERTED n keys into the structure

Further, we have just called

MEMBER(k) for some key k not in S

We want to know the probability that the answer returned is ‘yes’ (which would be bad)

The bit-stringB contains at most n 1’s among them positions

h(k)

B 1 1 1 1 1 111

m

By definition, h(k) is equally likely to be any position between 1 andm

Therefore the probability thatB[h(k)] = 1 is at most n
m

(which will check whetherB[h(k)] = 1)

If we choosem = 100n then we get a failure probability of at most 1%
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Both operations run inO(1) time and the space used is 100n bits

which supports two operations

always returns ‘yes’ if k ∈ S

however, if k is not in S

there is a small chance (in fact 1%) that it will still say ‘yes’

Why use a Bloom filter then?

The INSERT(k) operation inserts the key k from U into S
(it never does this incorrectly)

neither the space nor the failure probability depend on |U |

when storing up to n keys
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for all i between 1 and r

Each hash function hi maps a key k, to an integer hi(k) between 1 andm

For every key k ∈ U ,

that is, the probability that hi(k) = j is 1
m for all j between 1 andm
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but what is the probability of a wrong answer?

the value of each hi(k) is chosen independently and uniformly at random:



What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter

Further, we have just called MEMBER(k) for some key k not in S

this will check whetherB[hi(k)] = 1 for all j = 1, 2, . . . r



What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter

Further, we have just called MEMBER(k) for some key k not in S

this will check whetherB[hi(k)] = 1 for all j = 1, 2, . . . r

This is the same as checking whether r randomly chosen bits ofB all equal 1



What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter

Further, we have just called MEMBER(k) for some key k not in S

this will check whetherB[hi(k)] = 1 for all j = 1, 2, . . . r

We will now show that there is only a small probability of this happening

This is the same as checking whether r randomly chosen bits ofB all equal 1



What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter

Further, we have just called MEMBER(k) for some key k not in S

this will check whetherB[hi(k)] = 1 for all j = 1, 2, . . . r

We will now show that there is only a small probability of this happening

As there are at most n keys in the filter,

at most nr bits ofB are set to 1

This is the same as checking whether r randomly chosen bits ofB all equal 1



What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter

Further, we have just called MEMBER(k) for some key k not in S

this will check whetherB[hi(k)] = 1 for all j = 1, 2, . . . r

We will now show that there is only a small probability of this happening

As there are at most n keys in the filter,

at most nr bits ofB are set to 1

(each INSERT sets at most r bits to 1)

This is the same as checking whether r randomly chosen bits ofB all equal 1



What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter

Further, we have just called MEMBER(k) for some key k not in S

this will check whetherB[hi(k)] = 1 for all j = 1, 2, . . . r

We will now show that there is only a small probability of this happening

As there are at most n keys in the filter,

at most nr bits ofB are set to 1

(each INSERT sets at most r bits to 1)

This is the same as checking whether r randomly chosen bits ofB all equal 1

B 1 1 1 1 1 111
m



What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter

Further, we have just called MEMBER(k) for some key k not in S

this will check whetherB[hi(k)] = 1 for all j = 1, 2, . . . r

We will now show that there is only a small probability of this happening

As there are at most n keys in the filter,

at most nr bits ofB are set to 1

(each INSERT sets at most r bits to 1)

So the fraction of bits set to 1 is at most
nr
m

This is the same as checking whether r randomly chosen bits ofB all equal 1

B 1 1 1 1 1 111
m



What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter

Further, we have just called MEMBER(k) for some key k not in S

this will check whetherB[hi(k)] = 1 for all j = 1, 2, . . . r

We will now show that there is only a small probability of this happening

As there are at most n keys in the filter,

at most nr bits ofB are set to 1

(each INSERT sets at most r bits to 1)

So the fraction of bits set to 1 is at most
nr
m

so the probability that a randomly chosen bit is 1 is at most
nr
m

This is the same as checking whether r randomly chosen bits ofB all equal 1

B 1 1 1 1 1 111
m



What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter

Further, we have just called MEMBER(k) for some key k not in S

this will check whetherB[hi(k)] = 1 for all j = 1, 2, . . . r

We will now show that there is only a small probability of this happening

As there are at most n keys in the filter,

at most nr bits ofB are set to 1

(each INSERT sets at most r bits to 1)

So the fraction of bits set to 1 is at most
nr
m

so the probability that a randomly chosen bit is 1 is at most
nr
m

This is the same as checking whether r randomly chosen bits ofB all equal 1

B 1 1 1 1 1 111
m



What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter

Further, we have just called MEMBER(k) for some key k not in S

this will check whetherB[hi(k)] = 1 for all j = 1, 2, . . . r

We will now show that there is only a small probability of this happening

As there are at most n keys in the filter,

at most nr bits ofB are set to 1

(each INSERT sets at most r bits to 1)

So the fraction of bits set to 1 is at most
nr
m

so the probability that a randomly chosen bit is 1 is at most
nr
m

so the probability that r randomly chosen bits all equal 1 is at most
(
nr
m

)r

This is the same as checking whether r randomly chosen bits ofB all equal 1

B 1 1 1 1 1 111
m



What is the probability of an error?

Assume we have already INSERTED n keys into the bloom filter

Further, we have just called MEMBER(k) for some key k not in S

this will check whetherB[hi(k)] = 1 for all j = 1, 2, . . . r

We will now show that there is only a small probability of this happening

As there are at most n keys in the filter,

at most nr bits ofB are set to 1

(each INSERT sets at most r bits to 1)

So the fraction of bits set to 1 is at most
nr
m

so the probability that a randomly chosen bit is 1 is at most
nr
m

so the probability that r randomly chosen bits all equal 1 is at most
(
nr
m

)r

This is the same as checking whether r randomly chosen bits ofB all equal 1

B 1 1 1 1 1 111
m

(do this independently r times)



What is the probability of a collision?

We now choose r to minimise this probability. . .



What is the probability of a collision?

We now choose r to minimise this probability. . .

By differentiating, we can find that
(
nr
m

)r
letting r = m/(ne) where e = 2.7813 . . .

is minimised by



What is the probability of a collision?

We now choose r to minimise this probability. . .

By differentiating, we can find that
(
nr
m

)r
letting r = m/(ne) where e = 2.7813 . . .

If we plug this in we get that, (
1
e

) m
ne ≈ (0.69)

m
nthe probability of failure, is at most

is minimised by



What is the probability of a collision?

We now choose r to minimise this probability. . .

By differentiating, we can find that
(
nr
m

)r
letting r = m/(ne) where e = 2.7813 . . .

If we plug this in we get that, (
1
e

) m
ne ≈ (0.69)

m
nthe probability of failure, is at most

In particular to achieve a 1% failure probability,

we can setm ≈ 12.52n bits

is minimised by



What is the probability of a collision?

We now choose r to minimise this probability. . .

By differentiating, we can find that
(
nr
m

)r
letting r = m/(ne) where e = 2.7813 . . .

If we plug this in we get that, (
1
e

) m
ne ≈ (0.69)

m
nthe probability of failure, is at most

In particular to achieve a 1% failure probability,

we can setm ≈ 12.52n bits

is minimised by

neither the space nor the failure probability depend on |U |



What is the probability of a collision?

We now choose r to minimise this probability. . .

By differentiating, we can find that
(
nr
m

)r
letting r = m/(ne) where e = 2.7813 . . .

If we plug this in we get that, (
1
e

) m
ne ≈ (0.69)

m
nthe probability of failure, is at most

In particular to achieve a 1% failure probability,

we can setm ≈ 12.52n bits

is minimised by

neither the space nor the failure probability depend on |U |
if we wanted a better probability, we could use more space



What is the probability of a collision?

We now choose r to minimise this probability. . .

By differentiating, we can find that
(
nr
m

)r
letting r = m/(ne) where e = 2.7813 . . .

If we plug this in we get that, (
1
e

) m
ne ≈ (0.69)

m
nthe probability of failure, is at most

In particular to achieve a 1% failure probability,

we can setm ≈ 12.52n bits

This is much better than the 100n bits we needed with a single hash function

to achieve the same probability

is minimised by

neither the space nor the failure probability depend on |U |
if we wanted a better probability, we could use more space



Bloom filter summary

In a bloom filter, the MEMBER(k) operation

A Bloom filter is a randomised data structure for storing a set S
which supports two operations, each inO(1) time

always returns ‘yes’ if k ∈ S

however, if k is not in S

there is a small chance, ε, that it will still say ‘yes’

when storing up to n keys

The INSERT(k) operation inserts the key k from U into S
(it never does this incorrectly)

We have seen that if ε = 0.01 (1%) the the space used ism ≈ 12.52n bits

By impoving the analysis, one can show that only≈ 1.44 log2(1/ε) bits are needed

(≈ 9.57n bits when ε = 0.01)
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3. Let hi be defined by hi(k) = 1 + ((ak + b) mod p) mod m.

We made the unrealistic assumption that each hash function hi maps a key k to a

uniformly random integer between 1 andm.

One way of doing this for integer keys is the following: (see CLRS 11.3.3)

Some number theory can be used to prove that this set of hash functions is “pseudorandom” in some

sense; however, technically they are not “random enough” for our analysis above to go through.

Nevertheless, in practice hash functions like this are very effective.

In practice, we pick each hash function hi randomly from a fixed set of hash functions.

For each i:
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