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Approximation Algorithms Recap

An algorithmA is an α-approximation algorithm for problem P if,

◦A runs in polynomial time

◦A always outputs a solution with value s

Here P is an optimisation problem with optimal solution of value Opt

• If P is a maximisation problem, Opt
α 6 s 6 Opt

within an α factor of Opt

• If P is a minimisation problem, Opt 6 s 6 α ·Opt

We have seen

a 3/2-approximation algorithm for Bin Packing
(and a faster 2-approximation)
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Scheduling conclusions

Theorem The LPT algorithm is a 3/2-approximation algorithm

which runs inO(n logn) time

Theorem The greedy algorithm is a 2-approximation algorithm

which runs inO(n logm) time and it’s online

In fact, LPT is a 4/3-approximation algorithm (using better analysis)

m machines

n jobs
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The distance between points si, sj is
√

(xi − xj)2 + (yi − yj)2

Goal Minimise the largest distance from any site to the closest center
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(in general it’s NP-hard)
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A Greedy approximation

but is it any good?
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