
Advanced Algorithms – COMS31900

Approximation algorithms part two

more constant factor approximations

Raphaël Clifford

Slides by Benjamin Sach



Approximation Algorithms Recap

An algorithmA is an α-approximation algorithm for problem P if,

◦A runs in polynomial time

◦A always outputs a solution with value s

Here P is an optimisation problem with optimal solution of value Opt

• If P is a maximisation problem, Opt
α 6 s 6 Opt

within an α factor of Opt

• If P is a minimisation problem, Opt 6 s 6 α ·Opt

We have seen

a 3/2-approximation algorithm for Bin Packing
(and a faster 2-approximation)



Scheduling Jobs on Parallel Machines

1

2

3

4

5

m identical

machines

n jobs

time taken

Goal: minimise the (wall-clock) time

taken to process all jobs



Scheduling Jobs on Parallel Machines

1

2

3

4

5

m identical

machines

n jobs

time taken

Goal: minimise the (wall-clock) time

taken to process all jobs

(it’s NP-hard)



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Goal: minimise the (wall-clock) time

taken to process all jobs

wall-clock time (also called makespan)



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Goal: minimise the (wall-clock) time

taken to process all jobs

wall-clock time (also called makespan)

• Job j takes tj time units



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Goal: minimise the (wall-clock) time

taken to process all jobs

wall-clock time (also called makespan)

• We say that j ∈ J(i) iff job j is assigned to machine i

• Job j takes tj time units



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Goal: minimise the (wall-clock) time

taken to process all jobs

wall-clock time (also called makespan)

• We say that j ∈ J(i) iff job j is assigned to machine i

• The load of machine i is Li =
∑
j∈J(i) tj

• Job j takes tj time units



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Goal: minimise the (wall-clock) time

taken to process all jobs

wall-clock time (also called makespan)

• We say that j ∈ J(i) iff job j is assigned to machine i

• The load of machine i is Li =
∑
j∈J(i) tj

• Job j takes tj time units

L2

L3

L1



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Goal: minimise the (wall-clock) time

taken to process all jobs

wall-clock time (also called makespan)

• We say that j ∈ J(i) iff job j is assigned to machine i

• The load of machine i is Li =
∑
j∈J(i) tj

• Job j takes tj time units

• So the wall-clock time is maxi Li (which we want to minimise)

L2

L3

L1



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Goal: minimise the (wall-clock) time

taken to process all jobs

wall-clock time (also called makespan)

• We say that j ∈ J(i) iff job j is assigned to machine i

• The load of machine i is Li =
∑
j∈J(i) tj

• Job j takes tj time units

• So the wall-clock time is maxi Li (which we want to minimise)

L2

L3

L1L1



Scheduling Jobs on Parallel Machines

1

2

3

4

5



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Algorithm: Put job j on the machine i with smallest (current) load



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Algorithm: Put job j on the machine i with smallest (current) load



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Algorithm: Put job j on the machine i with smallest (current) load



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Algorithm: Put job j on the machine i with smallest (current) load



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Algorithm: Put job j on the machine i with smallest (current) load



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Algorithm: Put job j on the machine i with smallest (current) load



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Algorithm: Put job j on the machine i with smallest (current) load



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Algorithm: Put job j on the machine i with smallest (current) load



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Algorithm: Put job j on the machine i with smallest (current) load



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Algorithm: Put job j on the machine i with smallest (current) load



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Algorithm: Put job j on the machine i with smallest (current) load



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Algorithm: Put job j on the machine i with smallest (current) load



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Algorithm: Put job j on the machine i with smallest (current) load



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Algorithm: Put job j on the machine i with smallest (current) load



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Algorithm: Put job j on the machine i with smallest (current) load



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Algorithm: Put job j on the machine i with smallest (current) load



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Algorithm: Put job j on the machine i with smallest (current) load

How long does it take to compute this schedule?



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Algorithm: Put job j on the machine i with smallest (current) load

How long does it take to compute this schedule?

m machines

n jobs



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Algorithm: Put job j on the machine i with smallest (current) load

How long does it take to compute this schedule?

O(nm) time naively,O(n logm) time using a priority queue

m machines

n jobs



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Algorithm: Put job j on the machine i with smallest (current) load

How long does it take to compute this schedule?

O(nm) time naively,O(n logm) time using a priority queue

(it’s also an online solution)

m machines

n jobs



Scheduling Jobs on Parallel Machines

1

2

3

4

5

Algorithm: Put job j on the machine i with smallest (current) load

How long does it take to compute this schedule?

O(nm) time naively,O(n logm) time using a priority queue

How good is it?

(it’s also an online solution)

m machines

n jobs



The greedy approximation

Theorem The greedy algorithm given is a 2-approximation algorithm

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Job j takes tj
time units

Li is the load of

machine i

m machines

n jobs



The greedy approximation

• Before we prove this, we prove two useful facts,

Theorem The greedy algorithm given is a 2-approximation algorithm

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Job j takes tj
time units

Li is the load of

machine i

m machines

n jobs



The greedy approximation

• Before we prove this, we prove two useful facts,

Fact Opt > maxj tj

Theorem The greedy algorithm given is a 2-approximation algorithm

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Job j takes tj
time units

Li is the load of

machine i

m machines

n jobs



The greedy approximation

• Before we prove this, we prove two useful facts,

Fact Opt > maxj tj

◦ Some machine must process the largest job

Theorem The greedy algorithm given is a 2-approximation algorithm

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Job j takes tj
time units

Li is the load of

machine i

m machines

n jobs



The greedy approximation

• Before we prove this, we prove two useful facts,

Fact Opt > maxj tj

Fact Opt >

∑
j tj
m

◦ Some machine must process the largest job

Theorem The greedy algorithm given is a 2-approximation algorithm

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Job j takes tj
time units

Li is the load of

machine i

m machines

n jobs



The greedy approximation

• Before we prove this, we prove two useful facts,

Fact Opt > maxj tj

Fact Opt >

∑
j tj
m

◦ Some machine must process the largest job

◦ There is a total of
∑
j tj time units of work to be done

Theorem The greedy algorithm given is a 2-approximation algorithm

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Job j takes tj
time units

Li is the load of

machine i

m machines

n jobs



The greedy approximation

• Before we prove this, we prove two useful facts,

Fact Opt > maxj tj

Fact Opt >

∑
j tj
m

◦ Some machine must process the largest job

◦ There is a total of
∑
j tj time units of work to be done

◦ Some machine i must have load Li at least

∑
j tj
m

Theorem The greedy algorithm given is a 2-approximation algorithm

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Job j takes tj
time units

Li is the load of

machine i

m machines

n jobs



The greedy approximation

• Before we prove this, we prove two useful facts,

Fact Opt > maxj tj

Fact Opt >

∑
j tj
m

◦ Some machine must process the largest job

◦ There is a total of
∑
j tj time units of work to be done

◦ Some machine i must have load Li at least

∑
j tj
m

(them machines can’t all have below average load)

Theorem The greedy algorithm given is a 2-approximation algorithm

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Job j takes tj
time units

Li is the load of

machine i

m machines

n jobs



The greedy approximation

Theorem The greedy algorithm given is a 2-approximation algorithm

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Li is the load of

machine i

Job j takes tj
time units

m machines

n jobs



The greedy approximation

Theorem The greedy algorithm given is a 2-approximation algorithm

Proof Consider the machine i with largest load Tg = Li

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Li is the load of

machine i

Job j takes tj
time units

m machines

n jobs



The greedy approximation

Theorem The greedy algorithm given is a 2-approximation algorithm

Proof Consider the machine i with largest load Tg = Li

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Li is the load of

machine i

Job j takes tj
time units

1

2

3

4

5

Li = Tg

m machines

n jobs



The greedy approximation

Theorem The greedy algorithm given is a 2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tg = Li

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Li is the load of

machine i

Job j takes tj
time units

1

2

3

4

5

Li = Tg

m machines

n jobs



The greedy approximation

Theorem The greedy algorithm given is a 2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tg = Li

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Li is the load of

machine i

Job j takes tj
time units

1

2

3

4

5

Li = Tg

m machines

n jobs

job j



The greedy approximation

Theorem The greedy algorithm given is a 2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tg = Li

• When job j was assigned, machine i had the smallest load, Li − tj

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Li is the load of

machine i

Job j takes tj
time units

1

2

3

4

5

Li = Tg

m machines

n jobs

job j



The greedy approximation

Theorem The greedy algorithm given is a 2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tg = Li

• When job j was assigned, machine i had the smallest load, Li − tj

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Li is the load of

machine i

Job j takes tj
time units

1

2

3

4

5

Li = Tg

m machines

n jobs



The greedy approximation

Theorem The greedy algorithm given is a 2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tg = Li

• When job j was assigned, machine i had the smallest load, Li − tj

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Li is the load of

machine i

Job j takes tj
time units

1

2

3

4

5

Li = Tg

m machines

n jobs

job j



The greedy approximation

Theorem The greedy algorithm given is a 2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tg = Li

• When job j was assigned, machine i had the smallest load, Li − tj

So. . .

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Li is the load of

machine i

Job j takes tj
time units

1

2

3

4

5

Li = Tg

m machines

n jobs

job j



The greedy approximation

Theorem The greedy algorithm given is a 2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tg = Li

• When job j was assigned, machine i had the smallest load, Li − tj

Li − tj 6 Lk for all 1 6 k 6 m,

So. . .

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Li is the load of

machine i

Job j takes tj
time units

1

2

3

4

5

Li = Tg

m machines

n jobs

job j



The greedy approximation

Theorem The greedy algorithm given is a 2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tg = Li

• When job j was assigned, machine i had the smallest load, Li − tj

Li − tj 6 Lk for all 1 6 k 6 m,

So. . .

• If we then sum over all k,

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Li is the load of

machine i

Job j takes tj
time units

1

2

3

4

5

Li = Tg

m machines

n jobs

job j



The greedy approximation

Theorem The greedy algorithm given is a 2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tg = Li

• When job j was assigned, machine i had the smallest load, Li − tj

Li − tj 6 Lk for all 1 6 k 6 m,

So. . .

• If we then sum over all k,

m(Li − tj) 6
m∑
k=1

Lk

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Li is the load of

machine i

Job j takes tj
time units

1

2

3

4

5

Li = Tg

m machines

n jobs

job j



The greedy approximation

Theorem The greedy algorithm given is a 2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tg = Li

• When job j was assigned, machine i had the smallest load, Li − tj

Li − tj 6 Lk for all 1 6 k 6 m,

So. . .

• If we then sum over all k,

m(Li − tj) 6
m∑
k=1

Lk

so (Li − tj) 6
∑m

k=1 Lk

m 6 Opt (by the second fact)

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Li is the load of

machine i

Job j takes tj
time units

1

2

3

4

5

Li = Tg

m machines

n jobs

job j



The greedy approximation

Theorem The greedy algorithm given is a 2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tg = Li

• When job j was assigned, machine i had the smallest load, Li − tj

Li − tj 6 Lk for all 1 6 k 6 m,

So. . .

• If we then sum over all k,

m(Li − tj) 6
m∑
k=1

Lk

so (Li − tj) 6
∑m

k=1 Lk

m 6 Opt (by the second fact)

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Li is the load of

machine i

Job j takes tj
time units

1

2

3

4

5

Li = Tg

m machines

n jobs

job j

Fact Opt >

∑
j tj
m



The greedy approximation

Theorem The greedy algorithm given is a 2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tg = Li

• When job j was assigned, machine i had the smallest load, Li − tj

Li − tj 6 Lk for all 1 6 k 6 m,

So. . .

• If we then sum over all k,

m(Li − tj) 6
m∑
k=1

Lk

so (Li − tj) 6
∑m

k=1 Lk

m 6 Opt (by the second fact)

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Li is the load of

machine i

Job j takes tj
time units

1

2

3

4

5

Li = Tg

m machines

n jobs

job j



The greedy approximation

Theorem The greedy algorithm given is a 2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tg = Li

• When job j was assigned, machine i had the smallest load, Li − tj

Li − tj 6 Lk for all 1 6 k 6 m,

So. . .

• If we then sum over all k,

m(Li − tj) 6
m∑
k=1

Lk

so (Li − tj) 6
∑m

k=1 Lk

m 6 Opt (by the second fact)

also tj 6 Opt (by the first fact)

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Li is the load of

machine i

Job j takes tj
time units

1

2

3

4

5

Li = Tg

m machines

n jobs

job j



The greedy approximation

Theorem The greedy algorithm given is a 2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tg = Li

• When job j was assigned, machine i had the smallest load, Li − tj

Li − tj 6 Lk for all 1 6 k 6 m,

So. . .

• If we then sum over all k,

m(Li − tj) 6
m∑
k=1

Lk

so (Li − tj) 6
∑m

k=1 Lk

m 6 Opt (by the second fact)

also tj 6 Opt (by the first fact)

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Li is the load of

machine i

Job j takes tj
time units

1

2

3

4

5

Li = Tg

m machines

n jobs

job j

Fact Opt > maxj tj



The greedy approximation

Theorem The greedy algorithm given is a 2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tg = Li

• When job j was assigned, machine i had the smallest load, Li − tj

Li − tj 6 Lk for all 1 6 k 6 m,

So. . .

• If we then sum over all k,

m(Li − tj) 6
m∑
k=1

Lk

so (Li − tj) 6
∑m

k=1 Lk

m 6 Opt (by the second fact)

also tj 6 Opt (by the first fact)

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Li is the load of

machine i

Job j takes tj
time units

1

2

3

4

5

Li = Tg

m machines

n jobs

job j



The greedy approximation

Theorem The greedy algorithm given is a 2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tg = Li

• When job j was assigned, machine i had the smallest load, Li − tj

Li − tj 6 Lk for all 1 6 k 6 m,

So. . .

• If we then sum over all k,

m(Li − tj) 6
m∑
k=1

Lk

so (Li − tj) 6
∑m

k=1 Lk

m 6 Opt (by the second fact)

also tj 6 Opt (by the first fact)

Therefore, Tg = Li = (Li − tj) + tj 6 Opt + Opt = 2Opt

Let Opt denote the time taken by the optimal scheduling of jobs

Let Tg denote the time taken by the greedy schedule

Li is the load of

machine i

Job j takes tj
time units

1

2

3

4

5

Li = Tg

m machines

n jobs

job j



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load

greedy

solution



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load

greedy

solution

How long does it take to compute this schedule?



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load

greedy

solution

How long does it take to compute this schedule?

O(n logn) time (to sort the jobs)



Longest Processing Time (LPT)

1

2

3

4

5

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load

greedy

solution

How long does it take to compute this schedule?

O(n logn) time (to sort the jobs)

How good is it?



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Let Tl denote the time taken by the LPT schedule
Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Before we prove this, we prove another useful fact and a Lemma

• Let Tl denote the time taken by the LPT schedule
Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Before we prove this, we prove another useful fact and a Lemma

Fact If there are at mostm jobs (n 6 m) then LPT is optimal

• Let Tl denote the time taken by the LPT schedule
Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Before we prove this, we prove another useful fact and a Lemma

Fact If there are at mostm jobs (n 6 m) then LPT is optimal

LPT gives each job its own machine so maxi Li 6 maxj tj 6 Opt

• Let Tl denote the time taken by the LPT schedule
Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

If there are at mostm jobs then



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Before we prove this, we prove another useful fact and a Lemma

Fact If there are at mostm jobs (n 6 m) then LPT is optimal

Lemma If n > m then Opt > 2t(m+1) (after sorting)

LPT gives each job its own machine so maxi Li 6 maxj tj 6 Opt

• Let Tl denote the time taken by the LPT schedule
Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

If there are at mostm jobs then



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Before we prove this, we prove another useful fact and a Lemma

Fact If there are at mostm jobs (n 6 m) then LPT is optimal

Lemma If n > m then Opt > 2t(m+1) (after sorting)

LPT gives each job its own machine so maxi Li 6 maxj tj 6 Opt

• Let Tl denote the time taken by the LPT schedule

Proof

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

If there are at mostm jobs then



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Before we prove this, we prove another useful fact and a Lemma

Fact If there are at mostm jobs (n 6 m) then LPT is optimal

Lemma If n > m then Opt > 2t(m+1) (after sorting)

LPT gives each job its own machine so maxi Li 6 maxj tj 6 Opt

◦ Note that t1 > t2 > t3 > . . . tm > t(m+1)

• Let Tl denote the time taken by the LPT schedule

Proof

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

If there are at mostm jobs then



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Before we prove this, we prove another useful fact and a Lemma

Fact If there are at mostm jobs (n 6 m) then LPT is optimal

Lemma If n > m then Opt > 2t(m+1) (after sorting)

LPT gives each job its own machine so maxi Li 6 maxj tj 6 Opt

◦ Note that t1 > t2 > t3 > . . . tm > t(m+1)

◦ One of them machines must be assigned

• Let Tl denote the time taken by the LPT schedule

Proof

(at least) two of thesem+ 1 jobs under any schedule

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

If there are at mostm jobs then



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Before we prove this, we prove another useful fact and a Lemma

Fact If there are at mostm jobs (n 6 m) then LPT is optimal

Lemma If n > m then Opt > 2t(m+1) (after sorting)

LPT gives each job its own machine so maxi Li 6 maxj tj 6 Opt

◦ Note that t1 > t2 > t3 > . . . tm > t(m+1)

◦ One of them machines must be assigned

• Let Tl denote the time taken by the LPT schedule

Proof

(at least) two of thesem+ 1 jobs under any schedule

◦ So we have that any schedule takes at least 2t(m+1) time

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

If there are at mostm jobs then



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Before we prove this, we prove another useful fact and a Lemma

Fact If there are at mostm jobs (n 6 m) then LPT is optimal

Lemma If n > m then Opt > 2t(m+1) (after sorting)

LPT gives each job its own machine so maxi Li 6 maxj tj 6 Opt

◦ Note that t1 > t2 > t3 > . . . tm > t(m+1)

◦ One of them machines must be assigned

• Let Tl denote the time taken by the LPT schedule

Proof

(at least) two of thesem+ 1 jobs under any schedule

◦ So we have that any schedule takes at least 2t(m+1) time

Li is the load of

machine i

m machines

n jobs

in particular Opt > 2t(m+1)

Job j takes tj
time units

If there are at mostm jobs then



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

Proof Consider the machine i with largest load Tl = Li

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tl = Li

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tl = Li

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

job j

1
2
3
4
5



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tl = Li

• Using the same argument as before, we have that,

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

job j

1
2
3
4
5



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tl = Li

• Using the same argument as before, we have that,

(Li − tj) 6 Opt

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

job j

1
2
3
4
5



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tl = Li

• Using the same argument as before, we have that,

(Li − tj) 6 Opt

• If n 6 m then we are done so assume n > m

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

job j

1
2
3
4
5



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tl = Li

• Using the same argument as before, we have that,

(Li − tj) 6 Opt

• If n 6 m then we are done so assume n > m

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

job j

1
2
3
4
5

because LPT is optimal in this case



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tl = Li

• Using the same argument as before, we have that,

(Li − tj) 6 Opt

• If n 6 m then we are done so assume n > m

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

job j

1
2
3
4
5



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tl = Li

• Using the same argument as before, we have that,

(Li − tj) 6 Opt

• If n 6 m then we are done so assume n > m

• Further if (Li − tj) = 0 then Tl = Li = tj 6 Opt

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

job j

1
2
3
4
5



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tl = Li

• Using the same argument as before, we have that,

(Li − tj) 6 Opt

• If n 6 m then we are done so assume n > m

• Further if (Li − tj) = 0 then Tl = Li = tj 6 Opt

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

job j

1
2
3
4
5

Fact Opt > maxj tj



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tl = Li

• Using the same argument as before, we have that,

(Li − tj) 6 Opt

• If n 6 m then we are done so assume n > m

• Further if (Li − tj) = 0 then Tl = Li = tj 6 Opt

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

job j

1
2
3
4
5



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tl = Li

• Using the same argument as before, we have that,

(Li − tj) 6 Opt

• If n 6 m then we are done so assume n > m

• Further if (Li − tj) = 0 then Tl = Li = tj 6 Opt

so assume that (Li − tj) > 0

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

job j

1
2
3
4
5



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tl = Li

• Using the same argument as before, we have that,

(Li − tj) 6 Opt

• If n 6 m then we are done so assume n > m

• Further if (Li − tj) = 0 then Tl = Li = tj 6 Opt

so assume that (Li − tj) > 0

• Therefore machine i was assigned at least two jobs

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

job j

1
2
3
4
5



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tl = Li

• Using the same argument as before, we have that,

(Li − tj) 6 Opt

• If n 6 m then we are done so assume n > m

• Further if (Li − tj) = 0 then Tl = Li = tj 6 Opt

so assume that (Li − tj) > 0

• Therefore machine i was assigned at least two jobs

By the algorithm description, we have that j > m+ 1

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

job j

1
2
3
4
5



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tl = Li

• Using the same argument as before, we have that,

(Li − tj) 6 Opt

• If n 6 m then we are done so assume n > m

• Further if (Li − tj) = 0 then Tl = Li = tj 6 Opt

so assume that (Li − tj) > 0

• Therefore machine i was assigned at least two jobs

By the algorithm description, we have that j > m+ 1

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

job j

1
2
3
4
5

it doesn’t assign a second job to any machine until
every machine has at least one job



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tl = Li

• Using the same argument as before, we have that,

(Li − tj) 6 Opt

• If n 6 m then we are done so assume n > m

• Further if (Li − tj) = 0 then Tl = Li = tj 6 Opt

so assume that (Li − tj) > 0

• Therefore machine i was assigned at least two jobs

By the algorithm description, we have that j > m+ 1

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

job j

1
2
3
4
5



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tl = Li

• Using the same argument as before, we have that,

(Li − tj) 6 Opt

• If n 6 m then we are done so assume n > m

• Further if (Li − tj) = 0 then Tl = Li = tj 6 Opt

so assume that (Li − tj) > 0

• Therefore machine i was assigned at least two jobs

By the algorithm description, we have that j > m+ 1

tj 6 tm+1 6 Opt/2 (by the Lemma)

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

job j

1
2
3
4
5



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tl = Li

• Using the same argument as before, we have that,

(Li − tj) 6 Opt

• If n 6 m then we are done so assume n > m

• Further if (Li − tj) = 0 then Tl = Li = tj 6 Opt

so assume that (Li − tj) > 0

• Therefore machine i was assigned at least two jobs

By the algorithm description, we have that j > m+ 1

tj 6 tm+1 6 Opt/2 (by the Lemma)

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

job j

1
2
3
4
5

Lemma If n > m then Opt > 2t(m+1) (after sorting)



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tl = Li

• Using the same argument as before, we have that,

(Li − tj) 6 Opt

• If n 6 m then we are done so assume n > m

• Further if (Li − tj) = 0 then Tl = Li = tj 6 Opt

so assume that (Li − tj) > 0

• Therefore machine i was assigned at least two jobs

By the algorithm description, we have that j > m+ 1

tj 6 tm+1 6 Opt/2 (by the Lemma)

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

job j

1
2
3
4
5



The LPT approximation

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Let j denote the last job machine i completes

Proof Consider the machine i with largest load Tl = Li

• Using the same argument as before, we have that,

(Li − tj) 6 Opt

Therefore, Tl = Li = (Li − tj) + tj 6 Opt + Opt/2 = (3/2) ·Opt

• If n 6 m then we are done so assume n > m

• Further if (Li − tj) = 0 then Tl = Li = tj 6 Opt

so assume that (Li − tj) > 0

• Therefore machine i was assigned at least two jobs

By the algorithm description, we have that j > m+ 1

tj 6 tm+1 6 Opt/2 (by the Lemma)

Li is the load of

machine i

m machines

n jobs

Job j takes tj
time units

job j

1
2
3
4
5



Scheduling conclusions

Theorem The LPT algorithm is a 3/2-approximation algorithm

which runs inO(n logn) time

Theorem The greedy algorithm is a 2-approximation algorithm

which runs inO(n logm) time and it’s online

In fact, LPT is a 4/3-approximation algorithm (using better analysis)

m machines

n jobs



k-centers

Goal Minimise the largest distance from any site to the closest center



k-centers

Goal Minimise the largest distance from any site to the closest center



k-centers

n points (sites) in 2D space

Goal Minimise the largest distance from any site to the closest center



k-centers

n points (sites) in 2D space

The distance between points si, sj is
√

(xi − xj)2 + (yi − yj)2

Goal Minimise the largest distance from any site to the closest center



k-centers

n points (sites) in 2D space

The distance between points si, sj is
√

(xi − xj)2 + (yi − yj)2

Goal Minimise the largest distance from any site to the closest center

(i.e. ‘normal’ euclidean distance)



k-centers

n points (sites) in 2D space

The distance between points si, sj is
√

(xi − xj)2 + (yi − yj)2

Goal Minimise the largest distance from any site to the closest center

Select k sites to be

centers

(i.e. ‘normal’ euclidean distance)



k-centers

n points (sites) in 2D space

The distance between points si, sj is
√

(xi − xj)2 + (yi − yj)2

Goal Minimise the largest distance from any site to the closest center

Select k sites to be

centers

(i.e. ‘normal’ euclidean distance)



k-centers

n points (sites) in 2D space

The distance between points si, sj is
√

(xi − xj)2 + (yi − yj)2

Goal Minimise the largest distance from any site to the closest center

Select k sites to be

centers



k-centers

n points (sites) in 2D space

The distance between points si, sj is
√

(xi − xj)2 + (yi − yj)2

Goal Minimise the largest distance from any site to the closest center

Goal Minimise the largest distance from any site to the closest center

Select k sites to be

centers



k-centers

n points (sites) in 2D space

The distance between points si, sj is
√

(xi − xj)2 + (yi − yj)2

Goal Minimise the largest distance from any site to the closest center

Goal Minimise the largest distance from any site to the closest center

Select k sites to be

centers



k-centers

n points (sites) in 2D space

The distance between points si, sj is
√

(xi − xj)2 + (yi − yj)2

Goal Minimise the largest distance from any site to the closest center

Goal Minimise the largest distance from any site to the closest center

Select k sites to be

centers

r

r



k-centers

n points (sites) in 2D space

The distance between points si, sj is
√

(xi − xj)2 + (yi − yj)2

Goal Minimise the largest distance from any site to the closest center

Goal Minimise the largest distance from any site to the closest center

Select k sites to be

centers



k-centers

n points (sites) in 2D space

The distance between points si, sj is
√

(xi − xj)2 + (yi − yj)2

Goal Minimise the largest distance from any site to the closest center

Goal Minimise the largest distance from any site to the closest center

Select k sites to be

centers



k-centers

n points (sites) in 2D space

The distance between points si, sj is
√

(xi − xj)2 + (yi − yj)2

Goal Minimise the largest distance from any site to the closest center

Goal Minimise the largest distance from any site to the closest center

Select k sites to be

centers

r



k-centers

n points (sites) in 2D space

The distance between points si, sj is
√

(xi − xj)2 + (yi − yj)2

Goal Minimise the largest distance from any site to the closest center

Goal Minimise the largest distance from any site to the closest center

(in general it’s NP-hard)

Select k sites to be

centers

r



A Greedy approximation



Start by picking any point to be a center

A Greedy approximation



Start by picking any point to be a center

A Greedy approximation



Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center

A Greedy approximation



Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center

A Greedy approximation



Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center

A Greedy approximation



Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center

A Greedy approximation



Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center

A Greedy approximation



Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center

A Greedy approximation



Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center

A Greedy approximation



Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center

A Greedy approximation



Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center

A Greedy approximation



Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center

A Greedy approximation



Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center

A Greedy approximation



Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center

A Greedy approximation



Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center

A Greedy approximation



Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center

A Greedy approximation



Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center

A Greedy approximation

r



Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center

This takesO(nk) time

A Greedy approximation



Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center

This takesO(nk) time

A Greedy approximation

but is it any good?



The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Let Cg (resp. COpt) denote the set of centers selected by Greedy (resp. Optimal)

Proof

Let rg (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)



The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Let Cg (resp. COpt) denote the set of centers selected by Greedy (resp. Optimal)

Proof

Let rg (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 1: No si, si′ ∈ Cg are closest to the same sj ∈ COpt



The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Let Cg (resp. COpt) denote the set of centers selected by Greedy (resp. Optimal)

Proof

Let rg (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 1: No si, si′ ∈ Cg are closest to the same sj ∈ COpt

Optimal centers



The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Let Cg (resp. COpt) denote the set of centers selected by Greedy (resp. Optimal)

Proof

Let rg (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 1: No si, si′ ∈ Cg are closest to the same sj ∈ COpt

Optimal centers

Opt



The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Let Cg (resp. COpt) denote the set of centers selected by Greedy (resp. Optimal)

Proof

Let rg (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 1: No si, si′ ∈ Cg are closest to the same sj ∈ COpt

Optimal centers

Opt

Sites



The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Let Cg (resp. COpt) denote the set of centers selected by Greedy (resp. Optimal)

Proof

Let rg (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 1: No si, si′ ∈ Cg are closest to the same sj ∈ COpt

Optimal centers

Opt

Sites
purposes only

Disclaimer: for illustrative



The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Let Cg (resp. COpt) denote the set of centers selected by Greedy (resp. Optimal)

Proof

Let rg (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 1: No si, si′ ∈ Cg are closest to the same sj ∈ COpt

Optimal centers

Opt

Sites
purposes only

Disclaimer: for illustrative

Greedy centers



The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Let Cg (resp. COpt) denote the set of centers selected by Greedy (resp. Optimal)

Proof

Let rg (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 1: No si, si′ ∈ Cg are closest to the same sj ∈ COpt

Optimal centers

Opt

Sites
purposes only

Disclaimer: for illustrative

Greedy centers



The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Let Cg (resp. COpt) denote the set of centers selected by Greedy (resp. Optimal)

Proof

Let rg (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 1: No si, si′ ∈ Cg are closest to the same sj ∈ COpt

Optimal centers

Opt

Sites
purposes only

Disclaimer: for illustrative

Greedy centers

Distance at most 2Opt



The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Let Cg (resp. COpt) denote the set of centers selected by Greedy (resp. Optimal)

Proof

Let rg (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 1: No si, si′ ∈ Cg are closest to the same sj ∈ COpt

Optimal centers

Opt

Sites
purposes only

Disclaimer: for illustrative

Greedy centers

Distance at most 2Opt

so rg 6 2Opt



The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Let Cg (resp. COpt) denote the set of centers selected by Greedy (resp. Optimal)

Proof

Let rg (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some si, si′ ∈ Cg are closest to the same sj ∈ COpt



The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Let Cg (resp. COpt) denote the set of centers selected by Greedy (resp. Optimal)

Proof

Let rg (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some si, si′ ∈ Cg are closest to the same sj ∈ COpt

si

si′



The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Let Cg (resp. COpt) denote the set of centers selected by Greedy (resp. Optimal)

Proof

Let rg (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some si, si′ ∈ Cg are closest to the same sj ∈ COpt

Assume wlog. that Greedy made si a center after si′

si

si′



The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Let Cg (resp. COpt) denote the set of centers selected by Greedy (resp. Optimal)

Proof

Let rg (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some si, si′ ∈ Cg are closest to the same sj ∈ COpt

Assume wlog. that Greedy made si a center after si′

si

si′

si was added as a center because it was



The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Let Cg (resp. COpt) denote the set of centers selected by Greedy (resp. Optimal)

Proof

Let rg (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some si, si′ ∈ Cg are closest to the same sj ∈ COpt

Assume wlog. that Greedy made si a center after si′

si

si′

si was added as a center because it was

the furthest from any existing Greedy center



The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Let Cg (resp. COpt) denote the set of centers selected by Greedy (resp. Optimal)

Proof

Let rg (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some si, si′ ∈ Cg are closest to the same sj ∈ COpt

Assume wlog. that Greedy made si a center after si′

si

si′

si was added as a center because it was

the furthest from any existing Greedy center

However, si is at most 2Opt away from si′



The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Let Cg (resp. COpt) denote the set of centers selected by Greedy (resp. Optimal)

Proof

Let rg (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some si, si′ ∈ Cg are closest to the same sj ∈ COpt

Assume wlog. that Greedy made si a center after si′

si

si′

si was added as a center because it was

the furthest from any existing Greedy center

However, si is at most 2Opt away from si′



The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Let Cg (resp. COpt) denote the set of centers selected by Greedy (resp. Optimal)

Proof

Let rg (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some si, si′ ∈ Cg are closest to the same sj ∈ COpt

Assume wlog. that Greedy made si a center after si′

si

si′

si was added as a center because it was

the furthest from any existing Greedy center

However, si is at most 2Opt away from si′

So even before adding si as a center, all sites

were 6 2Opt away from a Greedy center



The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Let Cg (resp. COpt) denote the set of centers selected by Greedy (resp. Optimal)

Proof

Let rg (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some si, si′ ∈ Cg are closest to the same sj ∈ COpt

Assume wlog. that Greedy made si a center after si′

si

si′

si was added as a center because it was

the furthest from any existing Greedy center

However, si is at most 2Opt away from si′

So even before adding si as a center, all sites

were 6 2Opt away from a Greedy center

Therefore, rg 6 2Opt



k-center Conclusions

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

which runs inO(nk) time



k-center Conclusions

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

which runs inO(nk) time

• The approximation works for any (metric) distance function,



k-center Conclusions

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

which runs inO(nk) time

• The approximation works for any (metric) distance function,

d(si, sj) = L1 or L∞ for example



k-center Conclusions

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

which runs inO(nk) time

• The approximation works for any (metric) distance function,

d(si, sj) = L1 or L∞ for example

d(x, y) = d(y, x), d(x, y) > 0

• Distance function d is a metric iff

(d(x, y) = 0 iff x = y) and d(x, z) 6 d(x, y) + d(y, z)



k-center Conclusions

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

which runs inO(nk) time

• The approximation works for any (metric) distance function,

d(si, sj) = L1 or L∞ for example

• For a general (metric) d, the problem is not α-approximable with α < 2

d(x, y) = d(y, x), d(x, y) > 0

• Distance function d is a metric iff

(d(x, y) = 0 iff x = y) and d(x, z) 6 d(x, y) + d(y, z)



k-center Conclusions

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

which runs inO(nk) time

• The approximation works for any (metric) distance function,

d(si, sj) = L1 or L∞ for example

• For a general (metric) d, the problem is not α-approximable with α < 2

d(x, y) = d(y, x), d(x, y) > 0

• For d = L2 , the problem is not α-approximable with α <
√
3 ≈ 1.73

• Distance function d is a metric iff

(d(x, y) = 0 iff x = y) and d(x, z) 6 d(x, y) + d(y, z)



k-center Conclusions

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

which runs inO(nk) time

• The approximation works for any (metric) distance function,

d(si, sj) = L1 or L∞ for example

• For a general (metric) d, the problem is not α-approximable with α < 2

d(x, y) = d(y, x), d(x, y) > 0

• For d = L2 , the problem is not α-approximable with α <
√
3 ≈ 1.73

• For d = L1 or d = L∞ , the problem is not α-approximable with α < 2

• Distance function d is a metric iff

(d(x, y) = 0 iff x = y) and d(x, z) 6 d(x, y) + d(y, z)


