

Advanced Algorithms – COMS31900

Approximation algorithms part two

more constant factor approximations

Raphaël Clifford

Slides by Benjamin Sach

Approximation Algorithms Recap

An algorithm A is an α -approximation algorithm for problem P if,

- $\circ A$ runs in polynomial time
- \circ *A* always outputs a solution with value *s*
 - within an α factor of Opt

Here P is an optimisation problem with optimal solution of value Opt

- If P is a *maximisation* problem, $\frac{\text{Opt}}{\alpha} \leqslant s \leqslant \text{Opt}$
- If P is a minimisation problem, $\mathrm{Opt} \leqslant s \leqslant \alpha \cdot \mathrm{Opt}$

We have seen

a 3/2-approximation algorithm for Bin Packing

(and a *faster* 2-approximation)

ullet We say that $j\in J(i)$ iff job j is assigned to machine i

- We say that $j \in J(i)$ iff job j is assigned to machine i
- The load of machine i is $L_i = \sum_{j \in J(i)} t_j$

- We say that $j \in J(i)$ iff job j is assigned to machine i
- The load of machine *i* is $L_i = \sum_{j \in J(i)} t_j$

- ullet We say that $j\in J(i)$ iff job j is assigned to machine i
- The load of machine i is $L_i = \sum_{j \in J(i)} t_j$
- So the wall-clock time is $\max_i L_i$ (which we want to minimise)

- We say that $j \in J(i)$ iff job j is assigned to machine i
- The load of machine *i* is $L_i = \sum_{j \in J(i)} t_j$
- So the wall-clock time is $\max_i L_i$ (which we want to minimise)

Algorithm: Put job j on the machine i with smallest (current) load

How long does it take to compute this schedule?

Algorithm: Put job j on the machine i with smallest (current) load

m machines $n \; \mathsf{jobs}$

How long does it take to compute this schedule?

How long does it take to compute this schedule?

O(nm) time naively, $O(n\log m)$ time using a priority queue

How long does it take to compute this schedule?

O(nm) time naively, $O(n\log m)$ time using a priority queue

(it's also an online solution)

How long does it take to compute this schedule?

O(nm) time naively, $O(n\log m)$ time using a priority queue

(it's also an online solution)

The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

machine i

m machines n jobs

The greedy approximation

machine i

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

• Before we prove this, we prove two useful facts,

Job j takes t_j time units

m machines n jobs

The greedy approximation

machine i

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

- Before we prove this, we prove two useful facts,
- Fact $Opt \ge \max_j t_j$

m machines n jobs

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

• Before we prove this, we prove two useful facts,

```
Fact Opt \ge \max_j t_j
```

• Some machine must process the largest job

 L_i is the *load* of machine i

Job j takes t_j time units

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

• Before we prove this, we prove two useful facts,

Fact
$$Opt \ge \max_j t_j$$

Some machine must process the largest job

Fact Opt
$$\geq \frac{\sum_j t_j}{m}$$

machine i

 L_i is the load of

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

• Before we prove this, we prove two useful facts,

Fact $Opt \ge \max_j t_j$

 \circ Some machine must process the largest job

Fact Opt
$$\geq \frac{\sum_{j} t_{j}}{m}$$

 \circ There is a total of $\sum_{j} t_{j}$ time units of work to be done

 L_i is the *load* of

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

Before we prove this, we prove two useful facts,

Fact $Opt \ge \max_j t_j$

Some machine must process the largest job

Fact Opt $\geq \frac{\sum_{j} t_{j}}{m}$

 \circ There is a total of $\sum_{j} t_{j}$ time units of work to be done \circ Some machine i must have load L_i at least $\frac{\sum_j t_j}{m}$

 L_i is the *load* of machine i

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

Before we prove this, we prove two useful facts,

Fact $Opt \ge \max_j t_j$

Some machine must process the largest job

Fact Opt
$$\geq \frac{\sum_j t_j}{m}$$

 \circ There is a total of $\sum_{j} t_{j}$ time units of work to be done

 \circ Some machine i must have load L_i at least $rac{\sum_j t_j}{m}$

(the m machines can't **all** have below average load)

 L_i is the *load* of machine i

Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

machine i

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

Proof Consider the machine *i* with largest load $T_g = L_i$

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

Proof Consider the machine *i* with largest load $T_g = L_i$

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

Proof Consider the machine *i* with largest load $T_g = L_i$

• Let j denote the last job machine i completes

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

Proof Consider the machine *i* with largest load $T_g = L_i$

• Let j denote the last job machine i completes

Job j takes t_j time units

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

Proof Consider the machine *i* with largest load $T_g = L_i$

- Let j denote the last job machine i completes
- When job j was assigned, machine i had the smallest load, $L_i t_j$

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

Proof Consider the machine *i* with largest load $T_g = L_i$

- Let j denote the last job machine i completes
- When job j was assigned, machine i had the smallest load, $L_i t_j$

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

Proof Consider the machine *i* with largest load $T_g = L_i$

- Let j denote the last job machine i completes
- When job j was assigned, machine i had the smallest load, $L_i t_j$

Job j takes t_j time units

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

Proof Consider the machine *i* with largest load $T_g = L_i$

- Let j denote the last job machine i completes
- When job j was assigned, machine i had the smallest load, $L_i t_j$

So...

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

Proof Consider the machine *i* with largest load $T_g = L_i$

- Let j denote the last job machine i completes
- When job j was assigned, machine i had the smallest load, $L_i t_j$

So...

$$L_i - t_j \leqslant L_k$$
 for all $1 \leqslant k \leqslant m$,


```
Job j takes t_j time units
```

Let Opt denote the time taken by the optimal scheduling of jobs Let T_{g} denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

Proof Consider the machine *i* with largest load $T_g = L_i$

- Let j denote the last job machine i completes
- When job j was assigned, machine i had the smallest load, $L_i t_j$

So...

$$L_i - t_j \leqslant L_k$$
 for all $1 \leqslant k \leqslant m$,

• If we then sum over all
$$k$$
,

 L_i is the *load* of job jmachine i $L_i = T_q$ 0 1 0 2 3 4 **!!!** 5

> Job j takes t_j time units

 $m \; {\rm machines}$ n jobs

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

Proof Consider the machine *i* with largest load $T_g = L_i$

- Let j denote the last job machine i completes
- When job j was assigned, machine i had the smallest load, $L_i t_j$

So... $L_i - t_j \leqslant L_k$ for all $1 \leqslant k \leqslant m$,

 \bullet If we then sum over all k, $m(L_i-t_j)\leqslant \sum^m L_k$

$$L_i$$
 is the load of machine i job
 $L_i = T_g$
 1
 C
 3
 C
 4
 C
 5
 C

Job j takes t_j time units

$$m$$
 machines n jobs

University of BRISTOL

J

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

Proof Consider the machine *i* with largest load $T_g = L_i$

- Let j denote the last job machine i completes
- When job j was assigned, machine i had the smallest load, $L_i t_j$

 $L_i - t_i \leqslant L_k$ for all $1 \leqslant k \leqslant m$,

• If we then sum over all k, $m(L_i - t_j) \leqslant \sum L_k$

so
$$(L_i - t_j) \leqslant rac{\sum_{k=1}^m L_k}{m} \leqslant \mathrm{Opt}$$
 (by the second fact)

University of BRISTOL L_i is the *load* of job jmachine i $L_i = T_q$ **••** 1 0 2 3 4

!!!

5

Job j takes t_j time units

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

Proof Consider the machine *i* with largest load $T_g = L_i$

- Let j denote the last job machine i completes
- When job j was assigned, machine i had the smallest load, $L_i t_j$

So... $L_i - t_i \leqslant L_k$ for all $1 \leqslant k \leqslant m$,

• If we then sum over all k, $m(L_i - t_j) \leqslant \sum L_k$

so
$$(L_i - t_j) \leqslant \frac{\sum_{k=1}^m L_k}{m} \leqslant \text{Opt}$$
 (by the second fact)

Fact Opt
$$\geq \frac{\sum_j t_j}{m}$$

 L_i is the *load* of job jmachine i $L_i = T_q$ **•** 1 0 2 3 4 5

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

Proof Consider the machine *i* with largest load $T_g = L_i$

- Let j denote the last job machine i completes
- When job j was assigned, machine i had the smallest load, $L_i t_j$

 $L_i - t_i \leqslant L_k$ for all $1 \leqslant k \leqslant m$,

• If we then sum over all k, $m(L_i - t_j) \leqslant \sum L_k$

so
$$(L_i - t_j) \leqslant rac{\sum_{k=1}^m L_k}{m} \leqslant \mathrm{Opt}$$
 (by the second fact)

University of BRISTOL L_i is the *load* of job jmachine i $L_i = T_q$ **••** 1 0 2 3 4

!!!

5

Job j takes t_j time units

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

Proof Consider the machine *i* with largest load $T_g = L_i$

- Let j denote the last job machine i completes
- When job j was assigned, machine i had the smallest load, $L_i t_j$

So... $L_i - t_j \leqslant L_k$ for all $1 \leqslant k \leqslant m$,

 \bullet If we then sum over all k, $m(L_i-t_j) \leqslant \sum_{k=1}^m L_k$

so
$$(L_i - t_j) \leqslant \frac{\sum_{k=1}^m L_k}{m} \leqslant \text{Opt}$$
 (by the second fact) also $t_j \leqslant \text{Opt}$ (by the first fact)

 $L_i \text{ is the load of machine } i \text{ job } j$

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

Proof Consider the machine *i* with largest load $T_g = L_i$

- Let j denote the last job machine i completes
- When job j was assigned, machine i had the smallest load, $L_i t_j$

So... $L_i - t_j \leqslant L_k$ for all $1 \leqslant k \leqslant m$,

 \bullet If we then sum over all k, $m(L_i-t_j)\leqslant \sum_{k=1}^m L_k$

Job j takes t_j

time units

m machines n jobs

so
$$(L_i - t_j) \leqslant \frac{\sum_{k=1}^m L_k}{m} \leqslant \text{Opt}$$
 (by the second fact)
also $t_j \leqslant \text{Opt}$ (by the first fact)

Fact $Opt \ge \max_j t_j$

University of BRISTOL

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

Proof Consider the machine *i* with largest load $T_g = L_i$

- Let j denote the last job machine i completes
- When job j was assigned, machine i had the smallest load, $L_i t_j$

So... $L_i - t_j \leqslant L_k$ for all $1 \leqslant k \leqslant m$,

 \bullet If we then sum over all k, $m(L_i-t_j) \leqslant \sum_{k=1}^m L_k$

so
$$(L_i - t_j) \leqslant \frac{\sum_{k=1}^m L_k}{m} \leqslant \text{Opt}$$
 (by the second fact) also $t_j \leqslant \text{Opt}$ (by the first fact)

 $L_i \text{ is the load of machine } i \text{ job } j$

Let Opt denote the time taken by the optimal scheduling of jobs Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation algorithm

Proof Consider the machine *i* with largest load $T_g = L_i$

- Let j denote the last job machine i completes
- When job j was assigned, machine i had the smallest load, $L_i t_j$

So... $L_i - t_j \leqslant L_k$ for all $1 \leqslant k \leqslant m$,

 \bullet If we then sum over all k, $m(L_i-t_j)\leqslant \sum_{k=1}^m L_k$

so
$$(L_i - t_j) \leqslant \frac{\sum_{k=1}^m L_k}{m} \leqslant \text{Opt}$$
 (by the second fact)

also $t_j \leq \operatorname{Opt}$ (by the first fact)

Therefore, $T_g = L_i = (L_i - t_j) + t_j \leq \text{Opt} + \text{Opt} = 2\text{Opt}$

Job j takes t_j time units

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 1: Sort the jobs into non-increasing order (job $1 \mbox{ is now largest})$

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load

How long does it take to compute this schedule?

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load

How long does it take to compute this schedule?

 $O(n \log n)$ time (to sort the jobs)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load

How long does it take to compute this schedule?

 $O(n \log n)$ time (to sort the jobs)

How good is it?

• Let T_l denote the time taken by the LPT schedule

Theorem The LPT algorithm is a 3/2-approximation algorithm

m machines n jobs

• Let T_l denote the time taken by the LPT schedule

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Before we prove this, we prove another useful fact and a Lemma

 L_i is the *load* of machine i

m machines n jobs

University of BRISTOL

The LPT approximation

• Let T_l denote the time taken by the LPT schedule

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Before we prove this, we prove another useful fact and a Lemma

Fact If there are at most m jobs ($n \leq m$) then LPT is optimal

L_i is the <i>load</i> of	
machine i	

m machines n jobs

• Let T_l denote the time taken by the LPT schedule

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Before we prove this, we prove another useful fact and a Lemma

Fact If there are at most m jobs ($n \leq m$) then LPT is optimal

If there are at most m jobs then

LPT gives each job its own machine so $\max_i L_i \leq \max_j t_j \leq \operatorname{Opt}$

• Let T_l denote the time taken by the LPT schedule

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Before we prove this, we prove another useful fact and a Lemma

Fact If there are at most m jobs ($n \leq m$) then LPT is optimal

If there are at most m jobs then LPT gives each job its own machine so $\max_i L_i \leqslant \max_j t_j \leqslant \mathrm{Opt}$

Lemma If n > m then $Opt \ge 2t_{(m+1)}$ (after sorting)

 L_i is the *load* of machine i

m machines n jobs

• Let T_l denote the time taken by the LPT schedule

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Before we prove this, we prove another useful fact and a Lemma

Fact If there are at most m jobs ($n \leq m$) then LPT is optimal

If there are at most m jobs then LPT gives each job its own machine so $\max_i L_i \leqslant \max_j t_j \leqslant \mathrm{Opt}$

Lemma If n > m then $\operatorname{Opt} \geqslant 2t_{(m+1)}$ (after sorting)

Proof

 L_i is the *load* of machine i

m machines n jobs

• Let T_l denote the time taken by the LPT schedule

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Before we prove this, we prove another useful fact and a Lemma

Fact If there are at most m jobs ($n \leq m$) then LPT is optimal

If there are at most m jobs then LPT gives each job its own machine so $\max_i L_i \leq \max_j t_j \leq \text{Opt}$

Lemma If n > m then $Opt \ge 2t_{(m+1)}$ (after sorting)

Proof

 \circ Note that $t_1 \ge t_2 \ge t_3 \ge \dots t_m \ge t_{(m+1)}$

 L_i is the *load* of machine i

m machines n jobs

• Let T_l denote the time taken by the LPT schedule

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Before we prove this, we prove another useful fact and a Lemma

Fact If there are at most m jobs ($n \leq m$) then LPT is optimal

If there are at most m jobs then LPT gives each job its own machine so $\max_i L_i \leq \max_j t_j \leq \text{Opt}$

Lemma If n > m then $Opt \ge 2t_{(m+1)}$ (after sorting)

Proof

• Note that $t_1 \ge t_2 \ge t_3 \ge \dots t_m \ge t_{(m+1)}$

 \circ One of the m machines must be assigned

(at least) two of these m+1 jobs *under any schedule*

 L_i is the *load* of machine i

m machines n jobs

• Let T_l denote the time taken by the LPT schedule

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Before we prove this, we prove another useful fact and a Lemma

Fact If there are at most m jobs ($n \leq m$) then LPT is optimal

If there are at most m jobs then LPT gives each job its own machine so $\max_i L_i \leq \max_j t_j \leq \text{Opt}$

Lemma If n > m then $Opt \ge 2t_{(m+1)}$ (after sorting)

Proof

• Note that $t_1 \ge t_2 \ge t_3 \ge \dots t_m \ge t_{(m+1)}$

 \circ One of the m machines must be assigned

(at least) two of these m+1 jobs *under any schedule*

 \circ So we have that any schedule takes at least $2t_{(m+1)}$ time

 L_i is the *load* of machine i

m machines n jobs

• Let T_l denote the time taken by the LPT schedule

Theorem The LPT algorithm is a 3/2-approximation algorithm

• Before we prove this, we prove another useful fact and a Lemma

Fact If there are at most m jobs ($n \leq m$) then LPT is optimal

If there are at most m jobs then LPT gives each job its own machine so $\max_i L_i \leq \max_j t_j \leq \text{Opt}$

Lemma If n > m then $Opt \ge 2t_{(m+1)}$ (after sorting)

Proof

 \circ Note that $t_1 \ge t_2 \ge t_3 \ge \dots t_m \ge t_{(m+1)}$

 \circ One of the m machines must be assigned

(at least) two of these m+1 jobs *under any schedule*

 \circ So we have that any schedule takes at least $2t_{(m+1)}$ time

in particular $Opt \ge 2t_{(m+1)}$

Theorem The LPT algorithm is a 3/2-approximation algorithm

m machines n jobs

Theorem The LPT algorithm is a 3/2-approximation algorithm

Proof Consider the machine i with largest load $T_l = L_i$

m machines n jobs

Theorem The LPT algorithm is a 3/2-approximation algorithm

Proof Consider the machine i with largest load $T_l = L_i$

• Let j denote the last job machine i completes

m machines n jobs

Theorem The LPT algorithm is a 3/2-approximation algorithm

Proof Consider the machine *i* with largest load $T_l = L_i$

• Let j denote the last job machine i completes

Theorem The LPT algorithm is a 3/2-approximation algorithm

Proof Consider the machine *i* with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

m machines n jobs

University of BRISTOL

Theorem The LPT algorithm is a 3/2-approximation algorithm

Proof Consider the machine *i* with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

$$(L_i - t_j) \leqslant \text{Opt}$$

1 🛄 💶	
2 🛄 🛑	
3 🛄 🛑	
4 🛄 🛑	
5 🛄 🛑	
	ieb á
	Jod <i>J</i>

Theorem The LPT algorithm is a 3/2-approximation algorithm

Proof Consider the machine *i* with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

 $(L_i - t_j) \leq \text{Opt}$

ullet If $n\leqslant m$ then we are done so assume n>m

	1 🛄 💳	
	2 🛄 💳	
4	3 🛄 💳	
5	4 🛄 💳	
	5 🛄 💳	
ich d		ich i

time units

Theorem The LPT algorithm is a 3/2-approximation algorithm

Proof Consider the machine *i* with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

 $(L_i - t_j) \leq \text{Opt}$

1	2
2	
3 🛄 💶 🔛	
4 🛄 💶 🗖	
5 🛄	
	jod j

m	machines	
	n jobs	

Theorem The LPT algorithm is a 3/2-approximation algorithm

Proof Consider the machine *i* with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

 $(L_i - t_j) \leq \text{Opt}$

ullet If $n\leqslant m$ then we are done so assume n>m

	1 🛄 💳	
	2 🛄 💳	
4	3 🛄 💳	
5	4 🛄 💳	
	5 🛄 💳	
ich d		ich i

time units

0 **•** 2 3 0 5 job j

m	machines
	n jobs

Job j takes t_j

time units

Theorem The LPT algorithm is a 3/2-approximation algorithm

Proof Consider the machine *i* with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

 $(L_i - t_j) \leq \text{Opt}$

- If $n \leqslant m$ then we are done so assume n > m
- Further if $(L_i t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$

Theorem The LPT algorithm is a 3/2-approximation algorithm

Proof Consider the machine i with largest load $T_l = L_i$

• 0 2 job j

 Let j denote the last job machine i completes 	3
 Using the same argument as before, we have that, 	
$(L_i - t_j) \leqslant \mathrm{Opt}$	
$ullet$ If $n \leqslant m$ then we are done so assume $n > m$	
• Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$	m machines n jobs
Fact $Opt \ge \max_j t_j$	Job j takes t time units

0 **•** 2 3 0 5 job j

m	machines
	n jobs

Job j takes t_j

time units

Theorem The LPT algorithm is a 3/2-approximation algorithm

Proof Consider the machine *i* with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

 $(L_i - t_j) \leq \text{Opt}$

- If $n \leqslant m$ then we are done so assume n > m
- Further if $(L_i t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$

0

2 🖭

5

3

job j

Theorem The LPT algorithm is a 3/2-approximation algorithm

Proof Consider the machine *i* with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

 $(L_i - t_j) \leqslant \text{Opt}$

• If $n \leqslant m$ then we are done so assume n > m

• Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$

so assume that $(L_i - t_j) > 0$

m machines n jobs

Theorem The LPT algorithm is a 3/2-approximation algorithm

Proof Consider the machine *i* with largest load $T_l = L_i$

- Let i denote the last job machine i completes
- Using the same argument as before, we have that,

 $(L_i - t_j) \leq \text{Opt}$

• If $n \leqslant m$ then we are done so assume n > m

• Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$ so assume that $(L_i - t_j) > 0$

m machines n jobs

• Therefore machine i was assigned at least two jobs

job j

Theorem The LPT algorithm is a 3/2-approximation algorithm

Proof Consider the machine *i* with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

 $(L_i - t_j) \leqslant \text{Opt}$

•

2 🕒

• If $n \leq m$ then we are done so assume n > m

• Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$ so assume that $(L_i - t_j) > 0$

m machines n jobs

• Therefore machine i was assigned at least two jobs

By the algorithm description, we have that $j \geqslant m+1$

Theorem The LPT algorithm is a 3/2-approximation algorithm

Proof Consider the machine i with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

 $(L_i - t_j) \leq \text{Opt}$

• If $n \leqslant m$ then we are done so assume n > m

• Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$ so assume that $(L_i - t_j) > 0$

m machines n jobs

Job j takes t_j time units

• Therefore machine i was assigned at least two jobs

By the algorithm description, we have that $j \geqslant m+1$

it doesn't assign a second job to any machine until every machine has at least one job

job j

Theorem The LPT algorithm is a 3/2-approximation algorithm

Proof Consider the machine *i* with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

 $(L_i - t_j) \leqslant \text{Opt}$

0

2 🕒

• If $n \leq m$ then we are done so assume n > m

• Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$ so assume that $(L_i - t_j) > 0$

m machines n jobs

• Therefore machine i was assigned at least two jobs

By the algorithm description, we have that $j \geqslant m+1$

Theorem The LPT algorithm is a 3/2-approximation algorithm

Proof Consider the machine *i* with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

 $(L_i - t_j) \leq \text{Opt}$

ullet If $n\leqslant m$ then we are done so assume n>m

• Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$ so assume that $(L_i - t_j) > 0$

• Therefore machine i was assigned at least two jobs

By the algorithm description, we have that $j \geqslant m+1$

 $t_j \leqslant t_{m+1} \leqslant \mathrm{Opt}/2$ (by the Lemma)

1 🛄 💳	
2 🛄 💳	
3 🛄 💳	
4 🛄 💳	
5 🛄 💳	
	job j

m machines n jobs

iob j

Theorem The LPT algorithm is a 3/2-approximation algorithm

Proof Consider the machine *i* with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

 $(L_i - t_j) \leq \text{Opt}$

5

0

2

3

• If $n \leqslant m$ then we are done so assume n > m

• Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$ so assume that $(L_i - t_j) > 0$

• Therefore machine i was assigned at least two jobs

By the algorithm description, we have that $j \geqslant m+1$

 $t_j \leqslant t_{m+1} \leqslant \mathrm{Opt}/2$ (by the Lemma)

Lemma If n > m then $Opt \ge 2t_{(m+1)}$ (after sorting)

m machines n jobs

Theorem The LPT algorithm is a 3/2-approximation algorithm

Proof Consider the machine *i* with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

 $(L_i - t_j) \leq \text{Opt}$

ullet If $n\leqslant m$ then we are done so assume n>m

• Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$ so assume that $(L_i - t_j) > 0$

• Therefore machine i was assigned at least two jobs

By the algorithm description, we have that $j \geqslant m+1$

 $t_j \leqslant t_{m+1} \leqslant \mathrm{Opt}/2$ (by the Lemma)

1 🛄 💳	
2 🛄 💳	
3 🛄 💳	
4 🛄 💳	
5 🛄 💳	
	job j

m machines n jobs

• If $n \leqslant m$ then we are done so assume n > m

Theorem The LPT algorithm is a 3/2-approximation algorithm

Proof Consider the machine *i* with largest load $T_l = L_i$

Using the same argument as before, we have that,

• Let i denote the last job machine i completes

• Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$ so assume that $(L_i - t_j) > 0$

 $(L_i - t_j) \leq \text{Opt}$

• Therefore machine i was assigned at least two jobs

By the algorithm description, we have that $j \ge m+1$

 $t_j \leqslant t_{m+1} \leqslant \mathrm{Opt}/2$ (by the Lemma)

Therefore, $T_l = L_i = (L_i - t_j) + t_j \leq \text{Opt} + \text{Opt}/2 = (3/2) \cdot \text{Opt}$

m machines n jobs

Scheduling conclusions

m machines n jobs

Theorem The greedy algorithm is a 2-approximation algorithm which runs in $O(n \log m)$ time and it's online

Theorem The LPT algorithm is a 3/2-approximation algorithm which runs in $O(n \log n)$ time

In fact, LPT is a 4/3-approximation algorithm (using better analysis)

k-centers

k-centers

(i.e. 'normal' euclidean distance)

(i.e. 'normal' euclidean distance)

(i.e. 'normal' euclidean distance)

University of BRISTOL

Start by picking any point to be a center

×

×

×

X

Repeatedly pick the site which is furthest from any existing center

X

X

×

X

×

×

Х

University of BRISTOL

Start by picking any point to be a center

X

×

×

X

Repeatedly pick the site which is furthest from any existing center

X

X

×

X

×

×

Х

Repeatedly pick the site which is furthest from any existing center

×

× ×

X

X

X

A Greedy approximation

Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center

×

×

X

X

X

×

X

X

×

× ×

X

A Greedy approximation

Start by picking any point to be a center

X

X

×

X

× • Repeatedly pick the, site which is furthest from any existing center

X

r

X

X

X

× ×

X

X

X

A Greedy approximation

Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center

This takes O(nk) time

×

×

X

X

X

×

X

X

X

× ×

Х

A Greedy approximation

Start by picking any point to be a center

X

X

×

X

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ &$

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Proof

University of BRISTOL

The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal) Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 1: No $s_i, s_{i'} \in C_g$ are closest to the same $s_j \in C_{\mathrm{Opt}}$

University of BRISTOL

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal) Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 1: No $s_i, s_{i'} \in C_g$ are closest to the same $s_j \in C_{\text{Opt}}$

University of BRISTOL

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Proof

University of BRISTOL

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Proof

University of BRISTOL

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Proof

University of BRISTOL

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Proof

University of BRISTOL

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Proof

University of BRISTOL

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Proof

University of BRISTOL

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Proof

University of BRISTOL

The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal) Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some $s_i, s_{i'} \in C_g$ are closest to the same $s_j \in C_{\text{Opt}}$

University of BRISTOL

The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal) Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some $s_i, s_{i'} \in C_g$ are closest to the same $s_j \in C_{\text{Opt}}$

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal) Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some $s_i, s_{i'} \in C_g$ are closest to the same $s_j \in C_{\text{Opt}}$

Assume wlog. that Greedy made s_i a center after $s_{i'}$

University of BRISTOL

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal) Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some $s_i, s_{i'} \in C_g$ are closest to the same $s_j \in C_{\text{Opt}}$

Assume wlog. that Greedy made s_i a center after $s_{i'}$

 s_i was added as a center because it was

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal) Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some $s_i, s_{i'} \in C_g$ are closest to the same $s_j \in C_{\text{Opt}}$

Assume wlog. that Greedy made s_i a center after $s_{i'}$

 s_i was added as a center because it was the furthest from any existing Greedy center

University of BRISTOL

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal) Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some $s_i, s_{i'} \in C_g$ are closest to the same $s_j \in C_{\text{Opt}}$

Assume wlog. that Greedy made s_i a center after $s_{i'}$

 s_i was added as a center because it was the furthest from any existing Greedy center

However, s_i is at most 2Opt away from $s_{i'}$

University of BRISTOL

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal) Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some $s_i, s_{i'} \in C_g$ are closest to the same $s_j \in C_{\text{Opt}}$

Assume wlog. that Greedy made s_i a center after $s_{i'}$

 s_i was added as a center because it was the furthest from any existing Greedy center

However, s_i is at most 2Opt away from $s_{i'}$

University of BR ISTOI

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal) Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some $s_i, s_{i'} \in C_g$ are closest to the same $s_j \in C_{\text{Opt}}$

Assume wlog. that Greedy made s_i a center after $s_{i'}$

 s_i was added as a center because it was the furthest from any existing Greedy center

However, s_i is at most $20 \mathrm{pt}$ away from $s_{i'}$

So even before adding s_i as a center, all sites were $\leqslant 20 \mathrm{pt}$ away from a Greedy center

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal) Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some $s_i, s_{i'} \in C_g$ are closest to the same $s_j \in C_{\text{Opt}}$

Assume wlog. that Greedy made s_i a center after $s_{i'}$

 s_i was added as a center because it was the furthest from any existing Greedy center

However, s_i is at most 20pt away from $s_{i'}$

So even before adding s_i as a center, all sites were ≤ 20 pt away from a Greedy center Therefore, $r_q \leq 20$ pt

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm which runs in O(nk) time

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm which runs in O(nk) time

• The approximation works for any (metric) distance function,

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm which runs in O(nk) time

• The approximation works for any (metric) distance function,

 $d(s_i, s_j) = L_1$ or L_∞ for example

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm which runs in O(nk) time

• The approximation works for any (metric) distance function,

 $d(s_i, s_j) = L_1$ or L_∞ for example

• Distance function d is a metric iff

 $d(x,y) = d(y,x), d(x,y) \ge 0$

 $(d(x,y)=0 \text{ iff } x=y) \text{ and } d(x,z) \leqslant d(x,y) + d(y,z)$

University of BRISTOL

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm which runs in O(nk) time

• The approximation works for any (metric) distance function,

 $d(s_i, s_j) = L_1$ or L_∞ for example

• Distance function d is a metric iff

 $d(x,y) = d(y,x), d(x,y) \ge 0$

 $(d(x,y)=0 \text{ iff } x=y) \text{ and } d(x,z) \leqslant d(x,y) + d(y,z)$

• For a general (metric) d, the problem is not α -approximable with $\alpha < 2$

University of BRISTOL

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm which runs in O(nk) time

• The approximation works for any (metric) distance function,

 $d(s_i, s_j) = L_1$ or L_∞ for example

• Distance function d is a metric iff

 $d(x,y) = d(y,x), d(x,y) \ge 0$

 $(d(x,y)=0 \text{ iff } x=y) \text{ and } d(x,z) \leqslant d(x,y) + d(y,z)$

• For a general (metric) d, the problem is not α -approximable with $\alpha < 2$

 \bullet For $d=L_2$, the problem is not $\alpha\text{-approximable}$ with $\alpha<\sqrt{3}\approx 1.73$

University of BRISTOL

Theorem The Greedy algorithm for k-center is a 2-approximation algorithm which runs in O(nk) time

• The approximation works for any (metric) distance function,

 $d(s_i, s_j) = L_1$ or L_∞ for example

• Distance function d is a metric iff

 $d(x,y) = d(y,x), d(x,y) \ge 0$

 $(d(x,y)=0 \text{ iff } x=y) \text{ and } d(x,z) \leqslant d(x,y) + d(y,z)$

- For a general (metric) d, the problem is not α -approximable with $\alpha < 2$
- \bullet For $d=L_2$, the problem is not $\alpha\text{-approximable}$ with $\alpha<\sqrt{3}\approx 1.73$
- \bullet For $d=L_1$ or $d=L_\infty$, the problem is not $\alpha\text{-approximable}$ with $\alpha<2$