Advanced Algorithms - COMS31900

Approximation algorithms part one

Constant factor approximations

Raphaël Clifford

Slides by Benjamin Sach

NP-completeness recap

NP is the class of decision problems we can check the answer to in polynomial time

A problem A is NP-complete if
A is in NP
Every B in NP has a polynomial time reduction to A
(this second part is the definition of NP-hard)

NP-completeness recap

'yes/no' problems

NP is the class of decision problems we can check the answer to in polynomial time

A problem A is NP-complete if
A is in NP
Every B in NP has a polynomial time reduction to A
(this second part is the definition of NP-hard)

NP-completeness recap

NP is the class of decision problems we can check the answer to in polynomial time

A problem A is NP-complete if
A is in NP
Every B in NP has a polynomial time reduction to A
(this second part is the definition of NP-hard)

NP-completeness recap

NP is the class of decision problems we can check the answer to in polynomial time

A problem A is NP-complete if
A is in NP
Every B in NP has a polynomial time reduction to A
(this second part is the definition of NP-hard)

NP-completeness recap

NP is the class of decision problems we can check the answer to in polynomial time

A problem A is NP-complete if
A is in NP
Every B in NP has a polynomial time reduction to A
(this second part is the definition of NP-hard)

NP-completeness recap

NP is the class of decision problems we can
check the answer to in polynomial time
A problem A is NP-complete if
A is in NP
Every B in NP has a polynomial time reduction to A
(this second part is the definition of NP-hard)

If we could solve A quickly we could solve every problem in NP quickly

NP-completeness recap

NP is the class of decision problems we can
check the answer to in polynomial time
A problem A is NP-complete if
A is in NP
Every B in NP has a polynomial time reduction to A
(this second part is the definition of NP-hard)

If we could solve A quickly we could solve every problem in NP quickly They are the 'hardest' problems in NP

NP-completeness recap

NP is the class of decision problems we can
check the answer to in polynomial time

A problem A is NP-complete if
A is in NP
Every B in NP has a polynomial time reduction to A
(this second part is the definition of NP-hard)

If we could solve A quickly we could solve every problem in NP quickly They are the 'hardest' problems in NP

Most computer scientists (l've met) believe
that you can't solve them in polynomial time (i.e. that $\mathrm{P} \neq \mathrm{NP}$)

NP-completeness recap

NP is the class of decision problems we can
check the answer to in polynomial time
A problem A is NP-complete if
A is in NP
Every B in NP has a polynomial time reduction to A
(this second part is the definition of NP-hard)

If we could solve A quickly we could solve every problem in NP quickly They are the 'hardest' problems in NP

NP-completeness recap

NP is the class of decision problems we can
check the answer to in polynomial time
A problem A is NP-complete if
A is in NP
Every B in NP has a polynomial time reduction to A
(this second part is the definition of NP-hard)

If we could solve A quickly we could solve every problem in NP quickly They are the 'hardest' problems in NP

So if a problem is NP -complete, we give up right?

塊
Bin packing

Bin packing

Bin packing

Bin packing

Bin packing

Bin packing

$|\operatorname{Bin}|=1$ and there is an unlimited number of bins...

Bin packing

Problem pack all items into the fewest possible bins

2/8
3/8

Bin packing

Problem pack all items into the fewest possible bins

This is an example of an optimisation problem

2/8
3/8

Bin packing

Problem pack all items into the fewest possible bins

This is an example of an optimisation problem

Bin packing

Problem pack all items into the fewest possible bins

This is an example of an optimisation problem

2/8
3/8

Bin packing

Problem pack all items into the fewest possible bins

This is an example of an optimisation problem

Bin packing

Problem pack all items into the fewest possible bins

Bin packing

Problem pack all items into the fewest possible bins

The BinPacking problem is known to be NP-hard

Bin packing

Problem pack all items into the fewest possible bins

The BinPacking problem is known to be NP-hard and the decision version. . "Can you pack the items into at most k bins?"

Bin packing

Problem pack all items into the fewest possible bins

and the decision version. . . "Can you pack the items into at most k bins?"

Bin packing

Problem pack all items into the fewest possible bins

The BinPacking problem is known to be NP-hard

Bin packing

Problem pack all items into the fewest possible bins

The BinPacking problem is known to be NP-hard
but fortunately we can approximate

Next fit

If item i fits into bin j : pack it, $i++$; else $j++$;

3/8

Next fit

If item i fits into bin j : pack it, $i++$; else $j++$;

If item i fits into bin j : pack it, $i++$; else $j++$;

If item i fits into bin j : pack it, $i++$; else $j++$;

If item i fits into bin j : pack it, $i++$; else $j++$;

If item i fits into bin j : pack it, $i++$; else $j++$;

2/8
3/8

University of
Next fit

If item i fits into bin j : pack it, $i++$; else $j++$;

2/8
3/8

Next fit

If item i fits into bin j : ack it, $i++$; else $j++$;

Next fit

If item i fits into bin j : pack it, $i++$; else $j++$;

Next fit

If item i fits into bin j : pack it, $i++$; else $j++$;

Next fit

If item i fits into bin j : pack it, $i++$; else $j++$;

Next fit

If item i fits into bin j : pack it, $i++$; else $j++$;

Next fit

If item i fits into bin j : pack it, $i++$; else $j++$;

Next fit
\downarrow

If item i fits into bin j : pack it, $i++$; else $j++$;

Next fit

$$
\downarrow
$$

If item i fits into bin j : pack it, $\mathrm{i}++$; else $\mathrm{j}++$;

Next fit
\downarrow

If item i fits into bin j : pack it, $\mathrm{i}++$; else $\mathrm{j}++$;

Next fit

Next fit

Next fit runs in $O(n)$ time but how good is it?

Next fit

Next fit runs in $O(n)$ time but how good is it?

Next fit

Next fit runs in $O(n)$ time but how good is it?

Next fit

Next fit runs in $O(n)$ time but how good is it?

Let fill(i) be the sum of item sizes in bin i
and s be the number of non-empty bins (using Next fit)

Next fit

Next fit runs in $O(n)$ time but how good is it?

Let fill(i) be the sum of item sizes in bin i
and s be the number of non-empty bins (using Next fit)
Observe that fill $(2 i-1)+$ fill $(2 i)>1$ (for $1 \leqslant 2 i \leqslant s$)

Next fit

Next fit runs in $O(n)$ time but how good is it?

Let fill(i) be the sum of item sizes in bin i
and s be the number of non-empty bins (using Next fit)
Observe that fill $(2 i-1)+$ fill $(2 i)>1$ (for $1 \leqslant 2 i \leqslant s$)

$$
\text { so }\lfloor s / 2\rfloor<\sum_{1 \leqslant 2 i \leqslant s} \text { fill }(2 i-1)+\text { fill }(2 i)
$$

Next fit

Next fit runs in $O(n)$ time but how good is it?

Let fill(i) be the sum of item sizes in bin i
and s be the number of non-empty bins (using Next fit)
Observe that fill $(2 i-1)+$ fill $(2 i)>1$ (for $1 \leqslant 2 i \leqslant s$)

$$
\text { so }\lfloor s / 2\rfloor<\sum_{1 \leqslant 2 i \leqslant s} \text { fill }(2 i-1)+\text { fill }(2 i) \leqslant I
$$

Next fit

Next fit runs in $O(n)$ time but how good is it?

Let fill(i) be the sum of item sizes in bin i
and s be the number of non-empty bins (using Next fit)
the sum of the
Observe that fill $(2 i-1)+$ fill $(2 i)>1$ (for $1 \leqslant 2 i \leqslant s$)

$$
\text { so }\lfloor s / 2\rfloor<\sum_{1 \leqslant 2 i \leqslant s} \text { fill }(2 i-1)+\text { fill }(2 i) \leqslant I
$$

Next fit

Next fit runs in $O(n)$ time but how good is it?

Let fill(i) be the sum of item sizes in bin i
and s be the number of non-empty bins (using Next fit)
the sum of the
Observe that fill $(2 i-1)+$ fill $(2 i)>1$ (for $1 \leqslant 2 i \leqslant s$)

$$
\text { so }\lfloor s / 2\rfloor<\sum_{1 \leqslant 2 i \leqslant s} \text { fill }(2 i-1)+\text { fill }(2 i) \quad \leqslant I \leqslant \mathrm{Opt}
$$

Next fit

Next fit runs in $O(n)$ time but how good is it?

Let fill(i) be the sum of item sizes in bin i
and s be the number of non-empty bins (using Next fit)
Observe that fill $(2 i-1)+$ fill $(2 i)>1$ (for $1 \leqslant 2 i \leqslant s$)

$$
\text { so }\lfloor s / 2\rfloor<\sum_{1 \leqslant 2 i \leqslant s} \text { fill }(2 i-1)+\text { fill }(2 i) \quad \leqslant I \leqslant \mathrm{Opt}
$$

Next fit

Next fit runs in $O(n)$ time but how good is it?

Let fill(i) be the sum of item sizes in bin i
and s be the number of non-empty bins (using Next fit)
Observe that fill $(2 i-1)+$ fill $(2 i)>1$ (for $1 \leqslant 2 i \leqslant s$)

$$
\text { so }\lfloor s / 2\rfloor<\sum_{1 \leqslant 2 i \leqslant s} \text { fill }(2 i-1)+\text { fill }(2 i) \quad \leqslant I \leqslant \mathrm{Opt}
$$

Next fit

Next fit runs in $O(n)$ time but how good is it?

Let fill(i) be the sum of item sizes in bin i
and s be the number of non-empty bins (using Next fit)
Observe that fill $(2 i-1)+$ fill $(2 i)>1$ (for $1 \leqslant 2 i \leqslant s$)

$$
\text { so }\lfloor s / 2\rfloor<\sum_{1 \leqslant 2 i \leqslant s} \text { fill }(2 i-1)+\text { fill }(2 i) \quad \leqslant I \leqslant \mathrm{Opt}
$$

therefore $s \leqslant 2 \cdot$ Opt

Next fit

Next fit runs in $O(n)$ time but how good is it?

Let fill(i) be the sum of item sizes in bin i
and s be the number of non-empty bins (using Next fit)
Observe that fill $(2 i-1)+$ fill $(2 i)>1$ (for $1 \leqslant 2 i \leqslant s$)

$$
\text { so }\lfloor s / 2\rfloor<\sum_{1 \leqslant 2 i \leqslant s} \text { fill }(2 i-1)+\text { fill }(2 i) \quad \leqslant I \leqslant \mathrm{Opt}
$$

therefore $s \leqslant 2$. Opt in other words the Next Fit is never worse than twice the optimal

Next fit

Next fit runs in $O(n)$ time but how good is it?

Let fill(i) be the sum of item sizes in bin i
and s be the number of non-empty bins (using Next fit)
Observe that fill $(2 i-1)+$ fill $(2 i)>1$ (for $1 \leqslant 2 i \leqslant s$)

$$
\text { so }\lfloor s / 2\rfloor<\sum_{1 \leqslant 2 i \leqslant s} \text { fill }(2 i-1)+\text { fill }(2 i) \quad \leqslant I \leqslant \mathrm{Opt}
$$

therefore $s \leqslant 2 \cdot$ Opt

Approximation Algorithms

An algorithm A is an α-approximation algorithm for problem P if,

- A runs in polynomial time
- A always outputs a solution with value s
within an α factor of Opt

Approximation Algorithms

An algorithm A is an α-approximation algorithm for problem P if,

- A runs in polynomial time
- A always outputs a solution with value s within an α factor of Opt

Here P is an optimisation problem with optimal solution of value Opt

Approximation Algorithms

An algorithm A is an α-approximation algorithm for problem P if,

- A runs in polynomial time
- A always outputs a solution with value s within an α factor of Opt

Here P is an optimisation problem with optimal solution of value Opt

- If P is a maximisation problem, $\frac{\mathrm{Opt}}{\alpha} \leqslant s \leqslant \mathrm{Opt}$

Approximation Algorithms

An algorithm A is an α-approximation algorithm for problem P if,

- A runs in polynomial time
- A always outputs a solution with value s within an α factor of Opt

Here P is an optimisation problem with optimal solution of value Opt

- If P is a maximisation problem, $\frac{\mathrm{Opt}}{\alpha} \leqslant s \leqslant \mathrm{Opt}$
- If P is a minimisation problem (like BinPACkIng), Opt $\leqslant s \leqslant \alpha \cdot \mathrm{Opt}$

Approximation Algorithms

An algorithm A is an α-approximation algorithm for problem P if,

- A runs in polynomial time
- A always outputs a solution with value s within an α factor of Opt

Here P is an optimisation problem with optimal solution of value Opt

- If P is a maximisation problem, $\frac{\mathrm{Opt}}{\alpha} \leqslant s \leqslant \mathrm{Opt}$
- If P is a minimisation problem (like BinPACkIng), Opt $\leqslant s \leqslant \alpha \cdot \mathrm{Opt}$

We have seen a 2 -approximation algorithm for BINPACKING

Approximation Algorithms

An algorithm A is an α-approximation algorithm for problem P if,

- A runs in polynomial time
- A always outputs a solution with value s within an α factor of Opt

Here P is an optimisation problem with optimal solution of value Opt

- If P is a maximisation problem, $\frac{\mathrm{Opt}}{\alpha} \leqslant s \leqslant \mathrm{Opt}$
- If P is a minimisation problem (like BINPACkING), Opt $\leqslant s \leqslant \alpha \cdot \mathrm{Opt}$

We have seen a 2 -approximation algorithm for BINPACKING
the number of bins used, s is always between Opt and $2 \cdot \mathrm{Opt}$

Approximation Algorithms

An algorithm A is an α-approximation algorithm for problem P if,

- A runs in polynomial time
- A always outputs a solution with value s within an α factor of Opt

Here P is an optimisation problem with optimal solution of value Opt

- If P is a maximisation problem, $\frac{\mathrm{Opt}}{\alpha} \leqslant s \leqslant \mathrm{Opt}$
- If P is a minimisation problem (like BinPAcking), Opt $\leqslant s \leqslant \alpha \cdot \mathrm{Opt}$

We have seen a 2 -approximation algorithm for BINPACKING
the number of bins used, s is always between Opt and $2 \cdot \mathrm{Opt}$

In the examples we consider, α will be a constant but it could depend on n (the input size)

We have seen that Next fit is a 2-approximation algorithm for Bin packing which runs in $O(n)$ time

First fit decreasing (FFD)

First fit decreasing (FFD)

Step 1: Sort the items into non-increasing order

First fit decreasing (FFD)

Step 1: Sort the items into non-increasing order

First fit decreasing (FFD)

Step 2: Put each item in the first (left-most) bin it fits in

First fit decreasing (FFD)

Step 2: Put each item in the first (left-most) bin it fits in

First fit decreasing (FFD)

Step 2: Put each item in the first (left-most) bin it fits in

3/8

First fit decreasing (FFD)

Step 2: Put each item in the first (left-most) bin it fits in

$3 / 8$

First fit decreasing (FFD)

Step 2: Put each item in the first (left-most) bin it fits in

First fit decreasing (FFD)

Step 2: Put each item in the first (left-most) bin it fits in

First fit decreasing (FFD)

Step 2: Put each item in the first (left-most) bin it fits in

First fit decreasing (FFD)

Step 2: Put each item in the first (left-most) bin it fits in

First fit decreasing (FFD)

Step 2: Put each item in the first (left-most) bin it fits in

First fit decreasing (FFD)

First fit decreasing (FFD)

FFD runs in $O\left(n^{2}\right)$ time but how good is it?

First fit decreasing (FFD)

FFD runs in $O\left(n^{2}\right)$ time but how good is it?

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)

First fit decreasing (FFD)

First fit decreasing (FFD)

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 1: $\operatorname{Bin} j$ contains an item of size $>1 / 2$
Every bin $j^{\prime} \leqslant j$ contains an item of size $>1 / 2$

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 1: $\operatorname{Bin} j$ contains an item of size $>1 / 2$
Every bin $j^{\prime} \leqslant j$ contains an item of size $>1 / 2$
because we packed big things first and each thing was packed in the lowest numbered bin

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 1: $\operatorname{Bin} j$ contains an item of size $>1 / 2$
Every bin $j^{\prime} \leqslant j$ contains an item of size $>1 / 2$
because we packed big things first and each thing was packed in the lowest numbered bin

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 1: $\operatorname{Bin} j$ contains an item of size $>1 / 2$
Every bin $j^{\prime} \leqslant j$ contains an item of size $>1 / 2$

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 1: $\operatorname{Bin} j$ contains an item of size $>1 / 2$
Every bin $j^{\prime} \leqslant j$ contains an item of size $>1 / 2$ each of these items has to be in a different bin (even in Opt)

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 1: $\operatorname{Bin} j$ contains an item of size $>1 / 2$
Every bin $j^{\prime} \leqslant j$ contains an item of size $>1 / 2$ each of these items has to be in a different bin (even in Opt)

So Opt uses at least $\frac{2 s}{3}$ bins

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 1: $\operatorname{Bin} j$ contains an item of size $>1 / 2$
Every bin $j^{\prime} \leqslant j$ contains an item of size $>1 / 2$ each of these items has to be in a different bin (even in Opt)

So Opt uses at least $\frac{2 s}{3}$ bins

$$
\text { or. } . s \leqslant \frac{3 \mathrm{Opt}}{2}
$$

First fit decreasing (FFD)

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 2 : $\operatorname{Bin} j$ contains only items of size $\leqslant 1 / 2$
when FFD packed the first item into bin j,

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 2 : $\operatorname{Bin} j$ contains only items of size $\leqslant 1 / 2$
when FFD packed the first item into bin j,

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 2 : $\operatorname{Bin} j$ contains only items of size $\leqslant 1 / 2$
when FFD packed the first item into bin j,

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 2 : $\operatorname{Bin} j$ contains only items of size $\leqslant 1 / 2$
when FFD packed the first item into bin j,

1. all bins $j,(j+1), \ldots,(s-2),(s-1)$ were empty

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 2 : $\operatorname{Bin} j$ contains only items of size $\leqslant 1 / 2$
when FFD packed the first item into bin j,

1. all bins $j,(j+1), \ldots,(s-2),(s-1)$ were empty
2. and all unpacked items had size $\leqslant 1 / 2$

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 2 : $\operatorname{Bin} j$ contains only items of size $\leqslant 1 / 2$
when FFD packed the first item into bin j,

1. all bins $j,(j+1), \ldots,(s-2),(s-1)$ were empty
2. and all unpacked items had size $\leqslant 1 / 2$
(because we pack in non-increasing order)
so Bins $j,(j+1), \ldots,(s-2),(s-1)$ each contain at least two items

First fit decreasing (FFD)

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 2 : $\operatorname{Bin} j$ contains only items of size $\leqslant 1 / 2$
when FFD packed the first item into bin j,

1. all bins $j,(j+1), \ldots,(s-2),(s-1)$ were empty
2. and all unpacked items had size $\leqslant 1 / 2$
(because we pack in non-increasing order)
so Bins $j,(j+1), \ldots,(s-2),(s-1)$ each contain at least two items
(we only use a new bin when the item won't fit in any previous bin)

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 2 : $\operatorname{Bin} j$ contains only items of size $\leqslant 1 / 2$
so Bins $j,(j+1), \ldots,(s-2),(s-1)$ each contain at least two items and bin s contains at least one item

First fit decreasing (FFD)

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 2 : $\operatorname{Bin} j$ contains only items of size $\leqslant 1 / 2$
so Bins $j,(j+1), \ldots,(s-2),(s-1)$ each contain at least two items and bin s contains at least one item

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 2 : $\operatorname{Bin} j$ contains only items of size $\leqslant 1 / 2$
so Bins $j,(j+1), \ldots,(s-2),(s-1)$ each contain at least two items and bin s contains at least one item

This gives a total of $2(s-j)+1$ items, none of which fits into bins $1,2,3, \ldots,(j-1)$
so $I>\min \{j-1,2(s-j)+1\}$

First fit decreasing (FFD)

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 2: Bin j contains only items of size $\leqslant 1 / 2$
so Bins $j,(j+1), \ldots,(s-2),(s-1)$ each contain at least two items and bin s contains at least one item

This gives a total of $2(s-j)+1$ items, none of which fits into bins $1,2,3, \ldots,(j-1)$
so $I>\min \{j-1,2(s-j)+1\} \geqslant\lceil 2 s / 3\rceil-1$

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 2 : $\operatorname{Bin} j$ contains only items of size $\leqslant 1 / 2$
so Bins $j,(j+1), \ldots,(s-2),(s-1)$ each contain at least two items and bin s contains at least one item

This gives a total of $2(s-j)+1$ items, none of which fits into bins $1,2,3, \ldots,(j-1)$
so $I>\min \{j-1,2(s-j)+1\} \geqslant\lceil 2 s / 3\rceil-1$

$$
\text { by plugging in } j=\lceil 2 s / 3\rceil
$$

First fit decreasing (FFD)

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 2: Bin j contains only items of size $\leqslant 1 / 2$

$$
\text { As }\lceil 2 s / 3\rceil-1<I \text { and } I \leqslant \mathrm{Opt}
$$

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 2 : $\operatorname{Bin} j$ contains only items of size $\leqslant 1 / 2$

$$
\begin{aligned}
& \text { As }\lceil 2 s / 3\rceil-1<I \text { and } I \leqslant \mathrm{Opt} \\
& \quad \text { we have that }\lceil 2 s / 3\rceil-1<\mathrm{Opt}
\end{aligned}
$$

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 2 : $\operatorname{Bin} j$ contains only items of size $\leqslant 1 / 2$

$$
\begin{aligned}
& \text { As }\lceil 2 s / 3\rceil-1<I \text { and } I \leqslant \mathrm{Opt} \\
& \quad \text { we have that }\lceil 2 s / 3\rceil-1<\mathrm{Opt}
\end{aligned}
$$

...but both sides are integers...

$$
\begin{aligned}
& \text { so }\lceil 2 s / 3\rceil \leqslant \text { Opt } \\
& \text { finally } \ldots 2 s / 3 \leqslant\lceil 2 s / 3\rceil \leqslant \mathrm{Opt} \\
& \qquad \text { or } s \leqslant(3 / 2) \mathrm{Opt}
\end{aligned}
$$

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)

Case 1: $\operatorname{Bin} j$ contains an item of size $>1 / 2$
Case 2 : $\operatorname{Bin} j$ contains only items of size $\leqslant 1 / 2$

$$
\text { in both cases. } . s \leqslant \frac{3 \mathrm{Opt}}{2}
$$

First fit decreasing (FFD)

Approximation Algorithms Summary

An algorithm A is an α-approximation algorithm for problem P if,

- A runs in polynomial time
- A always outputs a solution with value s within an α factor of Opt

Here P is an optimisation problem with optimal solution of value Opt

If P is a maximisation problem, $\frac{\mathrm{Opt}}{\alpha} \leqslant s \leqslant \mathrm{Opt}$
If P is a minimisation problem (like BinPacking), Opt $\leqslant s \leqslant \alpha \cdot \mathrm{Opt}$

We have seen Next Fit which is a 2 -approximation algorithm for BINPACKING which runs in $O(n)$ time
and First Fit Decreasing which is a $3 / 2$-approximation algorithm for BinPACKING which runs in $O\left(n^{2}\right)$ time

