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NP-completeness recap

A problemA is NP-complete if

NP is the class of decision problems we can
check the answer to in polynomial time

A is in NP

EveryB in NP has a polynomial time reduction toA

If we could solveA quickly we could solve every problem in NP quickly

They are the ‘hardest’ problems in NP

So if a problem is NP-complete, we give up right?

(this second part is the definition of NP-hard)
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3/82/82/8

0 < |Item| 6 1

|Bin| = 1 and there is an unlimited number of bins. . .

I is the sum of all item sizes
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The BINPACKING problem is known to be NP-hard
but fortunately we can approximate
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therefore s 6 2 ·Opt in other words the Next Fit is never worse than twice the optimal



Next fit

1

4/8

2/8

4/8
7/8

2/8

3/8

Next fit runs inO(n) time but how good is it?

Let fill(i) be the sum of item sizes in bin i

Observe that fill(2i− 1) + fill(2i) > 1 (for 1 6 2i 6 s)

and s be the number of non-empty bins (using Next fit)

so bs/2c <
∑

162i6s

fill(2i− 1) + fill(2i) 6 I 6 Opt

therefore s 6 2 ·Opt



Approximation Algorithms

An algorithmA is an α-approximation algorithm for problem P if,

◦A runs in polynomial time

◦A always outputs a solution with value s

within an α factor of Opt



Approximation Algorithms

An algorithmA is an α-approximation algorithm for problem P if,

◦A runs in polynomial time

◦A always outputs a solution with value s

Here P is an optimisation problem with optimal solution of value Opt

within an α factor of Opt



Approximation Algorithms

An algorithmA is an α-approximation algorithm for problem P if,

◦A runs in polynomial time

◦A always outputs a solution with value s

Here P is an optimisation problem with optimal solution of value Opt

• If P is a maximisation problem, Opt
α 6 s 6 Opt

within an α factor of Opt



Approximation Algorithms

An algorithmA is an α-approximation algorithm for problem P if,

◦A runs in polynomial time

◦A always outputs a solution with value s

Here P is an optimisation problem with optimal solution of value Opt

• If P is a maximisation problem, Opt
α 6 s 6 Opt

within an α factor of Opt

• If P is a minimisation problem (like BINPACKING), Opt 6 s 6 α ·Opt



Approximation Algorithms

An algorithmA is an α-approximation algorithm for problem P if,

◦A runs in polynomial time

◦A always outputs a solution with value s

Here P is an optimisation problem with optimal solution of value Opt

• If P is a maximisation problem, Opt
α 6 s 6 Opt

within an α factor of Opt

• If P is a minimisation problem (like BINPACKING), Opt 6 s 6 α ·Opt

We have seen a 2-approximation algorithm for BINPACKING



Approximation Algorithms

An algorithmA is an α-approximation algorithm for problem P if,

◦A runs in polynomial time

◦A always outputs a solution with value s

Here P is an optimisation problem with optimal solution of value Opt

• If P is a maximisation problem, Opt
α 6 s 6 Opt

within an α factor of Opt

• If P is a minimisation problem (like BINPACKING), Opt 6 s 6 α ·Opt

We have seen a 2-approximation algorithm for BINPACKING

the number of bins used, s is always between Opt and 2 ·Opt



Approximation Algorithms

An algorithmA is an α-approximation algorithm for problem P if,

◦A runs in polynomial time

◦A always outputs a solution with value s

Here P is an optimisation problem with optimal solution of value Opt

• If P is a maximisation problem, Opt
α 6 s 6 Opt

within an α factor of Opt

• If P is a minimisation problem (like BINPACKING), Opt 6 s 6 α ·Opt

We have seen a 2-approximation algorithm for BINPACKING

the number of bins used, s is always between Opt and 2 ·Opt

In the examples we consider, α will be a constant but it could depend on n (the input size)
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can we do better?
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so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items

when FFD packed the first item into bin j,

j

1. all bins j, (j + 1), . . . , (s− 2), (s− 1) were empty

ss

2. and all unpacked items had size 6 1/2

(because we pack in non-increasing order)



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items

when FFD packed the first item into bin j,

j

1. all bins j, (j + 1), . . . , (s− 2), (s− 1) were empty

ss

2. and all unpacked items had size 6 1/2

(because we pack in non-increasing order)

2+ 2+ 2+ 2+



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items

when FFD packed the first item into bin j,

j

1. all bins j, (j + 1), . . . , (s− 2), (s− 1) were empty

ss

2. and all unpacked items had size 6 1/2

(because we pack in non-increasing order)

2+ 2+ 2+ 2+

(we only use a new bin when the item won’t fit in any previous bin)



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items

when FFD packed the first item into bin j,

j

1. all bins j, (j + 1), . . . , (s− 2), (s− 1) were empty

ss

2. and all unpacked items had size 6 1/2

(because we pack in non-increasing order)

2+ 2+ 2+ 2+



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

when FFD packed the first item into bin j,

j

1. all bins j, (j + 1), . . . , (s− 2), (s− 1) were empty

ss

2. and all unpacked items had size 6 1/2

(because we pack in non-increasing order)

2+ 2+ 2+ 2+



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

when FFD packed the first item into bin j,

j

1. all bins j, (j + 1), . . . , (s− 2), (s− 1) were empty

ss

2. and all unpacked items had size 6 1/2

(because we pack in non-increasing order)

2+ 2+ 2+ 2+ 1+



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

j

ss

2+ 2+ 2+ 2+ 1+



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

j

ss

2+ 2+ 2+ 2+ 1+



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

j

ss

2+ 2+ 2+ 2+ 1+

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

j

ss

2+ 2+ 2+ 2+ 1+

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

otherwise we would have packed them there

j

ss

2+ 2+ 2+ 2+ 1+

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

j

ss

2+ 2+ 2+ 2+ 1+

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

so I > min{j − 1, 2(s− j) + 1}

j

ss

2+ 2+ 2+ 2+ 1+

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

so I > min{j − 1, 2(s− j) + 1}
recall I is the total weight of all items

j

ss

2+ 2+ 2+ 2+ 1+

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

so I > min{j − 1, 2(s− j) + 1}
recall I is the total weight of all items

pairing these with these
considerconsider

j

ss

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

so I > min{j − 1, 2(s− j) + 1}
recall I is the total weight of all items

pairing these with these
considerconsider

j

ss

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

this + this
> 1



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

so I > min{j − 1, 2(s− j) + 1}
recall I is the total weight of all items

j

ss

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

so I > min{j − 1, 2(s− j) + 1}

j

ss

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

so I > min{j − 1, 2(s− j) + 1}> d2s/3e − 1

j

ss

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

so I > min{j − 1, 2(s− j) + 1}> d2s/3e − 1

by plugging in j = d2s/3e

j

ss

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

As d2s/3e − 1 < I

j

ss



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

As d2s/3e − 1 < I and I 6 Opt

j

ss



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

As d2s/3e − 1 < I

we have that d2s/3e − 1 < Opt

and I 6 Opt

j

ss



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

As d2s/3e − 1 < I

we have that d2s/3e − 1 < Opt

and I 6 Opt

. . . but both sides are integers. . .

so d2s/3e 6 Opt

finally . . .2s/3 6 d2s/3e 6 Opt

or s 6 (3/2)Opt

j

ss



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

j

ss



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

Case 1: Bin j contains an item of size> 1/2

in both cases. . .s 6
3Opt

2

j

ss



First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

So FFD is a 3/2-approximation algorithm for BINPACKING

Case 2: Bin j contains only items of size 6 1/2

Case 1: Bin j contains an item of size> 1/2

in both cases. . .s 6
3Opt

2

j

ss



Approximation Algorithms Summary

An algorithmA is an α-approximation algorithm for problem P if,

◦A runs in polynomial time

◦A always outputs a solution with value s

Here P is an optimisation problem with optimal solution of value Opt

If P is a maximisation problem, Opt
α 6 s 6 Opt

within an α factor of Opt

If P is a minimisation problem (like BINPACKING), Opt 6 s 6 α ·Opt

We have seen Next Fit which is a 2-approximation algorithm for BINPACKING

which runs inO(n) time

and First Fit Decreasing which is a 3/2-approximation algorithm for BINPACKING

which runs inO(n2) time

Bin Packing is NP-hard so solving it exactly in polynomial time would prove that P = NP


