
Advanced Algorithms – COMS31900

Approximation algorithms part one

Constant factor approximations

Raphaël Clifford

Slides by Benjamin Sach

NP-completeness recap

A problemA is NP-complete if

NP is the class of decision problems we can
check the answer to in polynomial time

A is in NP

EveryB in NP has a polynomial time reduction toA

(this second part is the definition of NP-hard)

NP-completeness recap

A problemA is NP-complete if

NP is the class of decision problems we can
check the answer to in polynomial time

A is in NP

EveryB in NP has a polynomial time reduction toA

(this second part is the definition of NP-hard)

‘yes/no’ problems

NP-completeness recap

A problemA is NP-complete if

NP is the class of decision problems we can
check the answer to in polynomial time

A is in NP

EveryB in NP has a polynomial time reduction toA

(this second part is the definition of NP-hard)

NP-completeness recap

A problemA is NP-complete if

NP is the class of decision problems we can
check the answer to in polynomial time

A is in NP

EveryB in NP has a polynomial time reduction toA

(this second part is the definition of NP-hard)

we can solveB
usingA

NP-completeness recap

A problemA is NP-complete if

NP is the class of decision problems we can
check the answer to in polynomial time

A is in NP

EveryB in NP has a polynomial time reduction toA

(this second part is the definition of NP-hard)

NP-completeness recap

A problemA is NP-complete if

NP is the class of decision problems we can
check the answer to in polynomial time

A is in NP

EveryB in NP has a polynomial time reduction toA

If we could solveA quickly we could solve every problem in NP quickly

(this second part is the definition of NP-hard)

NP-completeness recap

A problemA is NP-complete if

NP is the class of decision problems we can
check the answer to in polynomial time

A is in NP

EveryB in NP has a polynomial time reduction toA

If we could solveA quickly we could solve every problem in NP quickly

They are the ‘hardest’ problems in NP

(this second part is the definition of NP-hard)

NP-completeness recap

A problemA is NP-complete if

NP is the class of decision problems we can
check the answer to in polynomial time

A is in NP

EveryB in NP has a polynomial time reduction toA

If we could solveA quickly we could solve every problem in NP quickly

They are the ‘hardest’ problems in NP

(this second part is the definition of NP-hard)

that you can’t solve them in polynomial time (i.e. that P 6= NP)
Most computer scientists (I’ve met) believe

NP-completeness recap

A problemA is NP-complete if

NP is the class of decision problems we can
check the answer to in polynomial time

A is in NP

EveryB in NP has a polynomial time reduction toA

If we could solveA quickly we could solve every problem in NP quickly

They are the ‘hardest’ problems in NP

(this second part is the definition of NP-hard)

A polynomial time algorithm for an

NP-complete problem is worth

(a lot more than) a million dollars

NP-completeness recap

A problemA is NP-complete if

NP is the class of decision problems we can
check the answer to in polynomial time

A is in NP

EveryB in NP has a polynomial time reduction toA

If we could solveA quickly we could solve every problem in NP quickly

They are the ‘hardest’ problems in NP

(this second part is the definition of NP-hard)

NP-completeness recap

A problemA is NP-complete if

NP is the class of decision problems we can
check the answer to in polynomial time

A is in NP

EveryB in NP has a polynomial time reduction toA

If we could solveA quickly we could solve every problem in NP quickly

They are the ‘hardest’ problems in NP

So if a problem is NP-complete, we give up right?

(this second part is the definition of NP-hard)

Bin packing

1

1

4/8 4/8
7/8

3/82/82/8

Bin packing

Bins

1

1

4/8 4/8
7/8

3/82/82/8

Bin packing

Bins

1

Items

1

4/8 4/8
7/8

3/82/82/8

Bin packing

Bins

1

Items

1

4/8 4/8
7/8

3/82/82/8

0 < |Item| 6 1

Bin packing

Bins

1

Items

1

4/8 4/8
7/8

3/82/82/8

0 < |Item| 6 1

I is the sum of all item sizes

Bin packing

Bins

1

Items

1

4/8 4/8
7/8

3/82/82/8

0 < |Item| 6 1

|Bin| = 1 and there is an unlimited number of bins. . .

I is the sum of all item sizes

Bin packing

1

1

4/8 4/8
7/8

3/82/82/8

Problem pack all items into the fewest possible bins

Bin packing

1

1

4/8 4/8
7/8

3/82/82/8

Problem pack all items into the fewest possible bins

This is an example of an optimisation problem

Bin packing

1

1

Problem pack all items into the fewest possible bins

4/8 4/8
7/8

2/82/8

3/8

This is an example of an optimisation problem

Bin packing

1

1

4/8 4/8
7/8

3/82/82/8

Problem pack all items into the fewest possible bins

This is an example of an optimisation problem

Bin packing

1

1

Problem pack all items into the fewest possible bins

4/8

4/8

7/8

2/8

2/8

3/8

This is an example of an optimisation problem

Bin packing

1

1

Problem pack all items into the fewest possible bins

4/8

4/8

7/8

2/8

2/8

3/8

Bin packing

1

1

Problem pack all items into the fewest possible bins

4/8

4/8

7/8

2/8

2/8

3/8

The BINPACKING problem is known to be NP-hard

Bin packing

1

1

Problem pack all items into the fewest possible bins

4/8

4/8

7/8

2/8

2/8

3/8

The BINPACKING problem is known to be NP-hard

and the decision version. . . “Can you pack the items into at most k bins?”

is NP-complete

Bin packing

1

1

Problem pack all items into the fewest possible bins

4/8

4/8

7/8

2/8

2/8

3/8

The BINPACKING problem is known to be NP-hard

and the decision version. . . “Can you pack the items into at most k bins?”

is NP-complete

In the decision version,
k is part of the input

Bin packing

1

1

Problem pack all items into the fewest possible bins

4/8

4/8

7/8

2/8

2/8

3/8

The BINPACKING problem is known to be NP-hard

Bin packing

1

1

Problem pack all items into the fewest possible bins

4/8

4/8

7/8

2/8

2/8

3/8

The BINPACKING problem is known to be NP-hard
but fortunately we can approximate

Next fit

1

1

4/8 4/8
7/8

3/82/82/8

If item i fits into bin j: pack it, i++; else j++;

Next fit

1

1

4/8 4/8
7/8

3/82/82/8

If item i fits into bin j: pack it, i++; else j++;

Next fit

1

1

4/8
7/8

3/82/82/8

If item i fits into bin j: pack it, i++; else j++;

4/8

Next fit

1

1

4/8
7/8

3/82/82/8

If item i fits into bin j: pack it, i++; else j++;

4/8

Next fit

1

1

4/8
7/8

3/82/8

If item i fits into bin j: pack it, i++; else j++;

4/8

2/8

Next fit

1

1

4/8
7/8

3/82/8

If item i fits into bin j: pack it, i++; else j++;

4/8

2/8

Next fit

1

1

4/8
7/8

3/82/8

If item i fits into bin j: pack it, i++; else j++;

4/8

2/8

Next fit

1

1 7/8
3/82/8

If item i fits into bin j: pack it, i++; else j++;

4/8

2/8

4/8

Next fit

1

1 7/8
3/82/8

If item i fits into bin j: pack it, i++; else j++;

4/8

2/8

4/8

Next fit

1

1 7/8
3/82/8

If item i fits into bin j: pack it, i++; else j++;

4/8

2/8

4/8

Next fit

1

1

3/82/8

If item i fits into bin j: pack it, i++; else j++;

4/8

2/8

4/8
7/8

Next fit

1

1

3/82/8

If item i fits into bin j: pack it, i++; else j++;

4/8

2/8

4/8
7/8

Next fit

1

1

3/82/8

If item i fits into bin j: pack it, i++; else j++;

4/8

2/8

4/8
7/8

Next fit

1

1

3/8

If item i fits into bin j: pack it, i++; else j++;

4/8

2/8

4/8
7/8

2/8

Next fit

1

1

3/8

If item i fits into bin j: pack it, i++; else j++;

4/8

2/8

4/8
7/8

2/8

Next fit

1

1

If item i fits into bin j: pack it, i++; else j++;

4/8

2/8

4/8
7/8

2/8

3/8

Next fit

1

1

4/8

2/8

4/8
7/8

2/8

3/8

Next fit

1

1

4/8

2/8

4/8
7/8

2/8

3/8

Next fit runs inO(n) time but how good is it?

Next fit

1

1

4/8

2/8

4/8
7/8

2/8

3/8

Next fit runs inO(n) time but how good is it?

where n is the number of items

Next fit

1

4/8

2/8

4/8
7/8

2/8

3/8

Next fit runs inO(n) time but how good is it?

Next fit

1

4/8

2/8

4/8
7/8

2/8

3/8

Next fit runs inO(n) time but how good is it?

Let fill(i) be the sum of item sizes in bin i

and s be the number of non-empty bins (using Next fit)

Next fit

1

4/8

2/8

4/8
7/8

2/8

3/8

Next fit runs inO(n) time but how good is it?

Let fill(i) be the sum of item sizes in bin i

Observe that fill(2i− 1) + fill(2i) > 1 (for 1 6 2i 6 s)

and s be the number of non-empty bins (using Next fit)

Next fit

1

4/8

2/8

4/8
7/8

2/8

3/8

Next fit runs inO(n) time but how good is it?

Let fill(i) be the sum of item sizes in bin i

Observe that fill(2i− 1) + fill(2i) > 1 (for 1 6 2i 6 s)

and s be the number of non-empty bins (using Next fit)

so bs/2c <
∑

162i6s

fill(2i− 1) + fill(2i)

Next fit

1

4/8

2/8

4/8
7/8

2/8

3/8

Next fit runs inO(n) time but how good is it?

Let fill(i) be the sum of item sizes in bin i

Observe that fill(2i− 1) + fill(2i) > 1 (for 1 6 2i 6 s)

and s be the number of non-empty bins (using Next fit)

so bs/2c <
∑

162i6s

fill(2i− 1) + fill(2i) 6 I

Next fit

1

4/8

2/8

4/8
7/8

2/8

3/8

Next fit runs inO(n) time but how good is it?

Let fill(i) be the sum of item sizes in bin i

Observe that fill(2i− 1) + fill(2i) > 1 (for 1 6 2i 6 s)

and s be the number of non-empty bins (using Next fit)

so bs/2c <
∑

162i6s

fill(2i− 1) + fill(2i) 6 I

the sum of the
item weights

Next fit

1

4/8

2/8

4/8
7/8

2/8

3/8

Next fit runs inO(n) time but how good is it?

Let fill(i) be the sum of item sizes in bin i

Observe that fill(2i− 1) + fill(2i) > 1 (for 1 6 2i 6 s)

and s be the number of non-empty bins (using Next fit)

so bs/2c <
∑

162i6s

fill(2i− 1) + fill(2i) 6 I 6 Opt

the sum of the
item weights

Next fit

1

4/8

2/8

4/8
7/8

2/8

3/8

Next fit runs inO(n) time but how good is it?

Let fill(i) be the sum of item sizes in bin i

Observe that fill(2i− 1) + fill(2i) > 1 (for 1 6 2i 6 s)

and s be the number of non-empty bins (using Next fit)

so bs/2c <
∑

162i6s

fill(2i− 1) + fill(2i) 6 I 6 Opt

the sum of the
item weights

the optimal number of bins

Next fit

1

4/8

2/8

4/8
7/8

2/8

3/8

Next fit runs inO(n) time but how good is it?

Let fill(i) be the sum of item sizes in bin i

Observe that fill(2i− 1) + fill(2i) > 1 (for 1 6 2i 6 s)

and s be the number of non-empty bins (using Next fit)

so bs/2c <
∑

162i6s

fill(2i− 1) + fill(2i) 6 I 6 Opt

Next fit

1

4/8

2/8

4/8
7/8

2/8

3/8

Next fit runs inO(n) time but how good is it?

Let fill(i) be the sum of item sizes in bin i

Observe that fill(2i− 1) + fill(2i) > 1 (for 1 6 2i 6 s)

and s be the number of non-empty bins (using Next fit)

so bs/2c <
∑

162i6s

fill(2i− 1) + fill(2i) 6 I 6 Opt

therefore s 6 2 ·Opt

Next fit

1

4/8

2/8

4/8
7/8

2/8

3/8

Next fit runs inO(n) time but how good is it?

Let fill(i) be the sum of item sizes in bin i

Observe that fill(2i− 1) + fill(2i) > 1 (for 1 6 2i 6 s)

and s be the number of non-empty bins (using Next fit)

so bs/2c <
∑

162i6s

fill(2i− 1) + fill(2i) 6 I 6 Opt

therefore s 6 2 ·Opt in other words the Next Fit is never worse than twice the optimal

Next fit

1

4/8

2/8

4/8
7/8

2/8

3/8

Next fit runs inO(n) time but how good is it?

Let fill(i) be the sum of item sizes in bin i

Observe that fill(2i− 1) + fill(2i) > 1 (for 1 6 2i 6 s)

and s be the number of non-empty bins (using Next fit)

so bs/2c <
∑

162i6s

fill(2i− 1) + fill(2i) 6 I 6 Opt

therefore s 6 2 ·Opt

Approximation Algorithms

An algorithmA is an α-approximation algorithm for problem P if,

◦A runs in polynomial time

◦A always outputs a solution with value s

within an α factor of Opt

Approximation Algorithms

An algorithmA is an α-approximation algorithm for problem P if,

◦A runs in polynomial time

◦A always outputs a solution with value s

Here P is an optimisation problem with optimal solution of value Opt

within an α factor of Opt

Approximation Algorithms

An algorithmA is an α-approximation algorithm for problem P if,

◦A runs in polynomial time

◦A always outputs a solution with value s

Here P is an optimisation problem with optimal solution of value Opt

• If P is a maximisation problem, Opt
α 6 s 6 Opt

within an α factor of Opt

Approximation Algorithms

An algorithmA is an α-approximation algorithm for problem P if,

◦A runs in polynomial time

◦A always outputs a solution with value s

Here P is an optimisation problem with optimal solution of value Opt

• If P is a maximisation problem, Opt
α 6 s 6 Opt

within an α factor of Opt

• If P is a minimisation problem (like BINPACKING), Opt 6 s 6 α ·Opt

Approximation Algorithms

An algorithmA is an α-approximation algorithm for problem P if,

◦A runs in polynomial time

◦A always outputs a solution with value s

Here P is an optimisation problem with optimal solution of value Opt

• If P is a maximisation problem, Opt
α 6 s 6 Opt

within an α factor of Opt

• If P is a minimisation problem (like BINPACKING), Opt 6 s 6 α ·Opt

We have seen a 2-approximation algorithm for BINPACKING

Approximation Algorithms

An algorithmA is an α-approximation algorithm for problem P if,

◦A runs in polynomial time

◦A always outputs a solution with value s

Here P is an optimisation problem with optimal solution of value Opt

• If P is a maximisation problem, Opt
α 6 s 6 Opt

within an α factor of Opt

• If P is a minimisation problem (like BINPACKING), Opt 6 s 6 α ·Opt

We have seen a 2-approximation algorithm for BINPACKING

the number of bins used, s is always between Opt and 2 ·Opt

Approximation Algorithms

An algorithmA is an α-approximation algorithm for problem P if,

◦A runs in polynomial time

◦A always outputs a solution with value s

Here P is an optimisation problem with optimal solution of value Opt

• If P is a maximisation problem, Opt
α 6 s 6 Opt

within an α factor of Opt

• If P is a minimisation problem (like BINPACKING), Opt 6 s 6 α ·Opt

We have seen a 2-approximation algorithm for BINPACKING

the number of bins used, s is always between Opt and 2 ·Opt

In the examples we consider, α will be a constant but it could depend on n (the input size)

1

4/8

2/8

4/8
7/8

2/8

3/8

We have seen that Next fit is a 2-approximation algorithm for Bin packing
which runs inO(n) time

can we do better?

First fit decreasing (FFD)

1

1

4/8 4/8
7/8

3/82/82/8

First fit decreasing (FFD)

1

1

Step 1: Sort the items into non-increasing order

4/8 4/8
7/8

3/82/82/8

First fit decreasing (FFD)

1

1

4/8 4/8
7/8

3/8 2/8 2/8

Step 1: Sort the items into non-increasing order

First fit decreasing (FFD)

1

1

4/8 4/8
7/8

3/8 2/8 2/8

Step 2: Put each item in the first (left-most) bin it fits in

First fit decreasing (FFD)

1

1

4/8 4/8 3/8 2/8 2/8

Step 2: Put each item in the first (left-most) bin it fits in

7/8

First fit decreasing (FFD)

1

1

4/8 3/8 2/8 2/8

Step 2: Put each item in the first (left-most) bin it fits in

7/8
4/8

First fit decreasing (FFD)

1

1

3/8 2/8 2/8

Step 2: Put each item in the first (left-most) bin it fits in

7/8
4/8

4/8

First fit decreasing (FFD)

1

1

2/8 2/8

Step 2: Put each item in the first (left-most) bin it fits in

7/8
4/8

4/8

3/8

First fit decreasing (FFD)

1

1

2/8

Step 2: Put each item in the first (left-most) bin it fits in

7/8
4/8

4/8

3/8

2/8

First fit decreasing (FFD)

1

1

Step 2: Put each item in the first (left-most) bin it fits in

7/8
4/8

4/8

3/8

2/8

2/8

First fit decreasing (FFD)

1

1

Step 2: Put each item in the first (left-most) bin it fits in

7/8
4/8

4/8

3/8

2/8

2/8

this will be important

for the proof

First fit decreasing (FFD)

1

1

Step 2: Put each item in the first (left-most) bin it fits in

7/8
4/8

4/8

3/8

2/8

2/8

First fit decreasing (FFD)

1

1

7/8
4/8

4/8

3/8

2/8

2/8

First fit decreasing (FFD)

1

1

7/8
4/8

4/8

3/8

2/8

2/8

FFD runs inO(n2) time but how good is it?

First fit decreasing (FFD)

1 7/8
4/8

4/8

3/8

2/8

2/8

FFD runs inO(n2) time but how good is it?

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 1: Bin j contains an item of size> 1/2

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 1: Bin j contains an item of size> 1/2

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 1: Bin j contains an item of size> 1/2

Every bin j′ 6 j contains an item of size> 1/2

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 1: Bin j contains an item of size> 1/2

Every bin j′ 6 j contains an item of size> 1/2

because we packed big things first and each thing was

packed in the lowest numbered bin

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 1: Bin j contains an item of size> 1/2

Every bin j′ 6 j contains an item of size> 1/2

because we packed big things first and each thing was

packed in the lowest numbered bin

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 1: Bin j contains an item of size> 1/2

Every bin j′ 6 j contains an item of size> 1/2

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 1: Bin j contains an item of size> 1/2

Every bin j′ 6 j contains an item of size> 1/2

each of these items has to be in a different bin (even in Opt)

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 1: Bin j contains an item of size> 1/2

Every bin j′ 6 j contains an item of size> 1/2

each of these items has to be in a different bin (even in Opt)

So Opt uses at least 2s
3 bins

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 1: Bin j contains an item of size> 1/2

Every bin j′ 6 j contains an item of size> 1/2

each of these items has to be in a different bin (even in Opt)

So Opt uses at least 2s
3 bins

or. . .s 6
3Opt

2

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

when FFD packed the first item into bin j,

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

when FFD packed the first item into bin j,

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

when FFD packed the first item into bin j,

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

when FFD packed the first item into bin j,

j

1. all bins j, (j + 1), . . . , (s− 2), (s− 1) were empty

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

when FFD packed the first item into bin j,

j

1. all bins j, (j + 1), . . . , (s− 2), (s− 1) were empty

ss

2. and all unpacked items had size 6 1/2

(because we pack in non-increasing order)

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items

when FFD packed the first item into bin j,

j

1. all bins j, (j + 1), . . . , (s− 2), (s− 1) were empty

ss

2. and all unpacked items had size 6 1/2

(because we pack in non-increasing order)

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items

when FFD packed the first item into bin j,

j

1. all bins j, (j + 1), . . . , (s− 2), (s− 1) were empty

ss

2. and all unpacked items had size 6 1/2

(because we pack in non-increasing order)

2+ 2+ 2+ 2+

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items

when FFD packed the first item into bin j,

j

1. all bins j, (j + 1), . . . , (s− 2), (s− 1) were empty

ss

2. and all unpacked items had size 6 1/2

(because we pack in non-increasing order)

2+ 2+ 2+ 2+

(we only use a new bin when the item won’t fit in any previous bin)

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items

when FFD packed the first item into bin j,

j

1. all bins j, (j + 1), . . . , (s− 2), (s− 1) were empty

ss

2. and all unpacked items had size 6 1/2

(because we pack in non-increasing order)

2+ 2+ 2+ 2+

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

when FFD packed the first item into bin j,

j

1. all bins j, (j + 1), . . . , (s− 2), (s− 1) were empty

ss

2. and all unpacked items had size 6 1/2

(because we pack in non-increasing order)

2+ 2+ 2+ 2+

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

when FFD packed the first item into bin j,

j

1. all bins j, (j + 1), . . . , (s− 2), (s− 1) were empty

ss

2. and all unpacked items had size 6 1/2

(because we pack in non-increasing order)

2+ 2+ 2+ 2+ 1+

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

j

ss

2+ 2+ 2+ 2+ 1+

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

j

ss

2+ 2+ 2+ 2+ 1+

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

j

ss

2+ 2+ 2+ 2+ 1+

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

j

ss

2+ 2+ 2+ 2+ 1+

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

otherwise we would have packed them there

j

ss

2+ 2+ 2+ 2+ 1+

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

j

ss

2+ 2+ 2+ 2+ 1+

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

so I > min{j − 1, 2(s− j) + 1}

j

ss

2+ 2+ 2+ 2+ 1+

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

so I > min{j − 1, 2(s− j) + 1}
recall I is the total weight of all items

j

ss

2+ 2+ 2+ 2+ 1+

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

so I > min{j − 1, 2(s− j) + 1}
recall I is the total weight of all items

pairing these with these
considerconsider

j

ss

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

so I > min{j − 1, 2(s− j) + 1}
recall I is the total weight of all items

pairing these with these
considerconsider

j

ss

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

this + this
> 1

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

so I > min{j − 1, 2(s− j) + 1}
recall I is the total weight of all items

j

ss

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

so I > min{j − 1, 2(s− j) + 1}

j

ss

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

so I > min{j − 1, 2(s− j) + 1}> d2s/3e − 1

j

ss

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

so I > min{j − 1, 2(s− j) + 1}> d2s/3e − 1

by plugging in j = d2s/3e

j

ss

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

As d2s/3e − 1 < I

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

As d2s/3e − 1 < I and I 6 Opt

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

As d2s/3e − 1 < I

we have that d2s/3e − 1 < Opt

and I 6 Opt

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

As d2s/3e − 1 < I

we have that d2s/3e − 1 < Opt

and I 6 Opt

. . . but both sides are integers. . .

so d2s/3e 6 Opt

finally . . .2s/3 6 d2s/3e 6 Opt

or s 6 (3/2)Opt

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size 6 1/2

Case 1: Bin j contains an item of size> 1/2

in both cases. . .s 6
3Opt

2

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

So FFD is a 3/2-approximation algorithm for BINPACKING

Case 2: Bin j contains only items of size 6 1/2

Case 1: Bin j contains an item of size> 1/2

in both cases. . .s 6
3Opt

2

j

ss

Approximation Algorithms Summary

An algorithmA is an α-approximation algorithm for problem P if,

◦A runs in polynomial time

◦A always outputs a solution with value s

Here P is an optimisation problem with optimal solution of value Opt

If P is a maximisation problem, Opt
α 6 s 6 Opt

within an α factor of Opt

If P is a minimisation problem (like BINPACKING), Opt 6 s 6 α ·Opt

We have seen Next Fit which is a 2-approximation algorithm for BINPACKING

which runs inO(n) time

and First Fit Decreasing which is a 3/2-approximation algorithm for BINPACKING

which runs inO(n2) time

Bin Packing is NP-hard so solving it exactly in polynomial time would prove that P = NP

