
Advanced Algorithms Suffix trees, LCA, RMQ Teaching Block 1
TAs : Kheeran K. Naidu, Alex Carpenter

Problem sheet 3 (Solutions)

Please feel free to discuss these problems on the unit discussion board or
directly with your colleagues. If you would like to have your answers marked,
please either hand them in in person or email them to me with the email subject
“Problem sheet 3". Submitted work will be marked as quickly as possible, ideally
within one week of being handed in. (I will add more questions as needed to
this sheet.)

1. (From Gusfield) Given a set S of k strings, we want to find every string
in S that is a substring of some other string in S. That is, we want to
find the smallest subset of strings S′ ⊂ S such that no string in S − S′

is a substring of any other string in that set. Assuming that the total
length of all the strings is n, give an O(n)-time algorithm to solve this
problem.

Solution.

alg(S) :
1. Create a generalised suffix tree on all k strings
2. S′ ← ∅
3. For each si ∈ S :
4. walk down the tree from its root following si

5. if the walk stops at an internal node
6. S′ ← S′ ∪ {si}
7. return S′

Time complexity. Let ni be the length of each string si ∈ S. Constructing
a suffix tree on the k strings in line 1 takes O(n1 + ... + nk) = O(n) time
since

∑k
i=1 ni = n. Walking down the tree for some string si takes ni

steps and O(ni) time. Determining if it is an internal node takes O(1)
time. We do this for each si ∈ S, so the total time required for the loop
is O(n1 + ... + nk + k) = O(n) where we have reasonably assumed that
the number of substrings k is O(n). Hence, the overall time taken is O(n).

Correctness. Assume for a contradiction that ∃si ∈ S′ such that si is
only a substring of itself. When processing string si in line 4, the walk
would end at a leaf node since si is a suffix in the generalised suffix tree.
Hence line 6 would not have executed and si would not have been ad-
ded to S′, a contradiction. A similar argument holds for proving that
@sj ∈ (S − S′) such that sj is a substring of a string other than itself.

X



2. (From Gusfield) A suffix tree for a string S can be viewed as a keyword
tree, where the strings in the keyword tree are the suffixes of S. In this
way, a suffix tree is useful in efficiently building a keyword tree when
the strings for the tree are only implicitly specified. Now consider the
following implicitly specified set of strings : Given two strings S1 and
S2, let D be the set of all substrings of S1 that are not contained in
S2. Assuming the two strings are of length n, show how to construct a
keyword tree for set D in O(n) time.

Solution.

(a) Construct a generalised suffix tree on S1 and S2

(b) Colour all nodes (including leaves) as follows :
— green if all leaves in the subtree from the node are

from S1
— red if all leaves in the subtree from the node are from

S2

(c) Remove all red nodes and the the edges leading to them
The keywords in this tree are the strings whose walks from the
root end on an edge leading up to a green node.

Time complexity. Constructing the (compacted) suffix tree in step (a)
takes O(n + n) = O(n) time. We can perform step (b) by traversing up
the tree from every leaf to root and tracking the unique terminating sym-
bols seen at each node along the way, appropriately colouring the nodes
green or red if only one unique symbol has been seen so far. Since there
are O(n) edges 1 in a suffix tree, this takes O(n) time. Finally, there are
O(n) nodes so deleting only the red ones takes O(n) time using a Breadth
First Search. Overall, this takes O(n) time as required.

Correctness. Observe that for any generalised atomic suffix tree 2, paths
from root to any node or leaf represent substrings since prefixes of suf-
fixes are substrings. We will prove that in the above colouring of the suffix
tree, only green nodes are keywords for the set D and no others. Consi-
der a path from root to a green node x and its corresponding substring
sx. We have that sx is not a substring of S2. Assume for a contradiction
that sx is a substring of S2. This means that sx is a prefix for some
suffix of S2 which implies that there is a path from x to a leaf of S2, a
contradiction since the subtree from the green node x has a leaf in S2.
By similar arguments we can show that paths from root to red nodes

1. This is because there are O(n) nodes (including leaves), and exactly one edge leads to
each of them (excluding the root).

2. WLOG we consider atomic suffix trees instead of the space efficient compacted ones,
which doesn’t affect the correctness of the algorithm.



represent substrings of only S2, and paths from root to uncoloured nodes
represent substrings of both S1 and S2.

X

3. Assume you are given two strings S1 and S2 of length n. Describe how
you can find the length of the longest substring in S2 that is also a
substring of S1 in O(n) time. You should describe the different parts of
your algorithmic solution in detail and also give the total running time.

Solution.

(a) Construct a generalised suffix tree on S1 and S2

(b) Colour all nodes (including leaves) as follows :
— green if all leaves in the subtree from the node are

from S1
— red if all leaves in the subtree from the node are from

S2

(c) Find the uncoloured node with the largest root to node
length, and output the corresponding word at that node

Time Complexity. Step (a) and (b) take O(n) time as shown in Q2. We
can perform step (c) by running a Breadth First Search (BFS) and sum-
ming the lengths of the edges along the way, storing the cumulative sum
at each node and adding pointers to the uncoloured ones. A BFS visits
each node only once and at each visit adding the length of the edge to
the cumulative length so far takes O(1) time. Since there are O(n) edges
in the suffix tree, this takes O(n) time. Then, we can simply check every
uncoloured node (using the pointers) for the largest root to node length
in O(n) time. This takes O(n) time overall.

Correctness. The correctness of Q2 proves that only the paths from root
to uncoloured nodes represent the words which are substrings in both S1
and S2. Hence, the longest such path is the longest common substring.

X

4. This question is about the LCA problem. For the example tree in the
lectures with 11 nodes, write out the complete reduction to the ±1 RMQ
problem. What is the total size of the data created by the LCA prepro-
cessing ?

Solution. For simplicity, we will store all information as data entries in
respective arrays.
(a) Euler tour of T to construct arrays N and D, simultaneously. Both

N and D have 2n− 1 entries each, totalling 4n− 2 entries.



(b) Storing pointers for each of the n nodes to an index in N can be done
with an array of length n.

Hence, the total size of all arrays this problem stores during preprocessing
is given by

4n− 2 + n = 5n− 2.

X

5. If you are given an independent and efficient solution to the full RMQ
problem, how can you reduce the space needed for the arrays created
in the reduction from LCA to RMQ? Show your new reduction for the
example tree in the lectures with 11 nodes.

Solution. First observe that the values at D[i] and N [i] correspond to
the same node, since the two arrays are constructed during the Euler
tour. Further, the value of RMQ(i, j) in both N and D will always refer
to the same node, since the (unique) node with lowest depth in a given
range is also guaranteed to have the smallest ID in that range, as node
IDs strictly increase with depth.

Now that we can answer any RMQ query efficiently, rather than just
the ±1 cases, we can perform range minimum queries on N instead of D.
So the total space needed for the arrays is just the size of N , since D is
no longer needed. So the total space used reduces from 5n− 2 to 3n− 1.

X


