Advanced Algorithms – COMS31900

Hashing part two

Static Perfect Hashing

Raphaël Clifford

Slides by Benjamin Sach
A dynamic dictionary stores \((key, value)\)-pairs and supports:

- \(\text{add}(key, value)\), \(\text{lookup}(key)\) (which returns \(value\)) and \(\text{delete}(key)\)

Universe \(U\) of \(u\) keys.

Hash table \(T\) of size \(m \geq n\).

Collisions were fixed by chaining (building linked lists)

A hash function maps a key \(x\) to position \(h(x)\) - i.e \(T[h(x)] = (key, value)\).

\(n\) arbitrary operations arrive online, one at a time.
Dictionaries and Hashing recap

- **A dynamic dictionary** stores \((key, value)\)-pairs and supports:
 - \(\text{add}(key, value)\), \(\text{lookup}(key)\) (which returns \(value\)) and \(\text{delete}(key)\)

Universe \(U\) of \(u\) keys.

Hash table \(T\) of size \(m \geq n\).

Collisions were fixed by **chaining**
(building linked lists)

\[T[h(x)] = (key, value) \]

\(n\) arbitrary operations arrive online, one at a time.

A set \(H\) of hash functions is **weakly universal** if for any two keys \(x, y \in U\) (with \(x \neq y\)),

\[\Pr(h(x) = h(y)) \leq \frac{1}{m} \]

\((h\ \text{is picked uniformly at random from } H)\)
Dictionaries and Hashing recap

- A **dynamic dictionary** stores \((key, value)\)-pairs and supports:

 - `add(key, value)`, `lookup(key)` (which returns `value`) and `delete(key)`

Universe \(U\) of \(u\) keys.

Hash table \(T\) of size \(m \geq n\).

Collisions were fixed by **chaining** (building linked lists)

A **hash function** maps a key \(x\) to position \(h(x)\) - i.e. \(T[h(x)] = (key, value)\).

\(n\) arbitrary operations arrive online, one at a time.

A set \(H\) of hash functions is **weakly universal** if for any two keys \(x, y \in U\) (with \(x \neq y\)),

\[
\Pr(h(x) = h(y)) \leq \frac{1}{m}
\]

\((h \text{ is picked uniformly at random from } H)\)

Using weakly universal hashing:

For any \(n\) operations, the expected run-time is \(O(1)\) per operation.
Dictionaries and Hashing recap

- A dynamic dictionary stores \((key, value)\)-pairs and supports:
 - \(\text{add}(key, value)\), \(\text{lookup}(key)\) (which returns \(value\)) and \(\text{delete}(key)\)

Universe \(U\) of \(u\) keys.

Hash table \(T\) of size \(m \geq n\).

Collisions were fixed by chaining (building linked lists).

A hash function maps a key \(x\) to position \(h(x)\) - i.e \(T[h(x)] = (key, value)\).

\(n\) arbitrary operations arrive online, one at a time.

A set \(H\) of hash functions is weakly universal if for any two keys \(x, y \in U\) (with \(x \neq y\)),

\[
\Pr(h(x) = h(y)) \leq \frac{1}{m}
\]

\((h\ is\ picked\ uniformly\ at\ random\ from\ H)\)

Using weakly universal hashing:

For any \(n\) operations, the expected run-time is \(O(1)\) per operation.

But this doesn’t tell us much about the worst-case behaviour
Static Dictionaries and Perfect hashing

A static dictionary stores \((key, value)\)-pairs and supports:

\[
\text{lookup}(key) \text{ (which returns value) - no inserts or deletes are allowed}
\]

Universe \(U\) of \(u\) keys.

Hash table \(T\) of size \(m \geq n\).

Collisions were fixed by chaining
\((building\ linked\ lists)\)

A hash function maps a key \(x\) to position \(h(x)\)
- i.e \(T[h(x)] = (key, value)\).

we are given \(n\) different \((key, value)\)-pairs and want to pick a good \(h\)
A static dictionary stores \((key, value)\)-pairs and supports:

- A hash function maps a key \(x\) to position \(h(x)\) - i.e. \(T[h(x)] = (key, value)\).

Universe \(U\) of \(u\) keys.

Hash table \(T\) of size \(m \geq n\).

Collisions were fixed by chaining (building linked lists).

THEOREM

The FKS hashing scheme:
- Has no collisions
- Every lookup takes \(O(1)\) worst-case time,
- Uses \(O(n)\) space,
- Can be built in \(O(n)\) expected time.
Static Dictionaries and Perfect hashing

A static dictionary stores \((\text{key}, \text{value})\)-pairs and supports:

\text{lookup}(\text{key}) \ (\text{which returns value}) - no inserts or deletes are allowed

THEOREM

The FKS hashing scheme:

- Has no collisions
- Every lookup takes \(O(1)\) worst-case time,
- Uses \(O(n)\) space,
- Can be built in \(O(n)\) expected time.

The rest of this lecture is devoted to the FKS scheme.
A static dictionary stores \((key, value)\)-pairs and supports:

\[\text{lookup}(key) \] (which returns \text{value}) - no inserts or deletes are allowed

Theorem

The FKS hashing scheme:
- Has no collisions
- Every lookup takes \(O(1)\) worst-case time,
- Uses \(O(n)\) space,
- Can be built in \(O(n)\) expected time.

The rest of this lecture is devoted to the FKS scheme

The construction is based on weak universal hashing
A static dictionary stores \((key, value)\)-pairs and supports:

- **lookup(key)** (which returns value) - no inserts or deletes are allowed

We are given \(n\) different \((key, value)\)-pairs and want to pick a good \(h\)

Theorem

The FKS hashing scheme:
- Has no collisions
- Every lookup takes \(O(1)\) worst-case time,
- Uses \(O(n)\) space,
- Can be built in \(O(n)\) expected time.

The rest of this lecture is devoted to the FKS scheme.

The construction is based on weak universal hashing (with an \(O(1)\) time hash function).
A set H of hash functions is **weakly universal** if for any two keys $x, y \in U \ (x \neq y)$,

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.
A set H of hash functions is **weakly universal** if for any two keys $x, y \in U \ (x \neq y)$,

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H

Step 1: Insert everything into a hash table of size $m = n$

using a weakly universal hash function

(where any $h(x)$ can be computed in $O(1)$ time)
A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function.
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function

Step 2: Check for collisions
Perfect hashing - a first attempt

A set \(H \) of hash functions is **weakly universal** if for any two keys \(x, y \in U \ (x \neq y) \),

\[
\Pr (h(x) = h(y)) \leq \frac{1}{m}
\]

where \(h \) is picked uniformly at random from \(H \)

Step 1: Insert everything into a hash table of size \(m = n \) using a weakly universal hash function

Step 2: Check for collisions

Step 3: Profit!
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if necessary*
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr (h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H

Step 1: Insert everything into a hash table of size $m = n$

using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if necessary*

How many collisions do we get on average?
A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function.

Step 2: Check for collisions.

Step 3: *Repeat if necessary*

How many collisions do we get on average?

The expected number of collisions is:

$$E(C) = E\left(\sum_{x, y \in T, x < y} I_{x, y} \right)$$

where indicator random variable $I_{x, y} = 1$ iff $h(x) = h(y)$.
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U \ (x \neq y)$,

$$\Pr \left(h(x) = h(y) \right) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function.

Step 2: Check for collisions.

Step 3: Repeat if necessary.

How many collisions do we get on average?

$$E(C) = E \left(\sum_{x, y \in T, x < y} I_{x,y} \right) = \sum_{x, y \in T, x < y} E(I_{x,y})$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Linearity of Expectation

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\left(\sum_{i=1}^{k} Y_i\right) = \sum_{i=1}^{k} \mathbb{E}(Y_i)$$

The number of collisions is given by

$$\mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in T, x < y} I_{x,y}\right) = \sum_{x,y \in T, x < y} \mathbb{E}(I_{x,y})$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr (h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if necessary*

How many collisions do we get on average?

The number of collisions is

$$E(C) = E\left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} E(I_{x,y})$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U \ (x \neq y)$,

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function.

Step 2: Check for collisions.

Step 3: Repeat if necessary.

How many collisions do we get on average?

$$\mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} \mathbb{E}(I_{x,y}) \leq \sum_{x,y \in T, x < y} \frac{1}{m}$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function.

Step 2: Check for collisions.

Step 3: *Repeat if necessary.*

How many collisions do we get on average?

1. **Number of collisions**
2. **Linearity of expectation**
3. **Definition of expectation**

$$E(C) = E\left(\sum_{x, y \in T, x < y} I_{x, y} \right) = \sum_{x, y \in T, x < y} E(I_{x, y}) \leq \sum_{x, y \in T, x < y} \frac{1}{m}$$

where indicator random variable $I_{x, y} = 1$ iff $h(x) = h(y)$.
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function.

Step 2: Check for collisions.

By the definition of expectation...

$$\mathbb{E}(I_{x,y}) = 1 \cdot \Pr(I_{x,y} = 1) + 0 \cdot \Pr(I_{x,y} = 0) \leq \frac{1}{m}$$

number of collisions

linearity of expectation

$$\mathbb{E}(C) = \mathbb{E} \left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} \mathbb{E}(I_{x,y}) \leq \sum_{x,y \in T, x < y} \frac{1}{m}$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function.

Step 2: Check for collisions.

Step 3: *Repeat if necessary.*

How many collisions do we get on average?

$$E(C) = E\left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} E(I_{x,y}) \leq \sum_{x,y \in T, x < y} \frac{1}{m}$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.

Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr (h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if necessary*

How many collisions do we get on average?

\[
\mathbb{E}(C) = \mathbb{E} \left(\sum_{x, y \in T, x < y} I_{x, y} \right) = \sum_{x, y \in T, x < y} \mathbb{E}(I_{x, y}) \leq \sum_{x, y \in T, x < y} \frac{1}{m} = \binom{n}{2} \cdot \frac{1}{m}
\]

where indicator random variable $I_{x, y} = 1$ iff $h(x) = h(y)$.
Perfect hashing - a first attempt

A set H of hash functions is weakly universal if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function.

Step 2: Check for collisions.

Step 3: Repeat if necessary.

How many collisions do we get on average?

$$E(C) = E\left(\sum_{x, y \in T, x < y} I_{x, y} \right) = \sum_{x, y \in T, x < y} E(I_{x, y}) \leq \sum_{x, y \in T, x < y} \frac{1}{m} = \frac{n(n-1)}{2} \cdot \frac{1}{m}$$

where indicator random variable $I_{x, y} = 1$ iff $h(x) = h(y)$.

$$\binom{n}{2} = \frac{n(n-1)}{2}$$
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr (h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if necessary

How many collisions do we get on average?

$$\mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} \mathbb{E}(I_{x,y}) \leq \sum_{x,y \in T, x < y} \frac{1}{m} = \binom{n}{2} \cdot \frac{1}{m}$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.

$\leq n^2 / 2$
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if necessary

How many collisions do we get on average?

$$E(C) = E\left(\sum_{x, y \in T, x < y} I_{x,y} \right) = \sum_{x, y \in T, x < y} E(I_{x,y}) \leq \sum_{x, y \in T, x < y} \frac{1}{m} = \binom{n}{2} \cdot \frac{1}{m} \leq \frac{n^2}{2m}$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.
Perfect hashing - a first attempt

A set \(H \) of hash functions is **weakly universal** if for any two keys \(x, y \in U \ (x \neq y) \),

\[
\Pr(h(x) = h(y)) \leq \frac{1}{m}
\]

where \(h \) is picked uniformly at random from \(H \).

Step 1: Insert everything into a hash table of size \(m = n \) using a weakly universal hash function.

Step 2: Check for collisions.

Step 3: Repeat if necessary.

How many collisions do we get on average?

\[
\mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} \mathbb{E}(I_{x,y}) \leq \sum_{x,y \in T, x < y} \frac{1}{m} = \binom{n}{2} \cdot \frac{1}{m} \leq \frac{n^2}{2m} \leq \frac{n}{2}.
\]

where indicator random variable \(I_{x,y} = 1 \) iff \(h(x) = h(y) \).
A set H of hash functions is **weakly universal** if for any two keys $x, y \in U \ (x \neq y)$,

$$\Pr (h(x) = h(y)) \leq \frac{1}{m} \quad \text{where } h \text{ is picked uniformly at random from } H$$

Step 1: Insert everything into a hash table of size $m = n^2$

using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if necessary*
Perfect hashing - a second attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr (h(x) = h(y)) \leq \frac{1}{m} \quad \text{where } h \text{ is picked uniformly at random from } H$$

Step 1: Insert everything into a hash table of size $m = n^2$ using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if necessary

How many collisions do we get on average?
Perfect hashing - a second attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n^2$

using a weakly universal hash function.

Step 2: Check for collisions.

Step 3: *Repeat if necessary.*

How many collisions do we get on average?

$$E(C) = E\left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} E(I_{x,y}) \leq \sum_{x,y \in T, x < y} \frac{1}{m} = \frac{1}{2} \cdot \frac{1}{m} \leq \frac{n^2}{2m}$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.
Perfect hashing - a second attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n^2$ using a weakly universal hash function.

Step 2: Check for collisions.

Step 3: *Repeat if necessary.*

How many collisions do we get on average?

The number of collisions C can be expressed as

$$E(C) = E\left(\sum_{x,y \in T, x < y} I_{x,y}\right) = \sum_{x,y \in T, x < y} E(I_{x,y}) \leq \sum_{x,y \in T, x < y} \frac{1}{m} = \binom{n}{2} \cdot \frac{1}{m} \leq \frac{n^2}{2m} \leq \frac{1}{2}$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.
Perfect hashing - a second attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H

Step 1: Insert everything into a hash table of size $m = n^2$ using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if necessary*

How many collisions do we get on average?

number of collisions C,

linearity of expectation

definition of expectation

$$\mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in T, x < y} I_{x,y}\right) = \sum_{x,y \in T, x < y} \mathbb{E}(I_{x,y}) \leq \sum_{x,y \in T, x < y} \frac{1}{m} = \left(\frac{n}{2}\right) \cdot \frac{1}{m} \leq \frac{n^2}{2m} \leq \frac{1}{2}$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$. **much better!**
A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$
\Pr(h(x) = h(y)) \leq \frac{1}{m}
$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n^2$ using a weakly universal hash function.

Step 2: Check for collisions.

Step 3: Repeat if necessary.

How many collisions do we get on average?

$$
E(C) = E\left(\sum_{x,y \in T, x < y} I_{x,y}\right) = \sum_{x,y \in T, x < y} E(I_{x,y}) \leq \sum_{x,y \in T, x < y} \frac{1}{m} = \left(\frac{n^2}{2}\right) \cdot \frac{1}{m} \leq \frac{n^2 \cdot 1}{2m} \leq \frac{1}{2}
$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.

(except we cheated)

much better!
Expected construction time

Step 1: Insert everything into a hash table of size $m = n^2$
using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if there was a collision
Expected construction time

<table>
<thead>
<tr>
<th>Step 1:</th>
<th>Insert everything into a hash table of size $m = n^2$ using a weakly universal hash function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2:</td>
<td>Check for collisions</td>
</tr>
<tr>
<td>Step 3:</td>
<td>Repeat if there was a collision</td>
</tr>
</tbody>
</table>

How many times do we repeat on average?
Expected construction time

Step 1: Insert everything into a hash table of size $m = n^2$
 using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if there was a collision

How many times do we repeat on average?

The expected number of collisions: $\mathbb{E}(C) \leq \frac{1}{2}$

The probability of at least one collision: $\Pr(C \geq 1) \leq \frac{1}{2}$
Expected construction time

Step 1: Insert everything into a hash table of size $m = n^2$

Step 2: Check for collisions

Step 3: Repeat if there was a collision

How many times do we repeat on average?

The expected number of collisions: $\mathbb{E}(C) \leq \frac{1}{2}$

The probability of at least one collision: $\Pr(C \geq 1) \leq \frac{1}{2}$

Markov's inequality

If X is a non-negative r.v., then for all $a > 0$,

$$\Pr(X \geq a) \leq \frac{\mathbb{E}(X)}{a}.$$
Expected construction time

Step 1: Insert everything into a hash table of size $m = n^2$
using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if there was a collision

How many times do we repeat on average?

The expected number of collisions: $\mathbb{E}(C') \leq \frac{1}{2}$

The probability of at least one collision: $\Pr(C \geq 1) \leq \frac{1}{2}$
Expected construction time

Step 1: Insert everything into a hash table of size $m = n^2$
using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if there was a collision*

How many times do we repeat on average?

The expected number of collisions: $\mathbb{E}(C') \leq \frac{1}{2}$

The probability of at least one collision: $\Pr(C' \geq 1) \leq \frac{1}{2}$

The probability of zero collisions is at least $\frac{1}{2}$

Markov’s inequality
Expected construction time

Step 1: Insert everything into a hash table of size \(m = n^2 \) using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if there was a collision

How many times do we repeat on average?

The expected number of collisions: \(\mathbb{E}(C) \leq \frac{1}{2} \)
Markov’s inequality

The probability of at least one collision: \(\Pr(C \geq 1) \leq \frac{1}{2} \)

The probability of zero collisions is at least \(\frac{1}{2} \)

* i.e. at least as good as tossing a heads on a fair coin
Expected construction time

Step 1: Insert everything into a hash table of size $m = n^2$
using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if there was a collision*

How many times do we repeat on average?

The expected number of collisions: $\mathbb{E}(C) \leq \frac{1}{2}$

The probability of at least one collision: $\Pr(C \geq 1) \leq \frac{1}{2}$

The probability of zero collisions is at least $\frac{1}{2}$

i.e. at least as good as tossing a heads on a fair coin

$\mathbb{E}(\text{runs}) \leq \mathbb{E}(\text{coin tosses to get a heads}) = 2$
Expected construction time

Step 1: Insert everything into a hash table of size $m = n^2$
using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if there was a collision*

How many times do we repeat on average?

The expected number of collisions: $\mathbb{E}(C) \leq \frac{1}{2}$

The probability of at least one collision: $\Pr(C \geq 1) \leq \frac{1}{2}$

The probability of zero collisions is at least $\frac{1}{2}$

i.e. at least as good as tossing a heads on a fair coin

$\mathbb{E}(\text{runs}) \leq \mathbb{E}(\text{coin tosses to get a heads}) = 2$

$\mathbb{E}(\text{construction time}) = O(m) \cdot \mathbb{E}(\text{runs}) = O(m) = O(n^2)$
Expected construction time

Step 1: Insert everything into a hash table of size $m = n^2$ using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if there was a collision*

How many times do we repeat on average?

The expected number of collisions: $\mathbb{E}(C) \leq \frac{1}{2}$

The probability of at least one collision: $\Pr(C \geq 1) \leq \frac{1}{2}$

The probability of zero collisions is at least $\frac{1}{2}$

i.e. at least as good as tossing a heads on a fair coin

$\mathbb{E}(\text{runs}) \leq \mathbb{E}(\text{coin tosses to get a heads}) = 2$

$\mathbb{E}(\text{construction time}) = O(m) \cdot \mathbb{E}(\text{runs}) = O(m) = O(n^2)$

... and then the look-up time is always $O(1)$
Expected construction time

Step 1: Insert everything into a hash table of size \(m = n^2 \) using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if there was a collision

How many times do we repeat on average?

The expected number of collisions:

\[
E(C) \leq \frac{1}{2}
\]

Markov’s inequality

The probability of at least one collision:

\[
Pr(C \geq 1) \leq \frac{1}{2}
\]

The probability of zero collisions is at least \(\frac{1}{2} \)

i.e. at least as good as tossing a heads on a fair coin

\[
E(\text{runs}) \leq E(\text{coin tosses to get a heads}) = 2
\]

\[
E(\text{construction time}) = O(m) \cdot E(\text{runs}) = O(m) = O(n^2)
\]

\[
\ldots \text{and then the look-up time is always } O(1)
\]

(because any } h(x) \text{ can be computed in } O(1) \text{ time)
Expected construction time

Step 1: Insert everything into a hash table of size \(m = n \) using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if there are more than \(n \) collisions
Expected construction time

Step 1: Insert everything into a hash table of size $m = n$
 using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if there are more than n collisions*

This looks rubbish but it will be useful in a bit!
Expected construction time

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if there are more than n collisions

How many times do we repeat on average?

The expected number of collisions: $\mathbb{E}(C) \leq \frac{n}{2}$

The probability of at least n collisions: $\Pr(C \geq n) \leq \frac{1}{2}$
Expected construction time

Step 1: Insert everything into a hash table of size \(m = n \) using a weakly universal hash function.

Markov’s inequality

If \(X \) is a non-negative r.v., then for all \(a > 0 \),

\[
\Pr(X \geq a) \leq \frac{\mathbb{E}(X)}{a}.
\]

The expected number of collisions:

\[
\mathbb{E}(C) \leq \frac{n}{2}
\]

The probability of at least \(n \) collisions:

\[
\Pr(C \geq n) \leq \frac{1}{2} \quad (\text{where } a = n)
\]

This looks rubbish but it will be useful in a bit!
Expected construction time

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if there are more than n collisions

How many times do we repeat on average?

The expected number of collisions: $\mathbb{E}(C) \leq \frac{n}{2}$

The probability of at least n collisions: $\Pr(C \geq n) \leq \frac{1}{2}$
Expected construction time

Step 1: Insert everything into a hash table of size \(m = n \) using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if there are more than \(n \) collisions

How many times do we repeat on average?

The expected number of collisions: \(\mathbb{E}(C) \leq \frac{n}{2} \)

The probability of at least \(n \) collisions: \(\Pr(C \geq n) \leq \frac{1}{2} \)

The probability of at most \(n \) collisions is at least \(\frac{1}{2} \),

i.e. at least as good as tossing a heads on a fair coin

\[\mathbb{E}(\text{runs}) \leq \mathbb{E}(\text{coin tosses to get a heads}) = 2 \]

\[\mathbb{E}(\text{construction time}) = O(m) \cdot \mathbb{E}(\text{runs}) = O(m) = O(n) \]
Expected construction time

Step 1: Insert everything into a hash table of size \(m = n \) using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if there are more than \(n \) collisions

How many times do we repeat on average?

The expected number of collisions: \(\mathbb{E}(C) \leq \frac{n}{2} \)

The probability of at least \(n \) collisions: \(\Pr(C \geq n) \leq \frac{1}{2} \)

The probability of at most \(n \) collisions is at least \(\frac{1}{2} \)

\(i.e. \) at least as good as tossing a heads on a fair coin

\[\mathbb{E}(\text{runs}) \leq \mathbb{E}(\text{coin tosses to get a heads}) = 2 \]

\[\mathbb{E}(\text{construction time}) = O(m) \cdot \mathbb{E}(\text{runs}) = O(m) = O(n) \]

...but the look-up time could be rubbish (lots of collisions)
Perfect hashing - attempt three

Step 1: Insert everything into a hash table, T, of size n using a weakly universal hash function, h
Perfect hashing - attempt three

Step 1: Insert everything into a hash table, T, of size n
using a weakly universal hash function, h

Let n_i be the number of items in $T[i]$
Perfect hashing - attempt three

Step 1: Insert everything into a hash table, T, of size n
using a weakly universal hash function, h

Let n_i be the number of items in $T[i]$

$n_1 = 2$

$n_5 = 2$

$n_8 = 3$
Perfect hashing - attempt three

Step 1: Insert everything into a hash table, T, of size n
using a weakly universal hash function, h

...but don't use chaining

Let n_i be the number of items in $T[i]$

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2

using another weakly universal hash function denoted h_i (there is one for each i)
Perfect hashing - attempt three

Step 1: Insert everything into a hash table, T, of size n
using a weakly universal hash function, h

... but don't use chaining

Let n_i be the number of items in $T[i]$.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2

using another weakly universal hash function denoted h_i (there is one for each i)
Perfect hashing - attempt three

Step 1: Insert everything into a hash table, T, of size n
using a weakly universal hash function, h

...but don’t use chaining

Let n_i be the number of items in $T[i]$

Step 2: The n_i items in $T[i]$ are inserted into
another hash table T_i of size n_i^2

using another weakly universal hash function

 denoted h_i (there is one for each i)

(Step 3) Immediately repeat a step if either

a) T has more than n collisions

b) some T_i has a collision
Perfect hashing - attempt three

Step 1: Insert everything into a hash table, T, of size n using a weakly universal hash function, h
...but don’t use chaining

Let n_i be the number of items in $T[i]$

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using another weakly universal hash function denoted h_i (there is one for each i)

(Step 3) Immediately repeat a step if either
a) T has more than n collisions
b) some T_i has a collision

i.e. check (and if necessary rebuild) each table immediately after building it
Perfect hashing - attempt three

Step 1: Insert everything into a hash table, \(T \), of size \(n \) using a weakly universal hash function, \(h \) ... but don’t use chaining

Let \(n_i \) be the number of items in \(T[i] \)

Step 2: The \(n_i \) items in \(T[i] \) are inserted into another hash table \(T_i \) of size \(n_i^2 \) using another weakly universal hash function denoted \(h_i \) (there is one for each \(i \))

Step 3 Immediately repeat a step if either
a) \(T \) has more than \(n \) collisions
b) some \(T_i \) has a collision
Perfect hashing - attempt three

Step 1: Insert everything into a hash table, T, of size n
using a weakly universal hash function, h

... but don’t use chaining

![Diagram showing the insertion process]

Let n_i be the number of items in $T[i]$.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2

using another weakly universal hash function denoted h_i (there is one for each i)

(Step 3) **Immediately repeat a step if either**

a) T has more than n collisions

b) some T_i has a collision

The look-up time is always $O(1)$

1. Compute $i = h(x)$ (x is the key)
2. Compute $j = h_i(x)$
3. The item is in $T_i[j]$
Perfect hashing - attempt three

Step 1: Insert everything into a hash table, T, of size n
using a weakly universal hash function, h

...but don't use chaining

Let n_i be the number of items in $T[i]$

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2
using another weakly universal hash function denoted h_i (there is one for each i)

(Step 3) *Immediately repeat a step if either*

- a) T has more than n collisions
- b) some T_i has a collision

The look-up time is always $O(1)$

1. Compute $i = h(x)$ (x is the key)
2. Compute $j = h_i(x)$
3. The item is in $T_i[j]$

Two questions remain:

What is the expected construction time?

What is the space usage?
Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) Immediately repeat if either
a) T has more than n collisions
b) some T_i has a collision

How much space does this use?
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) *Immediately repeat if either*
 a) T has more than n collisions
 b) some T_i has a collision

How much space does this use?

The size of T is $O(n)$.
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) Immediately repeat if either

- a) T has more than n collisions
- b) some T_i has a collision

How much space does this use?

The size of T is $O(n)$

The size of T_i is $O(n_i^2)$
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

(Step 3) **Immediately repeat if either**

a) T has more than n collisions
b) some T_i has a collision

How much space does this use?

The size of T is $O(n)$

The size of T_i is $O(n_i^2)$

Storing h_i uses $O(1)$ space
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) Immediately repeat if either
 a) T has more than n collisions
 b) some T_i has a collision

How much space does this use?

The size of T is $O(n)$

The size of T_i is $O(n_i^2)$

Storing h_i uses $O(1)$ space

So the total space is…
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) Immediately repeat if either
 a) T has more than n collisions
 b) some T_i has a collision

How much space does this use?

The size of T is $O(n)$

The size of T_i is $O(n_i^2)$

Storing h_i uses $O(1)$ space

So the total space is...

$$O(n) + \sum_i O(n_i^2)$$
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) Immediately repeat if either
 a) T has more than n collisions
 b) some T_i has a collision

How much space does this use?

The size of T is $O(n)$

The size of T_i is $O(n_i^2)$

Storing h_i uses $O(1)$ space

So the total space is...

$$O(n) + \sum_i O(n_i^2) = O(n) + O\left(\sum_i n_i^2\right)$$
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

(Step 3) *Immediately repeat if either*

a) T has more than n collisions
b) some T_i has a collision

How much space does this use?

The size of T is $O(n)$

The size of T_i is $O(n_i^2)$

Storing h_i uses $O(1)$ space

So the total space is…

$$O(n) + \sum_i O(n_i^2) = O(n) + O\left(\sum_i n_i^2\right)$$
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

How much space does this use?

(Step 3)

Immediately repeat if either

a) T has more than n collisions
b) some T_i has a collision

The size of T is $O(n)$

The size of T_i is $O(n_i^2)$

So the total space is...

Storing h_i uses $O(1)$ space

$O(n) + \sum_i O(n_i^2) = O(n) + O \left(\sum_i n_i^2 \right)$

how big is this?
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n^2 items in $T[i]$ are inserted into another hash table T_i of size n^2 using w.u hash function h_i.

How much space does this use?

(Step 3)

Immediately repeat if either

a) T has more than n collisions
b) some T_i has a collision

The size of T is $O(n)$.

The size of T_i is $O(n^2)$.

So the total space is...

$$O(n) + \sum_i O(n^2_i) = O(n) + O\left(\sum_i n^2_i\right)$$

Storing h_i uses $O(1)$ space.

How big is $\sum_i n^2_i$?

There are $\binom{n_i}{2}$ collisions in $T[i]$.

how big is this?
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_2^i using w.u hash function h_i.

How much space does this use?

(Step 3) Immediately repeat if either

- T has more than n collisions
- some T_i has a collision

The size of T is $O(n)$.

The size of T_i is $O(n_2^i)$.

So the total space is...

$$O(n) + \sum_i O(n_2^i) = O(n) + O\left(\sum_i n_2^i\right)$$

Storing h_i uses $O(1)$ space.

How big is this?

$\sum_i n_2^i$?

There are $\binom{n_i}{2}$ collisions in $T[i]$ so there are $\sum_i \binom{n_i}{2}$ collisions in T.

So the total space is...
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n^i items in $T[i]$ are inserted into another hash table T_i of size n^{2i} using w.u hash function h_i.

How much space does this use?

(Step 3) Immediately repeat if either

- T has more than n collisions
- some T_i has a collision

The size of T is $O(n)$

The size of T_i is $O(n^i)$

So the total space is...

$$O(n) + \sum_i O(n^{2i}) = O(n) + O\left(\sum_i n^{2i}\right)$$

Storing h_i uses $O(1)$ space

How big is this?

There are $\binom{n_i}{2}$ collisions in $T[i]$ so there are $\sum_i \binom{n_i}{2}$ collisions in T

but we know that there are at most n collisions in T...
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, \mathcal{T}, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $\mathcal{T}[i]$ are inserted into another hash table \mathcal{T}_i of size n_i^2 using w.u hash function h_i.

How much space does this use?

(Step 3)
Immediately repeat if either
a) \mathcal{T} has more than n collisions
b) some \mathcal{T}_i has a collision

The size of \mathcal{T} is $O(n)$.

The size of \mathcal{T}_i is $O(n_i^2)$.

So the total space is...

$$O(n) + \sum_i O(n_i^2) = O(n) + O\left(\sum_i n_i^2\right)$$
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2:
- The $n i$ items in $T[i]$ are inserted into another hash table T_i of size $n 2^i$ using w.u. hash function h_i.

How much space does this use?

(Step 3)
- Immediately repeat if either
 - a) T has more than n collisions
 - b) some T_i has a collision

The size of T is $O(n)$.

The size of T_i is $O(n 2^i)$.

So the total space is...

Storing h_i uses $O(1)$ space.

How big is $\sum_i n^2_i$?

There are $\left(\frac{n_i}{2}\right)$ collisions in $T[i]$ so there are $\sum_i \left(\frac{n_i}{2}\right)$ collisions in T.

but we know that there are at most n collisions in T...

$$\sum_i \frac{n^2_i}{4} \leq \sum_i \left(\frac{n_i}{2}\right) \leq n$$

So the total space is...

$$O(n) + \sum_i O(n^2_i) = O(n) + O \left(\sum_i n^2_i \right)$$
Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

How big is $\sum_i n_i^2$?

There are $\binom{n_i}{2}$ collisions in $T[i]$ so there are $\sum_i \binom{n_i}{2}$ collisions in T.

but we know that there are at most n collisions in T . . .

$$\sum_i \frac{n_i^2}{4} \leq \sum_i \binom{n_i}{2} \leq n$$

The size of T is $O(n)$.

The size of T_i is $O(n_i^2)$.

Storing h_i uses $O(1)$ space.

So the total space is . . .

$$O(n) + \sum_i O(n_i^2) = O(n) + O\left(\sum_i n_i^2\right)$$
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

How much space does this use?

(Step 3) Immediately repeat if either

a) T has more than n collisions
b) some T_i has a collision

The size of T is $O(n)$

The size of T_i is $O(n_i^2)$

So the total space is...

Storing h_i uses $O(1)$ space

How big is $\sum_i n_i^2$?

There are $\binom{n_i}{2}$ collisions in $T[i]$ so there are $\sum_i \binom{n_i}{2}$ collisions in T

but we know that there are at most n collisions in T...

$$\sum_i \frac{n_i^2}{4} \leq \sum_i \binom{n_i}{2} \leq n$$

So the total space is...

$$O(n) + \sum_i O(n_i^2) = O(n) + O\left(\sum_i n_i^2\right)$$
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u. hash function h_i

How much space does this use?

(Step 3)
Immediately repeat if either

a) T has more than n collisions
b) some T_i has a collision

The size of T is $O(n)$

The size of T_i is $O(n_i^2)$

So the total space is...

$$O(n) + \sum_i O(n_i^2) = O(n) + O\left(\sum_i n_i^2\right)$$

How big is this?

Storing h_i uses $O(1)$ space

How big is $\sum_i n_i^2$?

There are $\binom{n_i}{2}$ collisions in $T[i]$ so there are $\sum_i \binom{n_i}{2}$ collisions in T

but we know that there are at most n collisions in T...

$$\sum_i \frac{n_i^2}{4} \leq \sum_i \binom{n_i}{2} \leq n$$

or

$$\sum_i n_i^2 \leq 4n$$
Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

The size of T is $O(n)$

The size of T_i is $O(n^2)$

So the total space is...

$$O(n) + \sum_i O(n_i^2) = O(n) + O\left(\sum_i n_i^2\right) = O(n)$$

How much space does this use?

(Step 3)

Immediately repeat if either

a) T has more than n collisions

b) some T_i has a collision

There are $\binom{n_i}{2}$ collisions in $T[i]$ so there are $\sum_i \binom{n_i}{2}$ collisions in T

but we know that there are at most n collisions in T...

$$\sum_i \frac{n_i^2}{4} \leq \sum_i \binom{n_i}{2} \leq n \quad \text{or} \quad \sum_i n_i^2 \leq 4n$$

Storing h_i uses $O(1)$ space

how big is this?
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, \(T \), of size \(n \) using a weakly universal (w.u.) hash function, \(h \).

Step 2: The \(n_i \) items in \(T[i] \) are inserted into another hash table \(T_i \) of size \(n_i^2 \) using w.u hash function \(h_i \).

Step 3 *Immediately repeat if either*

a) \(T \) has more than \(n \) collisions

b) some \(T_i \) has a collision

How much space does this use?

The size of \(T \) is \(O(n) \).

The size of \(T_i \) is \(O(n_i^2) \).

Storing \(h_i \) uses \(O(1) \) space.

So the total space is...

\[
O(n) + \sum_i O(n_i^2) = O(n) + O \left(\sum_i n_i^2 \right) = O(n)
\]
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) *Immediately repeat if either*
 a) T has more than n collisions
 b) some T_i has a collision
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) *Immediately repeat if either*
 a) T has more than n collisions
 b) some T_i has a collision

The expected construction time for T is $O(n)$

(we considered this on a previous slide)
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

(Step 3) Immediately repeat if either

a) T has more than n collisions
b) some T_i has a collision

The expected construction time for T is $O(n)$

(we considered this on a previous slide)

The expected construction time for each T_i is $O(n_i^2)$
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

(Step 3) Immediately repeat if either
 a) T has more than n collisions
 b) some T_i has a collision

The expected construction time for T is $O(n)$
 (we considered this on a previous slide)

The expected construction time for each T_i is $O(n_i^2)$
 - we insert n_i items into a table of size $m = n_i^2$
 - then repeat if there was a collision
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

(Step 3) **Immediately repeat if either**

a) T has more than n collisions

b) some T_i has a collision

The expected construction time for T is $O(n)$

(we considered this on a previous slide)

The expected construction time for each T_i is $O(n_i^2)$

- we insert n_i items into a table of size $m = n_i^2$

- then repeat if there was a collision

(we also considered this on a previous slide)
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

(Step 3) Immediately repeat if either
 a) T has more than n collisions
 b) some T_i has a collision

The expected construction time for T is $O(n)$
(we considered this on a previous slide)

The expected construction time for each T_i is $O(n_i^2)$
 - we insert n_i items into a table of size $m = n_i^2$
 - then repeat if there was a collision
(we also considered this on a previous slide)

The overall expected construction time is therefore:

$$\mathbb{E}(\text{construction time}) = \mathbb{E} \left(\text{construction time of } T + \sum_i \text{construction time of } T_i \right)$$
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) Immediately repeat if either

a) T has more than n collisions
b) some T_i has a collision

The expected construction time for T is $O(n)$

The expected construction time for each T_i is $O(n_i^2)$

The overall expected construction time is therefore:

$$E(\text{construction time}) = E\left(\text{construction time of } T + \sum_i \text{construction time of } T_i \right)$$
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

(Step 3) Immediately repeat if either
 a) T has more than n collisions
 b) some T_i has a collision

The expected construction time for T is $O(n)$

The expected construction time for each T_i is $O(n_i^2)$

The overall expected construction time is therefore:

$$\mathbb{E}(\text{construction time}) = \mathbb{E} \left(\text{construction time of } T + \sum_i \text{construction time of } T_i \right)$$

$$= \mathbb{E}(\text{construction time of } T) + \sum_i \mathbb{E}(\text{construction time of } T_i)$$
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

(Step 3) *Immediately repeat if either*

a) T has more than n collisions
b) some T_i has a collision

The expected construction time for T is $O(n)$

The expected construction time for each T_i is $O(n_i^2)$

The overall expected construction time is therefore:

$$E(\text{construction time}) = E\left(\text{construction time of } T + \sum_i \text{construction time of } T_i\right)$$

$$= E(\text{construction time of } T) + \sum_i E(\text{construction time of } T_i)$$

$$= O(n) + \sum_i O(n_i^2) = O(n) + O\left(\sum_i n_i^2\right)$$
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

(Step 3) Immediately repeat if either

a) T has more than n collisions

b) some T_i has a collision

The expected construction time for T is $O(n)$

The expected construction time for *each* T_i is $O(n_i^2)$

The overall expected construction time is therefore:

$$\mathbb{E}(\text{construction time}) = \mathbb{E} \left(\text{construction time of } T + \sum_i \text{construction time of } T_i \right)$$

$$= \mathbb{E}(\text{construction time of } T) + \sum_i \mathbb{E}(\text{construction time of } T_i)$$

$$= O(n) + \sum_i O(n_i^2) = O(n) + O \left(\sum_i n_i^2 \right) = O(n)$$
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

(Step 3) Immediately repeat if either

a) T has more than n collisions
b) some T_i has a collision

The expected construction time for T is $O(n)$

The expected construction time for each T_i is $O(n_i^2)$

The overall expected construction time is therefore:

$$
\mathbb{E}(\text{construction time}) = \mathbb{E} \left(\text{construction time of } T + \sum_i n_i^2 \leq 4n \right)
$$

$$
= \mathbb{E}(\text{construction time of } T) + \sum_i \mathbb{E}(\text{construction time of } T_i)
$$

$$
= O(n) + \sum_i O(n_i^2) = O(n) + O \left(\sum_i n_i^2 \right) = O(n)
$$
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

Step 3 Immediately repeat if either
 a) T has more than n collisions
 b) some T_i has a collision

The expected construction time for T is $O(n)$

The expected construction time for each T_i is $O(n_i^2)$

The overall expected construction time is therefore:

$$
\mathbb{E}(\text{construction time}) = \mathbb{E} \left(\text{construction time of } T + \sum_i \text{construction time of } T_i \right) \\
= \mathbb{E}(\text{construction time of } T) + \sum_i \mathbb{E}(\text{construction time of } T_i) \\
= O(n) + \sum_i O(n_i^2) = O(n) + O \left(\sum_i n_i^2 \right) = O(n)
$$
Perfect Hashing - Summary

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

Step 3 *Immediately repeat if either*

- T has more than n collisions
- Some T_i has a collision

Theorem

The FKS hashing scheme:
- Has no collisions
- Every lookup takes $O(1)$ worst-case time,
- Uses $O(n)$ space,
- Can be built in $O(n)$ expected time.

The look-up time is always $O(1)$

1. Compute $i = h(x)$ (x is the key)
2. Compute $j = h_i(x)$
3. The item is in $T_i[j]$
Perfect Hashing - Summary

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) Immediately repeat if either
 a) T has more than n collisions
 b) some T_i has a collision

Theorem
The FKS hashing scheme:
- Has no collisions
- Every lookup takes $O(1)$ worst-case time,
- Uses $O(n)$ space,
- Can be built in $O(n)$ expected time.

The look-up time is always $O(1)$
1. Compute $i = h(x)$ (x is the key)
2. Compute $j = h_i(x)$
3. The item is in $T[i][j]$
Perfect Hashing - Summary

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

(Step 3) Immediately repeat if either
 a) T has more than n collisions
 b) some T_i has a collision

The FKS hashing scheme:
- Has no collisions
- Every lookup takes $O(1)$ worst-case time,
- Uses $O(n)$ space,
- Can be built in $O(n)$ expected time.

The look-up time is always $O(1)$
1. Compute $i = h(x)$ (x is the key)
2. Compute $j = h_i(x)$
3. The item is in $T_i[j]$