
Advanced Algorithms – COMS31900

Orthogonal Range Searching

Raphaël Clifford

Slides by Benjamin Sach

Orthogonal range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

Orthogonal range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

Orthogonal range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

n points in 2D space

|U |

|U |

The universe

Orthogonal range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

Orthogonal range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

Orthogonal range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Orthogonal range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Orthogonal range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

find all employees aged between 21 and 48

with salaries between £23k and £36k

A classic database query

“
”

Orthogonal range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

find all employees aged between 21 and 48

with salaries between £23k and £36k

A classic database query

x1 = 23 x2 = 36

y1 = 21

y2 = 48

“
”

Orthogonal range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

Orthogonal range searching

� A d-dimensional range searching data structure stores n distinct points

for d = 1, the lookup(x1, x2) operation

returns every point with x1 6 x 6 x2.

each point has d coordinates

for d = 3, the lookup(x1, x2, y1, y2, z1, z2) operation

returns every point with

for d = 2, the lookup(x1, x2, y1, y2) operation

returns every point with

x1 6 x 6 x2 and y1 6 y 6 y2.

(we assume d is a constant)

x1 6 x 6 x2,

y1 6 y 6 y2 and

z1 6 z 6 z2.

x1 x2

y1

y2

x1 x2

z

x y

Orthogonal range searching

� A d-dimensional range searching data structure stores n distinct points

for d = 1, the lookup(x1, x2) operation

returns every point with x1 6 x 6 x2.

each point has d coordinates

for d = 3, the lookup(x1, x2, y1, y2, z1, z2) operation

returns every point with

for d = 2, the lookup(x1, x2, y1, y2) operation

returns every point with

x1 6 x 6 x2 and y1 6 y 6 y2.

(we assume d is a constant)

x1 6 x 6 x2,

y1 6 y 6 y2 and

z1 6 z 6 z2.

x1 x2

y1

y2

x1 x2

z

x y

Orthogonal range searching

� A d-dimensional range searching data structure stores n distinct points

for d = 1, the lookup(x1, x2) operation

returns every point with x1 6 x 6 x2.

each point has d coordinates

for d = 3, the lookup(x1, x2, y1, y2, z1, z2) operation

returns every point with

for d = 2, the lookup(x1, x2, y1, y2) operation

returns every point with

x1 6 x 6 x2 and y1 6 y 6 y2.

(we assume d is a constant)

x1 6 x 6 x2,

y1 6 y 6 y2 and

z1 6 z 6 z2.

x1 x2

y1

y2

x1 x2

z

x y

Starting simple. . . 1D range searching

Starting simple. . . 1D range searching

preprocess n points on a line

Starting simple. . . 1D range searching

x1 x2

preprocess n points on a line

lookup(x1, x2) should return all points between x1 and x2

Starting simple. . . 1D range searching

x1 x2

Starting simple. . . 1D range searching

x1 x2

3 7 11 19 23 27 35 43 53 61 67

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

x1 = 15 x2 = 64

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

n

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

and O(n) space

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

n

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

and O(n) space

to perform lookup(x1, x2). . .

find the successor of x1 by binary search and then ‘walk’ right

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

n

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

and O(n) space

to perform lookup(x1, x2). . .

find the successor of x1 by binary search and then ‘walk’ right

(i.e. the closest point to the right)

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

n

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

and O(n) space

(i.e. the closest point to the right)

find the successor of x1 by binary search and then ‘walk’ right

to perform lookup(x1, x2). . .

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

n

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

and O(n) space

to perform lookup(x1, x2). . .

find the successor of x1 by binary search and then ‘walk’ right

15 < 27

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

n

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

and O(n) space

to perform lookup(x1, x2). . .

find the successor of x1 by binary search and then ‘walk’ right

15 < 27

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

n

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

and O(n) space

to perform lookup(x1, x2). . .

find the successor of x1 by binary search and then ‘walk’ right

15 > 11

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

n

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

and O(n) space

to perform lookup(x1, x2). . .

find the successor of x1 by binary search and then ‘walk’ right

15 > 11

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

n

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

and O(n) space

to perform lookup(x1, x2). . .

find the successor of x1 by binary search and then ‘walk’ right

15 < 19

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

n

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

and O(n) space

to perform lookup(x1, x2). . .

find the successor of x1 by binary search and then ‘walk’ right

15 < 19

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

n

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

and O(n) space

to perform lookup(x1, x2). . .

find the successor of x1 by binary search and then ‘walk’ right

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

n

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

and O(n) space

to perform lookup(x1, x2). . .

find the successor of x1 by binary search and then ‘walk’ right

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

n

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

and O(n) space

to perform lookup(x1, x2). . .

find the successor of x1 by binary search and then ‘walk’ right

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

n

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

and O(n) space

to perform lookup(x1, x2). . .

find the successor of x1 by binary search and then ‘walk’ right

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

n

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

and O(n) space

to perform lookup(x1, x2). . .

find the successor of x1 by binary search and then ‘walk’ right

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

n

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

and O(n) space

to perform lookup(x1, x2). . .

find the successor of x1 by binary search and then ‘walk’ right

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

n

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

and O(n) space

to perform lookup(x1, x2). . .

find the successor of x1 by binary search and then ‘walk’ right

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

n

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

and O(n) space

to perform lookup(x1, x2). . .

find the successor of x1 by binary search and then ‘walk’ right

67 > 64 = x2

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

n

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

and O(n) space

to perform lookup(x1, x2). . .

find the successor of x1 by binary search and then ‘walk’ right

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

n

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

and O(n) space

to perform lookup(x1, x2). . .

find the successor of x1 by binary search and then ‘walk’ right

k

lookups take O(logn+ k) time (k is the number of points reported)

3

Starting simple. . . 1D range searching

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

n

x1 = 15 x2 = 64

build a sorted array containing the x-coordinates

in O(n logn) preprocessing (prep.) time

and O(n) space

to perform lookup(x1, x2). . .

find the successor of x1 by binary search and then ‘walk’ right

k

lookups take O(logn+ k) time (k is the number of points reported)

3

this is called being ‘output sensitive’

Starting simple. . . 1D range searching

Starting simple. . . 1D range searching

alternatively we could build a balanced tree. . .

Starting simple. . . 1D range searching

find the point in the middle

alternatively we could build a balanced tree. . .

Starting simple. . . 1D range searching

find the point in the middle

alternatively we could build a balanced tree. . .

half the points are to the left half the points are to the right

Starting simple. . . 1D range searching

find the point in the middle

alternatively we could build a balanced tree. . .

Starting simple. . . 1D range searching

find the point in the middle

alternatively we could build a balanced tree. . .

. . . and recurse on each half

Starting simple. . . 1D range searching

find the point in the middle

alternatively we could build a balanced tree. . .

. . . and recurse on each half

Starting simple. . . 1D range searching

find the point in the middle

alternatively we could build a balanced tree. . .

. . . and recurse on each half

Starting simple. . . 1D range searching

find the point in the middle

alternatively we could build a balanced tree. . .

. . . and recurse on each half
(in a tie, pick the left)

Starting simple. . . 1D range searching

find the point in the middle

alternatively we could build a balanced tree. . .

. . . and recurse on each half
(in a tie, pick the left)

Starting simple. . . 1D range searching

find the point in the middle

alternatively we could build a balanced tree. . .

. . . and recurse on each half
(in a tie, pick the left)

Starting simple. . . 1D range searching

find the point in the middle

alternatively we could build a balanced tree. . .

. . . and recurse on each half
(in a tie, pick the left)

Starting simple. . . 1D range searching

find the point in the middle

alternatively we could build a balanced tree. . .

. . . and recurse on each half
(in a tie, pick the left)

We can store the tree in O(n) space (it has one node per point)

Starting simple. . . 1D range searching

find the point in the middle

alternatively we could build a balanced tree. . .

. . . and recurse on each half
(in a tie, pick the left)

We can store the tree in O(n) space (it has one node per point)

It has O(logn) depth

Starting simple. . . 1D range searching

find the point in the middle

alternatively we could build a balanced tree. . .

. . . and recurse on each half
(in a tie, pick the left)

We can store the tree in O(n) space (it has one node per point)

It has O(logn) depth

O(logn)

Starting simple. . . 1D range searching

find the point in the middle

alternatively we could build a balanced tree. . .

. . . and recurse on each half
(in a tie, pick the left)

We can store the tree in O(n) space (it has one node per point)

It has O(logn) depth and can be built in O(n logn) time

O(logn)

Starting simple. . . 1D range searching

find the point in the middle

alternatively we could build a balanced tree. . .

. . . and recurse on each half
(in a tie, pick the left)

We can store the tree in O(n) space (it has one node per point)

It has O(logn) depth and can be built in O(n logn) time

O(logn)

Starting simple. . . 1D range searching

find the point in the middle

alternatively we could build a balanced tree. . .

. . . and recurse on each half
(in a tie, pick the left)

We can store the tree in O(n) space (it has one node per point)

It has O(logn) depth (O(n) time if the points are sorted)and can be built in O(n logn) time

O(logn)

Starting simple. . . 1D range searching

how do we do a lookup?

Starting simple. . . 1D range searching

x1 x2

how do we do a lookup?

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

how do we do a lookup?

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

how do we do a lookup?

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

how do we do a lookup?x1 is to the left

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

how do we do a lookup?

x1 is to the right

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

how do we do a lookup?

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1 in O(logn) time

how do we do a lookup?

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

which points in the tree should we output?

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

which points in the tree should we output?

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

which points in the tree should we output?

look at any node on the path

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

which points in the tree should we output?

look at any node on the path

this is called an

off-path edge

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

which points in the tree should we output?

look at any node on the path

this is called an

“it’s all or

nothing”

off-path edge

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

which points in the tree should we output?

look at any node on the path

this is called an

“it’s all or

nothing”

off-path edge

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

which points in the tree should we output?

look at any node on the path

this is called an

“it’s all or

nothing”

off-path edge

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

which points in the tree should we output?

look at any node on the path

this is called an

“it’s all or

nothing”

off-path edge

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

which points in the tree should we output?

look at any node on the path

this is called an

“it’s all or

nothing”

off-path edgeoff-path edge

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

which points in the tree should we output?

look at any node on the path

this is called an

“it’s all or

nothing”

off-path edgeoff-path edge

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

which points in the tree should we output?

look at any node on the path

this is called an

“it’s all or

nothing”

off-path edgeoff-path edge

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

which points in the tree should we output?

look at any node on the path

this is called an

“it’s all or

nothing”

off-path edge

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

which points in the tree should we output?

look at any node on the path

this is called an

“it’s all or

nothing”

off-path edge

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

which points in the tree should we output?

look at any node on the path

this is called an

“it’s all or

nothing”

off-path edge

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

which points in the tree should we output?

look at any node on the path

this is called an

“it’s all or

nothing”

off-path edge

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

which points in the tree should we output?

look at any node on the path

this is called an

“it’s all or

nothing”

off-path edge

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

which points in the tree should we output?

look at any node on the path

this is called an

“it’s all or

nothing”

off-path edge

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

which points in the tree should we output?

look at any node on the path

this is called an

“it’s all or

nothing”

off-path edge

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

which points in the tree should we output?

look at any node on the path

this is called an

“it’s all or

nothing”

off-path edge

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

which points in the tree should we output?

look at any node on the path

this is called an

“it’s all or

nothing”

after the split

off-path edge

Starting simple. . . 1D range searching

x1 x2

Step 1: find the successor of x1

Step 2: find the predecessor of x2

in O(logn) time

how do we do a lookup?

in O(logn) time

which points in the tree should we output?

look at any node on the path

this is called an

“it’s all or

nothing”

after the split

those in the O(logn) selected subtrees on the path

off-path edge

Starting simple. . . 1D range searching

x1 x2

how do we do a lookup?
look at any node on the path

this is called an

“it’s all or

nothing”

after the split

off-path edge

Starting simple. . . 1D range searching

x1 x2

how do we do a lookup?
look at any node on the path

this is called an

“it’s all or

nothing”

after the split

lookups take O(logn+ k) time (k is the number of points reported)
as before

off-path edge

Starting simple. . . 1D range searching

x1 x2

how do we do a lookup?
look at any node on the path

this is called an

“it’s all or

nothing”

after the split

lookups take O(logn+ k) time (k is the number of points reported)
as before

so what have we gained?

off-path edge

Subtree decomposition root

split

x1 x2

Warning: the root to split path isn’t to scale

off-path edge

off-path subtree

too small

too small

too big

Subtree decomposition root

split

x1 x2

Warning: the root to split path isn’t to scale

after the paths to x1 and x2 split. . .

off-path edge

off-path subtree

too small

too small

too big

Subtree decomposition root

split

x1 x2

Warning: the root to split path isn’t to scale

after the paths to x1 and x2 split. . .

any off-path subtree is either in or out

off-path edge

off-path subtree

too small

too small

too big

Subtree decomposition root

split

x1 x2

Warning: the root to split path isn’t to scale

after the paths to x1 and x2 split. . .

any off-path subtree is either in or out
i.e. every point in the subtree has x1 6 x 6 x2 or none has

off-path edge

off-path subtree

too small

too small

too big

Subtree decomposition root

split

x1 x2

Warning: the root to split path isn’t to scale

after the paths to x1 and x2 split. . .

any off-path subtree is either in or out
i.e. every point in the subtree has x1 6 x 6 x2 or none has

off-path edge

off-path subtree

too small

too small

too big

this will be useful for 2D range searching

1D range searching summary

O(n logn) prep time

O(n) space

O(logn+ k) lookup time

where k is the number of points reported

(this is known as being output sensitive)

x1 x2

preprocess n points on a line

lookup(x1, x2) should report all points between x1 and x2

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Attempt one:

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Attempt one:

• Find all the points with x1 6 x 6 x2

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Attempt one:

• Find all the points with x1 6 x 6 x2

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Attempt one:

• Find all the points with x1 6 x 6 x2

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Attempt one:

• Find all the points with x1 6 x 6 x2

• Find all the points with y1 6 y 6 y2

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Attempt one:

• Find all the points with x1 6 x 6 x2

• Find all the points with y1 6 y 6 y2

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Attempt one:

• Find all the points with x1 6 x 6 x2

• Find all the points with y1 6 y 6 y2

• Find all the points in both lists

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Attempt one:

• Find all the points with x1 6 x 6 x2

• Find all the points with y1 6 y 6 y2

• Find all the points in both lists

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Attempt one:

• Find all the points with x1 6 x 6 x2

• Find all the points with y1 6 y 6 y2

• Find all the points in both lists

How long does this take?

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Attempt one:

• Find all the points with x1 6 x 6 x2

• Find all the points with y1 6 y 6 y2

• Find all the points in both lists

How long does this take?

O(logn+ k) +O(logn+ k) +O(k)

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Attempt one:

• Find all the points with x1 6 x 6 x2

• Find all the points with y1 6 y 6 y2

• Find all the points in both lists

How long does this take?

O(logn+ k) +O(logn+ k) +O(k)

= O(logn+ k)

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Attempt one:

• Find all the points with x1 6 x 6 x2

• Find all the points with y1 6 y 6 y2

• Find all the points in both lists

How long does this take?

O(logn+ k) +O(logn+ k) +O(k)

= O(logn+ k)

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Attempt one:

• Find all the points with x1 6 x 6 x2

• Find all the points with y1 6 y 6 y2

• Find all the points in both lists

How long does this take?

O(logn+ k) +O(logn+ k) +O(k)

= O(logn+ k)

???

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Attempt one:

• Find all the points with x1 6 x 6 x2

• Find all the points with y1 6 y 6 y2

• Find all the points in both lists

How long does this take?

O(logn+ k) +O(logn+ k) +O(k)

= O(logn+ k)

???

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Attempt one:

• Find all the points with x1 6 x 6 x2

• Find all the points with y1 6 y 6 y2

• Find all the points in both lists

How long does this take?

O(logn+ kx) +O(logn+ ky) +O(kx + ky)

= O(logn+ kx + ky)

here kx is the number of points with x1 6 x 6 x2 (respectively for ky)

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Attempt one:

• Find all the points with x1 6 x 6 x2

• Find all the points with y1 6 y 6 y2

• Find all the points in both lists

How long does this take?

O(logn+ kx) +O(logn+ ky) +O(kx + ky)

= O(logn+ kx + ky)

here kx is the number of points with x1 6 x 6 x2 (respectively for ky)

these could be huge in comparison with k

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

how can we do better?

Subtree decomposition in 2D root

split

x1 x2

Warning: the root to split path isn’t to scale

off-path edge

off-path subtree

x too small

x too big

(during preprocessing) build a balanced binary tree using the x-coordinates

Subtree decomposition in 2D root

split

x1 x2

Warning: the root to split path isn’t to scale

to perform a lookup(x1, x2, y1, y2) follow the paths to x1 and x2 as before

off-path edge

off-path subtree

x too small

x too big

(during preprocessing) build a balanced binary tree using the x-coordinates

Subtree decomposition in 2D root

split

x1 x2

Warning: the root to split path isn’t to scale

to perform a lookup(x1, x2, y1, y2) follow the paths to x1 and x2 as before

off-path edge

off-path subtree

x too small

x too big

(during preprocessing) build a balanced binary tree using the x-coordinates

for any off-path subtree. . .
every point in the subtree has x1 6 x 6 x2 or no point has

Subtree decomposition in 2D root

split

x1 x2

Warning: the root to split path isn’t to scale

to perform a lookup(x1, x2, y1, y2) follow the paths to x1 and x2 as before

off-path edge

off-path subtree

x too small

x too big

(during preprocessing) build a balanced binary tree using the x-coordinates

for any off-path subtree. . .
every point in the subtree has x1 6 x 6 x2 or no point has

Idea: filter these subtrees by y-coordinate

Subtree decomposition in 2D

to perform a lookup(x1, x2, y1, y2) follow the paths to x1 and x2 as before

(during preprocessing) build a balanced binary tree using the x-coordinates

for any off-path subtree. . .
every point in the subtree has x1 6 x 6 x2 or no point has

Idea: filter these subtrees by y-coordinate

Subtree decomposition in 2D

to perform a lookup(x1, x2, y1, y2) follow the paths to x1 and x2 as before

(during preprocessing) build a balanced binary tree using the x-coordinates

for any off-path subtree. . .
every point in the subtree has x1 6 x 6 x2 or no point has

Idea: filter these subtrees by y-coordinate

we want to find all points in here with y1 6 y 6 y2
(they all have x1 6 x 6 x2)

Subtree decomposition in 2D

to perform a lookup(x1, x2, y1, y2) follow the paths to x1 and x2 as before

(during preprocessing) build a balanced binary tree using the x-coordinates

for any off-path subtree. . .
every point in the subtree has x1 6 x 6 x2 or no point has

Idea: filter these subtrees by y-coordinate

we want to find all points in here with y1 6 y 6 y2
(they all have x1 6 x 6 x2)

how?

Subtree decomposition in 2D

to perform a lookup(x1, x2, y1, y2) follow the paths to x1 and x2 as before

(during preprocessing) build a balanced binary tree using the x-coordinates

for any off-path subtree. . .
every point in the subtree has x1 6 x 6 x2 or no point has

Idea: filter these subtrees by y-coordinate

we want to find all points in here with y1 6 y 6 y2
(they all have x1 6 x 6 x2)

how?

build a 1D range searching structure at every node

(during preprocessing)
on the y-coordinates of the points in the subtree

Subtree decomposition in 2D

to perform a lookup(x1, x2, y1, y2) follow the paths to x1 and x2 as before

(during preprocessing) build a balanced binary tree using the x-coordinates

for any off-path subtree. . .
every point in the subtree has x1 6 x 6 x2 or no point has

Idea: filter these subtrees by y-coordinate

we want to find all points in here with y1 6 y 6 y2
(they all have x1 6 x 6 x2)

how?

build a 1D range searching structure at every node

(during preprocessing)
on the y-coordinates of the points in the subtree

a 1D lookup takes O(logn+ k′) time

k′

Subtree decomposition in 2D

to perform a lookup(x1, x2, y1, y2) follow the paths to x1 and x2 as before

(during preprocessing) build a balanced binary tree using the x-coordinates

for any off-path subtree. . .
every point in the subtree has x1 6 x 6 x2 or no point has

Idea: filter these subtrees by y-coordinate

we want to find all points in here with y1 6 y 6 y2
(they all have x1 6 x 6 x2)

how?

build a 1D range searching structure at every node

(during preprocessing)
on the y-coordinates of the points in the subtree

a 1D lookup takes O(logn+ k′) time

k′
and only returns points we want

Subtree decomposition in 2D

Query summary

x1 x2

Subtree decomposition in 2D

Query summary

1. Follow the paths to x1 and x2

x1 x2

Subtree decomposition in 2D

Query summary

1. Follow the paths to x1 and x2 (inspecting the points on the path as you go)

x1 x2

Subtree decomposition in 2D

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

(inspecting the points on the path as you go)

x1 x2

Subtree decomposition in 2D

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

(inspecting the points on the path as you go)

x1 x2

Subtree decomposition in 2D

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .

use the 1D range structure for that subtree
to filter the y coordinates

(inspecting the points on the path as you go)

x1 x2

Subtree decomposition in 2D

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .

use the 1D range structure for that subtree
to filter the y coordinates

(inspecting the points on the path as you go)

perform lookup(y1, y2) on the

points in this subtree

x1 x2

Subtree decomposition in 2D

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .

use the 1D range structure for that subtree
to filter the y coordinates

(inspecting the points on the path as you go)

perform lookup(y1, y2) on the

points in this subtree

x1 x2

Subtree decomposition in 2D

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .

use the 1D range structure for that subtree
to filter the y coordinates

(inspecting the points on the path as you go)

perform lookup(y1, y2) on the

points in this subtree

x1 x2

Subtree decomposition in 2D

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .

use the 1D range structure for that subtree
to filter the y coordinates

(inspecting the points on the path as you go)

perform lookup(y1, y2) on the

points in this subtree

x1 x2

Subtree decomposition in 2D

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .

use the 1D range structure for that subtree
to filter the y coordinates

(inspecting the points on the path as you go)

perform lookup(y1, y2) on the

points in this subtree

x1 x2

Subtree decomposition in 2D

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .

use the 1D range structure for that subtree
to filter the y coordinates

(inspecting the points on the path as you go)

How long does a query take?

x1 x2

Subtree decomposition in 2D

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .

use the 1D range structure for that subtree
to filter the y coordinates

(inspecting the points on the path as you go)

How long does a query take?

The paths have length O(logn)

x1 x2

Subtree decomposition in 2D

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .

use the 1D range structure for that subtree
to filter the y coordinates

(inspecting the points on the path as you go)

How long does a query take?

The paths have length O(logn)

So steps 1. and 2. take O(logn) time

x1 x2

Subtree decomposition in 2D

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .

use the 1D range structure for that subtree
to filter the y coordinates

(inspecting the points on the path as you go)

How long does a query take?

The paths have length O(logn)

So steps 1. and 2. take O(logn) time

As for step 3,

x1 x2

Subtree decomposition in 2D

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .

use the 1D range structure for that subtree
to filter the y coordinates

(inspecting the points on the path as you go)

How long does a query take?

The paths have length O(logn)

So steps 1. and 2. take O(logn) time

As for step 3,

We do O(logn) 1D lookups. . .

x1 x2

Subtree decomposition in 2D

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .

use the 1D range structure for that subtree
to filter the y coordinates

(inspecting the points on the path as you go)

How long does a query take?

The paths have length O(logn)

So steps 1. and 2. take O(logn) time

As for step 3,

We do O(logn) 1D lookups. . .

Each takes O(logn+ k′) time x1 x2

Subtree decomposition in 2D

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .

use the 1D range structure for that subtree
to filter the y coordinates

(inspecting the points on the path as you go)

How long does a query take?

The paths have length O(logn)

So steps 1. and 2. take O(logn) time

As for step 3,

We do O(logn) 1D lookups. . .

Each takes O(logn+ k′) time

This sums to. . .

O(log2 n+ k)

x1 x2

Subtree decomposition in 2D

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .

use the 1D range structure for that subtree
to filter the y coordinates

(inspecting the points on the path as you go)

How long does a query take?

The paths have length O(logn)

So steps 1. and 2. take O(logn) time

As for step 3,

We do O(logn) 1D lookups. . .

Each takes O(logn+ k′) time

This sums to. . .

O(log2 n+ k)

because the 1D lookups are disjoint

x1 x2

Space Usage

at each node we store an array

the array is sorted by y coordinate

(this gives us a 1D range data structure)

How much space does our 2D range structure use?

containing the points in its subtree

the original (1D) structure used O(n) space. . .

but we added some stuff

Space Usage

at each node we store an array

the array is sorted by y coordinate

(this gives us a 1D range data structure)

How much space does our 2D range structure use?

containing the points in its subtree

the original (1D) structure used O(n) space. . .

but we added some stuff

look at any level in the tree
i.e. all nodes at the same distance from the root

Space Usage

at each node we store an array

the array is sorted by y coordinate

(this gives us a 1D range data structure)

How much space does our 2D range structure use?

containing the points in its subtree

the original (1D) structure used O(n) space. . .

but we added some stuff

look at any level in the tree
i.e. all nodes at the same distance from the root

the points in these subtrees are disjoint

Space Usage

at each node we store an array

the array is sorted by y coordinate

(this gives us a 1D range data structure)

How much space does our 2D range structure use?

containing the points in its subtree

the original (1D) structure used O(n) space. . .

but we added some stuff

look at any level in the tree
i.e. all nodes at the same distance from the root

the points in these subtrees are disjoint

so the sizes of the arrays add up to n

Space Usage

at each node we store an array

the array is sorted by y coordinate

(this gives us a 1D range data structure)

How much space does our 2D range structure use?

containing the points in its subtree

the original (1D) structure used O(n) space. . .

but we added some stuff

look at any level in the tree
i.e. all nodes at the same distance from the root

the points in these subtrees are disjoint

so the sizes of the arrays add up to n

As the tree has depth O(logn). . .

Space Usage

at each node we store an array

the array is sorted by y coordinate

(this gives us a 1D range data structure)

How much space does our 2D range structure use?

containing the points in its subtree

the original (1D) structure used O(n) space. . .

but we added some stuff

look at any level in the tree
i.e. all nodes at the same distance from the root

the points in these subtrees are disjoint

so the sizes of the arrays add up to n

As the tree has depth O(logn). . .

the total space used is O(n logn)

Preprocessing time

How long does it take to build the arrays at the nodes?

How much prep time does our 2D range structure take?

the original (1D) structure used O(n logn) prep time. . .

but we added some stuff

Preprocessing time

How long does it take to build the arrays at the nodes?

How much prep time does our 2D range structure take?

the original (1D) structure used O(n logn) prep time. . .

but we added some stuff

Preprocessing time

How long does it take to build the arrays at the nodes?

How much prep time does our 2D range structure take?

the original (1D) structure used O(n logn) prep time. . .

but we added some stuff

is just merged with

`

as and are already sorted,

merging them takes O(`) time

Therefore the total time is O(n logn)

(which is the sum of the lengths of the arrays)

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Summary

O(n logn) prep time

O(n logn) space

O(log2 n+ k) lookup time

where k is the number of points reported

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Summary

O(n logn) prep time

O(n logn) space

O(log2 n+ k) lookup time

where k is the number of points reported

actually we can improve this :)

Improving the query time

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

y1 = 15 y2 = 64

when we do a 2D look-up we do O(logn) 1D lookups. . .

all with the same y1 and y2
(but on different point sets)

Improving the query time

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

y1 = 15 y2 = 64

when we do a 2D look-up we do O(logn) 1D lookups. . .

all with the same y1 and y2
(but on different point sets)

The slow part is finding the successor of y1

Improving the query time

3 7 11 19 23 27 35 43 53 61 67

3 7 11 19 23 27 35 43 53 61 67

y1 = 15 y2 = 64

when we do a 2D look-up we do O(logn) 1D lookups. . .

all with the same y1 and y2
(but on different point sets)

The slow part is finding the successor of y1

If I told you where this point was, a 1D lookup would only take O(k′) time

(where k′ is the number of points between y1 and y2)

Improving the query time

7

3 7 11 19 23 27 35 43 53 61 67

311 19 23 2735 43 5361 67

The arrays of points at the children
partition the array of the parent

Improving the query time

7

3 7 11 19 23 27 35 43 53 61 67

311 19 23 2735 43 5361 67

The arrays of points at the children
partition the array of the parent

Improving the query time

7

3 7 11 19 23 27 35 43 53 61 67

311 19 23 2735 43 5361 67

The arrays of points at the children
partition the array of the parent

Improving the query time

7

3 7 11 19 23 27 35 43 53 61 67

311 19 23 2735 43 5361 67

The arrays of points at the children
partition the array of the parent

The child arrays are sorted by y coordinate

(but have been partitioned by x coordinate)

Improving the query time

7

3 7 11 19 23 27 35 43 53 61 67

311 19 23 2735 43 5361 67

The arrays of points at the children
partition the array of the parent

The child arrays are sorted by y coordinate

(but have been partitioned by x coordinate)

Consider a point in the parent array. . .

Improving the query time

7

3 7 11 19 23 27 35 43 53 61 67

311 19 23 2735 43 5361 67

The arrays of points at the children
partition the array of the parent

The child arrays are sorted by y coordinate

(but have been partitioned by x coordinate)

Consider a point in the parent array. . .

Improving the query time

7

3 7 11 19 23 27 35 43 53 61 67

311 19 23 2735 43 5361 67

The arrays of points at the children
partition the array of the parent

The child arrays are sorted by y coordinate

(but have been partitioned by x coordinate)

Consider a point in the parent array. . .

Improving the query time

7

3 7 11 19 23 27 35 43 53 61 67

311 19 23 2735 43 5361 67

The arrays of points at the children
partition the array of the parent

The child arrays are sorted by y coordinate

(but have been partitioned by x coordinate)

Consider a point in the parent array. . .
we add a link to its successor in both child arrays

(we do this for every point during preprocessing)

Improving the query time

7

3 7 11 19 23 27 35 43 53 61 67

311 19 23 2735 43 5361 67

The arrays of points at the children
partition the array of the parent

The child arrays are sorted by y coordinate

(but have been partitioned by x coordinate)

Consider a point in the parent array. . .
we add a link to its successor in both child arrays

(we do this for every point during preprocessing)

Improving the query time

7

3 7 11 19 23 27 35 43 53 61 67

311 19 23 2735 43 5361 67

The arrays of points at the children
partition the array of the parent

The child arrays are sorted by y coordinate

(but have been partitioned by x coordinate)

Consider a point in the parent array. . .
we add a link to its successor in both child arrays

(we do this for every point during preprocessing)

Improving the query time

7

3 7 11 19 23 27 35 43 53 61 67

311 19 23 2735 43 5361 67

Improving the query time

7

3 7 11 19 23 27 35 43 53 61 67

311 19 23 2735 43 5361 67

Observation if we know where the successor of y1 is in the

parent, can find the successor in either child in O(1) time

Improving the query time

7

3 7 11 19 23 27 35 43 53 61 67

311 19 23 2735 43 5361 67

Observation if we know where the successor of y1 is in the

parent, can find the successor in either child in O(1) time

y1 = 15

y1 = 15 y1 = 15

Improving the query time

7

3 7 11 19 23 27 35 43 53 61 67

311 19 23 2735 43 5361 67

Observation if we know where the successor of y1 is in the

parent, can find the successor in either child in O(1) time

y1 = 15

y1 = 15 y1 = 15

adding these links doesn’t increase the space or the prep time

The improved query time

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .
use the 1D range structure for that subtree

to filter the y coordinates

(updating the successor to y1 as you go)

How long does a query take?

The improved query time

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .
use the 1D range structure for that subtree

to filter the y coordinates

(updating the successor to y1 as you go)

How long does a query take?

The paths have length O(logn)

The improved query time

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .
use the 1D range structure for that subtree

to filter the y coordinates

(updating the successor to y1 as you go)

How long does a query take?

The paths have length O(logn)

So steps 1. and 2. take O(logn) time

The improved query time

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .
use the 1D range structure for that subtree

to filter the y coordinates

(updating the successor to y1 as you go)

How long does a query take?

The paths have length O(logn)

So steps 1. and 2. take O(logn) time

As for step 3,

The improved query time

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .
use the 1D range structure for that subtree

to filter the y coordinates

(updating the successor to y1 as you go)

How long does a query take?

The paths have length O(logn)

So steps 1. and 2. take O(logn) time

As for step 3,

We do O(logn) 1D lookups. . .

The improved query time

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .
use the 1D range structure for that subtree

to filter the y coordinates

(updating the successor to y1 as you go)

How long does a query take?

The paths have length O(logn)

So steps 1. and 2. take O(logn) time

As for step 3,

We do O(logn) 1D lookups. . .

Each takes O(k′) time

The improved query time

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .
use the 1D range structure for that subtree

to filter the y coordinates

(updating the successor to y1 as you go)

How long does a query take?

The paths have length O(logn)

So steps 1. and 2. take O(logn) time

As for step 3,

We do O(logn) 1D lookups. . .

Each takes O(k′) time

This sums to. . .

O(logn+ k)

2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Summary

O(n logn) prep time

O(n logn) space

O(logn+ k) lookup time

where k is the number of points reported

we improved this :)
using fractional cascading

	Orthogonal range searching
	Orthogonal range searching

