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alternatively we could build a balanced tree. . .

. . . and recurse on each half
(in a tie, pick the left)

We can store the tree in O(n) space (it has one node per point)

It has O(logn) depth (O(n) time if the points are sorted)and can be built in O(n logn) time

O(logn)
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nothing”
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Subtree decomposition root

split

x1 x2

Warning: the root to split path isn’t to scale

after the paths to x1 and x2 split. . .

any off-path subtree is either in or out
i.e. every point in the subtree has x1 6 x 6 x2 or none has

off-path edge

off-path subtree

too small

too small

too big

this will be useful for 2D range searching



1D range searching summary

O(n logn) prep time

O(n) space

O(logn+ k) lookup time

where k is the number of points reported

(this is known as being output sensitive)

x1 x2

preprocess n points on a line

lookup(x1, x2) should report all points between x1 and x2
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� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

how can we do better?
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Subtree decomposition in 2D

to perform a lookup(x1, x2, y1, y2) follow the paths to x1 and x2 as before

(during preprocessing) build a balanced binary tree using the x-coordinates

for any off-path subtree. . .
every point in the subtree has x1 6 x 6 x2 or no point has

Idea: filter these subtrees by y-coordinate

we want to find all points in here with y1 6 y 6 y2
(they all have x1 6 x 6 x2)

how?

build a 1D range searching structure at every node

(during preprocessing)
on the y-coordinates of the points in the subtree

a 1D lookup takes O(logn+ k′) time

k′
and only returns points we want
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because the 1D lookups are disjoint
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Space Usage

at each node we store an array

the array is sorted by y coordinate

(this gives us a 1D range data structure)

How much space does our 2D range structure use?

containing the points in its subtree

the original (1D) structure used O(n) space. . .

but we added some stuff

look at any level in the tree
i.e. all nodes at the same distance from the root

the points in these subtrees are disjoint

so the sizes of the arrays add up to n

As the tree has depth O(logn). . .

the total space used is O(n logn)
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Preprocessing time

How long does it take to build the arrays at the nodes?

How much prep time does our 2D range structure take?

the original (1D) structure used O(n logn) prep time. . .

but we added some stuff

is just merged with

`

as and are already sorted,

merging them takes O(`) time

Therefore the total time is O(n logn)

(which is the sum of the lengths of the arrays)



2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Summary

O(n logn) prep time

O(n logn) space

O(log2 n+ k) lookup time

where k is the number of points reported



2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Summary

O(n logn) prep time

O(n logn) space

O(log2 n+ k) lookup time

where k is the number of points reported

actually we can improve this :)
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3 7 11 19 23 27 35 43 53 61 67

y1 = 15 y2 = 64

when we do a 2D look-up we do O(logn) 1D lookups. . .

all with the same y1 and y2
(but on different point sets)

The slow part is finding the successor of y1

If I told you where this point was, a 1D lookup would only take O(k′) time

(where k′ is the number of points between y1 and y2)
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Improving the query time

7

3 7 11 19 23 27 35 43 53 61 67

311 19 23 2735 43 5361 67

Observation if we know where the successor of y1 is in the

parent, can find the successor in either child in O(1) time

y1 = 15

y1 = 15 y1 = 15

adding these links doesn’t increase the space or the prep time
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(updating the successor to y1 as you go)
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The improved query time

Query summary

1. Follow the paths to x1 and x2

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range. . .
use the 1D range structure for that subtree

to filter the y coordinates

(updating the successor to y1 as you go)

How long does a query take?

The paths have length O(logn)

So steps 1. and 2. take O(logn) time

As for step 3,

We do O(logn) 1D lookups. . .

Each takes O(k′) time

This sums to. . .

O(logn+ k)



2D range searching

� A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x1, x2, y1, y2) operation

which returns every point in the rectangle [x1 : x2]× [y1 : y2]

i.e. every (x, y) with x1 6 x 6 x2 and y1 6 y 6 y2.

x1 x2

y1

y2

Summary

O(n logn) prep time

O(n logn) space

O(logn+ k) lookup time

where k is the number of points reported

we improved this :)
using fractional cascading
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