Advanced Algorithms

Probability recap.

Raphaël Clifford

Slides by Markus Jalsenius

Randomness and probability

Probability

The sample space S is the set of outcomes of an experiment.

Probability

The sample space S is the set of outcomes of an experiment.

Examples
Roll a die: $S=\{1,2,3,4,5,6\}$.

Probability

The sample space S is the set of outcomes of an experiment.

Examples
Roll a die: $S=\{1,2,3,4,5,6\}$.
Flip a coin: $S=\{\mathrm{H}, \mathrm{T}\}$.

Probability

The sample space S is the set of outcomes of an experiment.

ExAmples
Roll a die: $S=\{1,2,3,4,5,6\}$.
Flip a coin: $S=\{\mathrm{H}, \mathrm{T}\}$.
Amount of money you can win when playing some lottery:

$$
S=\{£ 0, £ 10, £ 100, £ 1000, £ 10,000, £ 100,000\} .
$$

Probability

The sample space S is the set of outcomes of an experiment.

Examples
Roll a die: $S=\{1,2,3,4,5,6\}$.
Flip a coin: $S=\{\mathrm{H}, \mathrm{T}\}$.
Amount of money you can win when playing some lottery:

$$
S=\{£ 0, £ 10, £ 100, £ 1000, £ 10,000, £ 100,000\} .
$$

For $x \in S$, the probability of x, written $\operatorname{Pr}(x)$,
is a real number between 0 and 1 , such that $\sum_{x \in S} \operatorname{Pr}(x)=1$.

Probability

The sample space S is the set of outcomes of an experiment.

Examples
Roll a die: $S=\{1,2,3,4,5,6\}$.
Flip a coin: $S=\{\mathrm{H}, \mathrm{T}\}$.
Amount of money you can win when playing some lottery:

$$
S=\{£ 0, £ 10, £ 100, £ 1000, £ 10,000, £ 100,000\} .
$$

For $x \in S$, the probability of x, written $\operatorname{Pr}(x)$,
is a real number between 0 and 1 , such that $\sum_{x \in S} \operatorname{Pr}(x)=1$.
Pr is 'just' a function which maps each $x \in S$ to $\operatorname{Pr}(x) \in[0,1]$

Probability

The sample space S is the set of outcomes of an experiment.

For $x \in S$, the probability of x, written $\operatorname{Pr}(x)$,
is a real number between 0 and 1 , such that $\sum_{x \in S} \operatorname{Pr}(x)=1$.
Pr is 'just' a function which maps each $x \in S$ to $\operatorname{Pr}(x) \in[0,1]$

Probability

The sample space S is the set of outcomes of an experiment.

Example
Roll a die: $S=\{1,2,3,4,5,6\}$.

$$
\operatorname{Pr}(1)=\operatorname{Pr}(2)=\operatorname{Pr}(3)=\operatorname{Pr}(4)=\operatorname{Pr}(5)=\operatorname{Pr}(6)=\frac{1}{6}
$$

For $x \in S$, the probability of x, written $\operatorname{Pr}(x)$,
is a real number between 0 and 1 , such that $\sum_{x \in S} \operatorname{Pr}(x)=1$.
Pr is 'just' a function which maps each $x \in S$ to $\operatorname{Pr}(x) \in[0,1]$

Probability

The sample space S is the set of outcomes of an experiment.

For $x \in S$, the probability of x, written $\operatorname{Pr}(x)$,
is a real number between 0 and 1 , such that $\sum_{x \in S} \operatorname{Pr}(x)=1$.
Pr is 'just' a function which maps each $x \in S$ to $\operatorname{Pr}(x) \in[0,1]$

Probability

The sample space S is the set of outcomes of an experiment.

Example

Flip a coin: $S=\{\mathrm{H}, \mathrm{T}\}$.

$$
\operatorname{Pr}(\mathrm{H})=\operatorname{Pr}(\mathrm{T})=\frac{1}{2} .
$$

For $x \in S$, the probability of x, written $\operatorname{Pr}(x)$,
is a real number between 0 and 1 , such that $\sum_{x \in S} \operatorname{Pr}(x)=1$.
Pr is 'just' a function which maps each $x \in S$ to $\operatorname{Pr}(x) \in[0,1]$

Probability

The sample space S is the set of outcomes of an experiment.

For $x \in S$, the probability of x, written $\operatorname{Pr}(x)$,
is a real number between 0 and 1 , such that $\sum_{x \in S} \operatorname{Pr}(x)=1$.
Pr is 'just' a function which maps each $x \in S$ to $\operatorname{Pr}(x) \in[0,1]$

Probability

The sample space S is the set of outcomes of an experiment.

Example
Amount of money you can win when playing some lottery:

$$
\begin{gathered}
S=\{£ 0, £ 10, £ 100, £ 1000, £ 10,000, £ 100,000\} . \\
\operatorname{Pr}(£ 0)=0.9, \operatorname{Pr}(£ 10)=0.08, \ldots, \operatorname{Pr}(£ 100,000)=0.0001 .
\end{gathered}
$$

For $x \in S$, the probability of x, written $\operatorname{Pr}(x)$,
is a real number between 0 and 1 , such that $\sum_{x \in S} \operatorname{Pr}(x)=1$.
Pr is 'just' a function which maps each $x \in S$ to $\operatorname{Pr}(x) \in[0,1]$

Probability

The sample space is not necessarily finite.

Probability

The sample space is not necessarily finite.

Example
Flip a coin until first tail shows up

Probability

The sample space is not necessarily finite.

Example
Flip a coin until first tail shows up:

$$
S=\{\mathrm{T}, \text { НТ , ННТ , НННТ, ННННТ, НННННТ }, \ldots\} .
$$

Probability

The sample space is not necessarily finite.

Example

Flip a coin until first tail shows up:

$$
S=\{\mathrm{T}, \mathrm{HT}, \mathrm{HHT}, \mathrm{HHHT}, \mathrm{HHHHT}, \mathrm{HHHHHT}, \ldots\} .
$$

$\operatorname{Pr}\left(\right.$ "It takes n coin flips") $=\left(\frac{1}{2}\right)^{n}$, and

Probability

The sample space is not necessarily finite.

Example

Flip a coin until first tail shows up:

$$
S=\{\mathrm{T}, \mathrm{HT}, \mathrm{HHT}, \mathrm{HHHT}, \mathrm{HHHHT}, \mathrm{HHHHHT}, \ldots\} .
$$

$\operatorname{Pr}($ "It takes n coin flips" $)=\left(\frac{1}{2}\right)^{n}$, and

$$
\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}
$$

Probability

The sample space is not necessarily finite.

Example

Flip a coin until first tail shows up:

$$
S=\{\mathrm{T}, \mathrm{HT}, \mathrm{HHT}, \mathrm{HHHT}, \mathrm{HHHHT}, \mathrm{HHHHHT}, \ldots\} .
$$

$\operatorname{Pr}\left(\right.$ "lt takes n coin flips") $=\left(\frac{1}{2}\right)^{n}$, and

$$
\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16} \cdots
$$

Probability

The sample space is not necessarily finite.

Example

Flip a coin until first tail shows up:

$$
S=\{\mathrm{T}, \mathrm{HT}, \mathrm{HHT}, \text { НННТ, ННННТ, НННННТ }, \ldots\} .
$$

$\operatorname{Pr}\left(\right.$ "It takes n coin flips") $=\left(\frac{1}{2}\right)^{n}$, and

$$
\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16} \ldots=1
$$

Event

An event is a subset V of the sample space S.

Event

An event is a subset V of the sample space S.
The probability of event V happening, denoted $\operatorname{Pr}(V)$, is

$$
\operatorname{Pr}(V)=\sum_{x \in V} \operatorname{Pr}(x)
$$

Event

An event is a subset V of the sample space S.
The probability of event V happening, denoted $\operatorname{Pr}(V)$, is

$$
\operatorname{Pr}(V)=\sum_{x \in V} \operatorname{Pr}(x)
$$

Example

Flip a coin 3 times: $S=\{$ TTT, TTH, THT, HTT, HHT, HTH, THH, HHH $\}$
For each $x \in S, \operatorname{Pr}(x)=\frac{1}{8}$

Event

An event is a subset V of the sample space S.
The probability of event V happening, denoted $\operatorname{Pr}(V)$, is

$$
\operatorname{Pr}(V)=\sum_{x \in V} \operatorname{Pr}(x)
$$

Example

Flip a coin 3 times: $S=\{$ TTT, TTH, THT, HTT, HHT, HTH, THH, HHH $\}$
For each $x \in S, \operatorname{Pr}(x)=\frac{1}{8}$
Define V to be the event "the first and last coin flips are the same"

Event

An event is a subset V of the sample space S.
The probability of event V happening, denoted $\operatorname{Pr}(V)$, is

$$
\operatorname{Pr}(V)=\sum_{x \in V} \operatorname{Pr}(x)
$$

Example

Flip a coin 3 times: $S=\{$ TTT, TTH, THT, HTT, HHT, HTH, THH, HHH $\}$
For each $x \in S, \operatorname{Pr}(x)=\frac{1}{8}$
Define V to be the event "the first and last coin flips are the same"

$$
\text { in other words, } V=\{\mathrm{HHH}, \mathrm{HTH}, \mathrm{THT}, \mathrm{TTT}\}
$$

Event

An event is a subset V of the sample space S.
The probability of event V happening, denoted $\operatorname{Pr}(V)$, is

$$
\operatorname{Pr}(V)=\sum_{x \in V} \operatorname{Pr}(x)
$$

Example

Flip a coin 3 times: $S=\{$ TTT, TTH, THT, HTT, HHT, HTH, THH, HHH $\}$
For each $x \in S, \operatorname{Pr}(x)=\frac{1}{8}$
Define V to be the event "the first and last coin flips are the same"

$$
\text { in other words, } V=\{\mathrm{HHH}, \mathrm{HTH}, \mathrm{THT}, \mathrm{TTT}\}
$$

What is $\operatorname{Pr}(V)$?

Event

An event is a subset V of the sample space S.
The probability of event V happening, denoted $\operatorname{Pr}(V)$, is

$$
\operatorname{Pr}(V)=\sum_{x \in V} \operatorname{Pr}(x)
$$

Example

Flip a coin 3 times: $S=\{$ TTT, TTH, THT, HTT, HHT, HTH, THH, HHH $\}$
For each $x \in S, \operatorname{Pr}(x)=\frac{1}{8}$
Define V to be the event "the first and last coin flips are the same"

$$
\text { in other words, } V=\{\mathrm{HHH}, \mathrm{HTH}, \mathrm{THT}, \mathrm{TTT}\}
$$

What is $\operatorname{Pr}(V)$?

$$
\operatorname{Pr}(V)=\operatorname{Pr}(H H H)+\operatorname{Pr}(H T H)+\operatorname{Pr}(\mathrm{THT})+\operatorname{Pr}(\mathrm{TTT})=4 \times \frac{1}{8}=\frac{1}{2} .
$$

Random variable

A random variable (r.v.) Y over sample space S is a function $S \rightarrow \mathbb{R}$
i.e. it maps each outcome $x \in S$ to some real number $Y(x)$.

Random variable

A random variable (r.v.) Y over sample space S is a function $S \rightarrow \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number $Y(x)$.

The probability of Y taking value y is $\operatorname{Pr}(Y=y)=\sum \operatorname{Pr}(x)$.

$$
\{x \in S \text { st. } Y(x)=y\}
$$

Random variable

A random variable (r.v.) Y over sample space S is a function $S \rightarrow \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number $Y(x)$.

The probability of Y taking value y is $\operatorname{Pr}(Y=y)=\sum \operatorname{Pr}(x)$.

$$
\{x \in S \text { st. } Y(x)=y\}
$$

- Example

Two coin flips.

S	Y
H H	2
H T	1
TH	5
T T	2

Random variable

A random variable (r.v.) Y over sample space S is a function $S \rightarrow \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number $Y(x)$.

The probability of Y taking value y is $\operatorname{Pr}(Y=y)=\sum \operatorname{Pr}(x)$.

- ExAMPLE

Two coin flips.

$$
\begin{gathered}
\operatorname{Pr}(Y=y)=\sum_{\{x \in S \text { st. } Y(x)=y\}} \operatorname{Pr}(x)
\end{gathered}
$$

sum over all values of x such that $Y(x)=y$

Random variable

A random variable (r.v.) Y over sample space S is a function $S \rightarrow \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number $Y(x)$.

The probability of Y taking value y is $\operatorname{Pr}(Y=y)=\sum \operatorname{Pr}(x)$.

$$
\{x \in S \text { st. } Y(x)=y\}
$$

- Example

Two coin flips.

S	Y
HH	2
HT	1
TH	5
T T	2

sum over all values of x such that $Y(x)=y$
What is $\operatorname{Pr}(Y=2)$?

Random variable

A random variable (r.v.) Y over sample space S is a function $S \rightarrow \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number $Y(x)$.

The probability of Y taking value y is $\operatorname{Pr}(Y=y)=\sum \operatorname{Pr}(x)$.

$$
\{x \in S \text { st. } Y(x)=y\}
$$

- Example

Two coin flips.

S	Y
HH	2
H T	1
TH	5
T T	2

sum over all values of x such that $Y(x)=y$
What is $\operatorname{Pr}(Y=2)$?

$$
\operatorname{Pr}(Y=2)=\sum_{x \in\{\mathrm{H}, \mathrm{TT}\}} \operatorname{Pr}(x)
$$

Random variable

A random variable (r.v.) Y over sample space S is a function $S \rightarrow \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number $Y(x)$.

The probability of Y taking value y is $\operatorname{Pr}(Y=y)=\sum \operatorname{Pr}(x)$.

$$
\{x \in S \text { st. } Y(x)=y\}
$$

Example
Two coin flips.

S	Y
HH	2
HT	1
TH	5
TT	2

sum over all values of x such that $Y(x)=y$
What is $\operatorname{Pr}(Y=2)$?

$$
\operatorname{Pr}(Y=2)=\sum_{x \in\{H H, T \top\}} \operatorname{Pr}(x)=\frac{1}{4}+\frac{1}{4}
$$

Random variable

A random variable (r.v.) Y over sample space S is a function $S \rightarrow \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number $Y(x)$.

The probability of Y taking value y is $\operatorname{Pr}(Y=y)=\sum \operatorname{Pr}(x)$.

$$
\{x \in S \text { st. } Y(x)=y\}
$$

Example
Two coin flips.

S	Y
HH	2
HT	1
TH	5
TT	2

sum over all values of x such that $Y(x)=y$
What is $\operatorname{Pr}(Y=2)$?

$$
\operatorname{Pr}(Y=2)=\sum_{x \in\{H H, T \top\}} \operatorname{Pr}(x)=\frac{1}{4}+\frac{1}{4}
$$

Random variable

A random variable (r.v.) Y over sample space S is a function $S \rightarrow \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number $Y(x)$.

The probability of Y taking value y is $\operatorname{Pr}(Y=y)=\sum \operatorname{Pr}(x)$.

$$
\{x \in S \text { st. } Y(x)=y\}
$$

- Example

Two coin flips.

S	Y
HH	2
HT	1
TH	5
T T	2

$$
\operatorname{Pr}(Y=2)=\frac{1}{2}
$$

sum over all values of x such that $Y(x)=y$
What is $\operatorname{Pr}(Y=2)$?

$$
\operatorname{Pr}(Y=2)=\sum_{x \in\{H H, T \top\}} \operatorname{Pr}(x)=\frac{1}{4}+\frac{1}{4}
$$

Random variable

A random variable (r.v.) Y over sample space S is a function $S \rightarrow \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number $Y(x)$.

The probability of Y taking value y is $\operatorname{Pr}(Y=y)=\sum \operatorname{Pr}(x)$.

$$
\{x \in S \text { st. } Y(x)=y\}
$$

- Example

Two coin flips.

S	Y
H H	2
H T	1
TH	5
T T	2

$$
\operatorname{Pr}(Y=2)=\frac{1}{2}
$$

Random variable

A random variable (r.v.) Y over sample space S is a function $S \rightarrow \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number $Y(x)$.

The probability of Y taking value y is $\operatorname{Pr}(Y=y)=\sum \operatorname{Pr}(x)$.

$$
\{x \in S \text { st. } Y(x)=y\}
$$

- Example

Two coin flips.

S	Y
HH	2
HT	1
TH	5
T T	2

$$
\operatorname{Pr}(Y=2)=\frac{1}{2}
$$

Random variable

A random variable (r.v.) Y over sample space S is a function $S \rightarrow \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number $Y(x)$.

The probability of Y taking value y is $\operatorname{Pr}(Y=y)=\sum \operatorname{Pr}(x)$.

$$
\{x \in S \text { st. } Y(x)=y\}
$$

- Example

Two coin flips.

S	Y
H H	2
H T	1
TH	5
T T	2

$$
\operatorname{Pr}(Y=2)=\frac{1}{2}
$$

The expected value (the mean) of a r.v. Y, denoted $\mathbb{E}(Y)$, is

$$
\mathbb{E}(Y)=\sum_{x \in S} Y(x) \cdot \operatorname{Pr}(x)
$$

$$
\mathbb{E}(Y)=\left(2 \cdot \frac{1}{2}\right)+\left(1 \cdot \frac{1}{4}\right)+\left(5 \cdot \frac{1}{4}\right)=\frac{5}{2}
$$

Linearity of expectation

[THEOREM (Linearity of expectation)
Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be k random variables. Then

$$
\mathbb{E}\left(\sum_{i=1}^{k} Y_{i}\right)=\sum_{i=1}^{k} \mathbb{E}\left(Y_{i}\right)
$$

Linearity of expectation

THEOREM (Linearity of expectation)
Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be k random variables. Then

$$
\mathbb{E}\left(\sum_{i=1}^{k} Y_{i}\right)=\sum_{i=1}^{k} \mathbb{E}\left(Y_{i}\right)
$$

Linearity of expectation always holds,
(regardless of whether the random variables are independent or not.)

Linearity of expectation

THEOREM (Linearity of expectation)
Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be k random variables. Then

$$
\mathbb{E}\left(\sum_{i=1}^{k} Y_{i}\right)=\sum_{i=1}^{k} \mathbb{E}\left(Y_{i}\right)
$$

Linearity of expectation always holds, (regardless of whether the random variables are independent or not.)

ExAMPLE
Roll two dice. Let the r.v. Y be the sum of the values.

Linearity of expectation

THEOREM (Linearity of expectation)
Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be k random variables. Then

$$
\mathbb{E}\left(\sum_{i=1}^{k} Y_{i}\right)=\sum_{i=1}^{k} \mathbb{E}\left(Y_{i}\right)
$$

Linearity of expectation always holds,
(regardless of whether the random variables are independent or not.)

Example
Roll two dice. Let the r.v. Y be the sum of the values.
random variable

Linearity of expectation

THEOREM (Linearity of expectation)
Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be k random variables. Then

$$
\mathbb{E}\left(\sum_{i=1}^{k} Y_{i}\right)=\sum_{i=1}^{k} \mathbb{E}\left(Y_{i}\right)
$$

Linearity of expectation always holds, (regardless of whether the random variables are independent or not.)

ExAMPLE
Roll two dice. Let the r.v. Y be the sum of the values.

Linearity of expectation

THEOREM (Linearity of expectation)
Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be k random variables. Then

$$
\mathbb{E}\left(\sum_{i=1}^{k} Y_{i}\right)=\sum_{i=1}^{k} \mathbb{E}\left(Y_{i}\right)
$$

Linearity of expectation always holds, (regardless of whether the random variables are independent or not.)

Example
Roll two dice. Let the r.v. Y be the sum of the values.

Linearity of expectation

THEOREM (Linearity of expectation)
Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be k random variables. Then

$$
\mathbb{E}\left(\sum_{i=1}^{k} Y_{i}\right)=\sum_{i=1}^{k} \mathbb{E}\left(Y_{i}\right)
$$

Linearity of expectation always holds, (regardless of whether the random variables are independent or not.)

Example
Roll two dice. Let the r.v. Y be the sum of the values.
What is $\mathbb{E}(Y)$?
Approach 1: (without the theorem)

Linearity of expectation

THEOREM (Linearity of expectation)
Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be k random variables. Then

$$
\mathbb{E}\left(\sum_{i=1}^{k} Y_{i}\right)=\sum_{i=1}^{k} \mathbb{E}\left(Y_{i}\right)
$$

Linearity of expectation always holds, (regardless of whether the random variables are independent or not.)

Example
Roll two dice. Let the r.v. Y be the sum of the values.
What is $\mathbb{E}(Y)$?
Approach 1: (without the theorem)
The sample space $S=\{(1,1),(1,2),(1,3) \ldots(6,6)\}$ (36 outcomes)

Linearity of expectation

THEOREM (Linearity of expectation)
Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be k random variables. Then

$$
\mathbb{E}\left(\sum_{i=1}^{k} Y_{i}\right)=\sum_{i=1}^{k} \mathbb{E}\left(Y_{i}\right)
$$

Linearity of expectation always holds, (regardless of whether the random variables are independent or not.)

Example
Roll two dice. Let the r.v. Y be the sum of the values.
What is $\mathbb{E}(Y)$?
Approach 1: (without the theorem)
The sample space $S=\{(1,1),(1,2),(1,3) \ldots(6,6)\}$ (36 outcomes)
$\mathbb{E}(Y)=\sum_{x \in S} Y(x) \cdot \operatorname{Pr}(x)$

Linearity of expectation

THEOREM (Linearity of expectation)
Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be k random variables. Then

$$
\mathbb{E}\left(\sum_{i=1}^{k} Y_{i}\right)=\sum_{i=1}^{k} \mathbb{E}\left(Y_{i}\right)
$$

Linearity of expectation always holds,

> (regardless of whether the random variables are independent or not.)

Example
Roll two dice. Let the r.v. Y be the sum of the values.
What is $\mathbb{E}(Y)$?
Approach 1: (without the theorem)
The sample space $S=\{(1,1),(1,2),(1,3) \ldots(6,6)\}$ (36 outcomes)
$\mathbb{E}(Y)=\sum_{x \in S} Y(x) \cdot \operatorname{Pr}(x)=\frac{1}{36} \sum_{x \in S} Y(x)$

Linearity of expectation

THEOREM (Linearity of expectation)
Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be k random variables. Then

$$
\mathbb{E}\left(\sum_{i=1}^{k} Y_{i}\right)=\sum_{i=1}^{k} \mathbb{E}\left(Y_{i}\right)
$$

Linearity of expectation always holds, (regardless of whether the random variables are independent or not.)

Example
Roll two dice. Let the r.v. Y be the sum of the values.
What is $\mathbb{E}(Y)$?
Approach 1: (without the theorem)
The sample space $S=\{(1,1),(1,2),(1,3) \ldots(6,6)\}$ (36 outcomes)

$$
\begin{array}{r}
\mathbb{E}(Y)=\sum_{x \in S} Y(x) \cdot \operatorname{Pr}(x)=\frac{1}{36} \sum_{x \in S} Y(x)= \\
\frac{1}{36}(1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+1 \cdot 12)
\end{array}
$$

Linearity of expectation

THEOREM (Linearity of expectation)
Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be k random variables. Then

$$
\mathbb{E}\left(\sum_{i=1}^{k} Y_{i}\right)=\sum_{i=1}^{k} \mathbb{E}\left(Y_{i}\right)
$$

Linearity of expectation always holds, (regardless of whether the random variables are independent or not.)

EXAMPLE
Roll two dice. Let the r.v. Y be the sum of the values.

```
What is }\mathbb{E}(Y)\mathrm{ ?
```

Approach 1: (without the theorem)
The sample space $S=\{(1,1),(1,2),(1,3) \ldots(6,6)\}$ (36 outcomes)

$$
\begin{aligned}
& \mathbb{E}(Y)=\sum_{x \in S} Y(x) \cdot \operatorname{Pr}(x)=\frac{1}{36} \sum_{x \in S} Y(x)= \\
& \quad \frac{1}{36}(1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+1 \cdot 12)=7
\end{aligned}
$$

Linearity of expectation

THEOREM (Linearity of expectation)
Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be k random variables. Then

$$
\mathbb{E}\left(\sum_{i=1}^{k} Y_{i}\right)=\sum_{i=1}^{k} \mathbb{E}\left(Y_{i}\right)
$$

Linearity of expectation always holds, (regardless of whether the random variables are independent or not.)

Example
Roll two dice. Let the r.v. Y be the sum of the values.

Linearity of expectation

THEOREM (Linearity of expectation)
Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be k random variables. Then

$$
\mathbb{E}\left(\sum_{i=1}^{k} Y_{i}\right)=\sum_{i=1}^{k} \mathbb{E}\left(Y_{i}\right)
$$

Linearity of expectation always holds, (regardless of whether the random variables are independent or not.)

Example
Roll two dice. Let the r.v. Y be the sum of the values.
What is $\mathbb{E}(Y)$?
Approach 2: (with the theorem)

Linearity of expectation

THEOREM (Linearity of expectation)
Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be k random variables. Then

$$
\mathbb{E}\left(\sum_{i=1}^{k} Y_{i}\right)=\sum_{i=1}^{k} \mathbb{E}\left(Y_{i}\right)
$$

Linearity of expectation always holds, (regardless of whether the random variables are independent or not.)

Example
Roll two dice. Let the r.v. Y be the sum of the values.
What is $\mathbb{E}(Y)$?
Approach 2: (with the theorem)
Let the r.v. Y_{1} be the value of the first die and Y_{2} the value of the second

Linearity of expectation

THEOREM (Linearity of expectation)
Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be k random variables. Then

$$
\mathbb{E}\left(\sum_{i=1}^{k} Y_{i}\right)=\sum_{i=1}^{k} \mathbb{E}\left(Y_{i}\right)
$$

Linearity of expectation always holds, (regardless of whether the random variables are independent or not.)

Example
Roll two dice. Let the r.v. Y be the sum of the values.
What is $\mathbb{E}(Y)$?
Approach 2: (with the theorem)
Let the r.v. Y_{1} be the value of the first die and Y_{2} the value of the second

$$
\mathbb{E}\left(Y_{1}\right)=\mathbb{E}\left(Y_{2}\right)=3.5
$$

Linearity of expectation

THEOREM (Linearity of expectation)
Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be k random variables. Then

$$
\mathbb{E}\left(\sum_{i=1}^{k} Y_{i}\right)=\sum_{i=1}^{k} \mathbb{E}\left(Y_{i}\right)
$$

Linearity of expectation always holds, (regardless of whether the random variables are independent or not.)

EXAMPLE
Roll two dice. Let the r.v. Y be the sum of the values.

What is $\mathbb{E}(Y)$?

Approach 2: (with the theorem)
Let the r.v. Y_{1} be the value of the first die and Y_{2} the value of the second

$$
\begin{aligned}
& \mathbb{E}\left(Y_{1}\right)=\mathbb{E}\left(Y_{2}\right)=3.5 \\
& \quad \text { so } \mathbb{E}(Y)=\mathbb{E}\left(Y_{1}+Y_{2}\right)=\mathbb{E}\left(Y_{1}\right)+\mathbb{E}\left(Y_{2}\right)=7
\end{aligned}
$$

Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1 .
(usually referred to by the letter I)

Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1 .
(usually referred to by the letter I)
Fact: $\mathbb{E}(I)=0 \cdot \operatorname{Pr}(I=0)+1 \cdot \operatorname{Pr}(I=1)=\operatorname{Pr}(I=1)$.

Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1 .
(usually referred to by the letter I)
Fact: $\mathbb{E}(I)=\operatorname{Pr}(I=1)$.

Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1 .
(usually referred to by the letter I)
Fact: $\mathbb{E}(I)=\operatorname{Pr}(I=1)$.
Often an indicator r.v. I is associated with an event such that $I=1$ if the event happens (and $I=0$ otherwise).

Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1 .
(usually referred to by the letter I)
Fact: $\mathbb{E}(I)=\operatorname{Pr}(I=1)$.
Often an indicator r.v. I is associated with an event such that $I=1$ if the event happens (and $I=0$ otherwise). Indicator random variables and linearity of expectation work great together!

Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1 .
(usually referred to by the letter I)
Fact: $\mathbb{E}(I)=\operatorname{Pr}(I=1)$.
Often an indicator r.v. I is associated with an event such that
$I=1$ if the event happens (and $I=0$ otherwise).
Indicator random variables and linearity of expectation work great together!

Example
Roll a die n times.

Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1 .
(usually referred to by the letter I)
Fact: $\mathbb{E}(I)=\operatorname{Pr}(I=1)$.
Often an indicator r.v. I is associated with an event such that
$I=1$ if the event happens (and $I=0$ otherwise).
Indicator random variables and linearity of expectation work great together!

Example
Roll a die n times.
What is the expected number rolls that show a value that is at least the value of the previous roll?

Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1 .
(usually referred to by the letter I)
Fact: $\mathbb{E}(I)=\operatorname{Pr}(I=1)$.
Often an indicator r.v. I is associated with an event such that $I=1$ if the event happens (and $I=0$ otherwise). Indicator random variables and linearity of expectation work great together!

Example
Roll a die n times.
What is the expected number rolls that show a value that is at least the value of the previous roll?

For $j \in\{2, \ldots, n\}$, let indicator r.v. $I_{j}=1$ if the value of the j th roll is at least the value of the previous roll (and $I_{j}=0$ otherwise)

Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1 .
(usually referred to by the letter I)
Fact: $\mathbb{E}(I)=\operatorname{Pr}(I=1)$.
Often an indicator r.v. I is associated with an event such that $I=1$ if the event happens (and $I=0$ otherwise). Indicator random variables and linearity of expectation work great together!

Example
Roll a die n times.
What is the expected number rolls that show a value that is at least the value of the previous roll?

For $j \in\{2, \ldots, n\}$, let indicator r.v. $I_{j}=1$ if the value of the j th roll is at least the value of the previous roll (and $I_{j}=0$ otherwise)
$\operatorname{Pr}\left(I_{j}=1\right)=\frac{21}{36}=\frac{7}{12}$. (by counting the outcomes)

Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1 .
(usually referred to by the letter I)
Fact: $\mathbb{E}(I)=\operatorname{Pr}(I=1)$.
Often an indicator r.v. I is associated with an event such that $I=1$ if the event happens (and $I=0$ otherwise). Indicator random variables and linearity of expectation work great together!

Example
Roll a die n times.
What is the expected number rolls that show a value that is at least the value of the previous roll?

For $j \in\{2, \ldots, n\}$, let indicator r.v. $I_{j}=1$ if the value of the j th roll is at least the value of the previous roll (and $I_{j}=0$ otherwise)
$\operatorname{Pr}\left(I_{j}=1\right)=\frac{21}{36}=\frac{7}{12}$. (by counting the outcomes)

$$
E\left(\sum_{j=2}^{n} I_{j}\right)=\sum_{j=2}^{n} \mathbb{E}\left(I_{j}\right)=\sum_{j=2}^{n} \operatorname{Pr}\left(I_{j}=1\right)=(n-1) \cdot \frac{7}{12}
$$

Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1 .
(usually referred to by the letter I)
Fact: $\mathbb{E}(I)=\operatorname{Pr}(I=1)$.
Often an indicator r.v. I is associated with an event such that

$$
I=1 \text { if the event happens (and } I=0 \text { otherwise). }
$$

Indicator random variables and linearity of expectation work great together!

Linearity of Expectation

Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be k random variables. Then

$$
\mathbb{E}\left(\sum_{i=1}^{k} Y_{i}\right)=\sum_{i=1}^{k} \mathbb{E}\left(Y_{i}\right)
$$

rolls that show a value ast the value of the previous roll?
of the j th roll revious roll (and $I_{j}=0$ otherwise)
$\operatorname{Pr}\left(I_{j}=1\right)=\frac{21}{36}=\frac{7}{12}$. (by counting the outcomes)

$$
E\left(\sum_{j=2}^{n} I_{j}\right)=\sum_{j=2}^{n} \mathbb{E}\left(I_{j}\right)=\sum_{j=2}^{n} \operatorname{Pr}\left(I_{j}=1\right)=(n-1) \cdot \frac{7}{12}
$$

Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1 .
(usually referred to by the letter I)
Fact: $\mathbb{E}(I)=\operatorname{Pr}(I=1)$.
Often an indicator r.v. I is associated with an event such that $I=1$ if the event happens (and $I=0$ otherwise). Indicator random variables and linearity of expectation work great together!

Example
Roll a die n times.
What is the expected number rolls that show a value that is at least the value of the previous roll?

For $j \in\{2, \ldots, n\}$, let indicator r.v. $I_{j}=1$ if the value of the j th roll is at least the value of the previous roll (and $I_{j}=0$ otherwise)
$\operatorname{Pr}\left(I_{j}=1\right)=\frac{21}{36}=\frac{7}{12}$. (by counting the outcomes)

$$
E\left(\sum_{j=2}^{n} I_{j}\right)=\sum_{j=2}^{n} \mathbb{E}\left(I_{j}\right)=\sum_{j=2}^{n} \operatorname{Pr}\left(I_{j}=1\right)=(n-1) \cdot \frac{7}{12}
$$

Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1 .
(usually referred to by the letter I)
Fact: $\mathbb{E}(I)=\operatorname{Pr}(I=1)$.
Often an indicator r.v. I is associated with an event such that
$I=1$ if the event happens (and $I=0$ otherwise).
Indicator random variables and linearity of expectation work great together!

Example
Roll a die n times.
What is the expected number rolls that show a value that is at least the value of the previous roll?

For $j \in\{2, \ldots, n\}$, let indicator r.v. $I_{j}=1$ if the value of the j th roll is at least the value of the previous roll (and $I_{j}=0$ otherwise)
$\operatorname{Pr}\left(I_{j}=1\right)=\frac{21}{36}=\frac{7}{12}$. (by counting the outcomes)

$$
E\left(\sum_{j=2}^{n} I_{j}\right)=\sum_{j=2}^{n} \mathbb{E}\left(I_{j}\right)=\sum_{j=2}^{n} \operatorname{Pr}\left(I_{j}=1\right)=(n-1) \cdot \frac{7}{12}
$$

Indicator random variables

An indicator random variable is a r.v. that can only be 0 or 1 .
(usually referred to by the letter I)
Fact: $\mathbb{E}(I)=\operatorname{Pr}(I=1)$.
Often an indicator r.v. I is associated with an event such that $I=1$ if the event happens (and $I=0$ otherwise). Indicator random variables and linearity of expectation work great together!

Example
Roll a die n times.
What is the expected number rolls that show a value that is at least the value of the previous roll?

For $j \in\{2, \ldots, n\}$, let indicator r.v. $I_{j}=1$ if the value of the j th roll is at least the value of the previous roll (and $I_{j}=0$ otherwise)
$\operatorname{Pr}\left(I_{j}=1\right)=\frac{21}{36}=\frac{7}{12}$. (by counting the outcomes)

$$
E\left(\sum_{j=2}^{n} I_{j}\right)=\sum_{j=2}^{n} \mathbb{E}\left(I_{j}\right)=\sum_{j=2}^{n} \operatorname{Pr}\left(I_{j}=1\right)=(n-1) \cdot \frac{7}{12}
$$

Markov's inequality

Example
Suppose that the average (mean) speed on the motorway is 60 mph .

Markov's inequality

ExAMPLE
Suppose that the average (mean) speed on the motorway is 60 mph .
It then follows that at most

Markov's inequality

ExAMPLE
Suppose that the average (mean) speed on the motorway is 60 mph .
It then follows that at most

$$
\frac{1}{2} \text { of all cars drive at least } 120 \mathrm{mph},
$$

Markov's inequality

Example
Suppose that the average (mean) speed on the motorway is 60 mph .
It then follows that at most

$$
\frac{1}{2} \text { of all cars drive at least } 120 \mathrm{mph} \text {, }
$$

Markov's inequality

Example
Suppose that the average (mean) speed on the motorway is 60 mph .
It then follows that at most
$\frac{2}{3}$ of all cars drive at least 90 mph ,
... otherwise the mean must be higher than 60 mph. (a contradiction)

Markov's inequality

Suppose that the average (mean) speed on the motorway is 60 mph .
It then follows that at most

$$
\frac{2}{3} \text { of all cars drive at least } 90 \mathrm{mph} \text {, }
$$

... otherwise the mean must be higher than 60 mph. (a contradiction)

Theorem (Markov's inequality)
If X is a non-negative r.v., then for all $a>0$,

$$
\operatorname{Pr}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}
$$

Markov’s inequality

Suppose that the average (mean) speed on the motorway is 60 mph .
It then follows that at most

$$
\frac{2}{3} \text { of all cars drive at least } 90 \mathrm{mph} \text {, }
$$

. . . otherwise the mean must be higher than 60 mph . (a contradiction)

$$
\left[\begin{array}{l}
\text { If } X \text { is a non-negative r.v., then for all } a>0, \\
\qquad \operatorname{Pr}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}
\end{array}\right.
$$

EXAMPLE
From the example above:

- $\operatorname{Pr}($ speed of a random car $\geq 120 \mathrm{mph}) \leq \frac{60}{120}=\frac{1}{2}$,
- $\operatorname{Pr}($ speed of a random car $\geq 90 \mathrm{mph}) \leq \frac{60}{90}=\frac{2}{3}$.

Markov's inequality

Example
n people go to a party, leaving their hats at the door.
Each person leaves with a random hat.

Markov's inequality

Example
n people go to a party, leaving their hats at the door.
Each person leaves with a random hat.
How many people leave with their own hat?

Markov's inequality

Example
n people go to a party, leaving their hats at the door.
Each person leaves with a random hat.
How many people leave with their own hat?
For $j \in\{1, \ldots, n\}$, let indicator r.v. $I_{j}=1$ if the j th person gets their own hat, otherwise $I_{j}=0$.

Markov's inequality

n people go to a party, leaving their hats at the door.
Each person leaves with a random hat.

How many people leave with their own hat?

For $j \in\{1, \ldots, n\}$, let indicator r.v. $I_{j}=1$ if the j th person gets their own hat, otherwise $I_{j}=0$.
By linearity of expectation...

$$
\mathbb{E}\left(\sum_{j=1}^{n} I_{j}\right)=\sum_{j=1}^{n} \mathbb{E}\left(I_{j}\right)=\sum_{j=1}^{n} \operatorname{Pr}\left(I_{j}=1\right)=n \cdot \frac{1}{n}=1 .
$$

Markov’s inequality

EXAMPLE

n people go to a party, leaving their hats at the door.
Each person leaves with a random hat.

How many people leave with their own hat?

For $j \in\{1, \ldots, n\}$, let indicator r.v. $I_{j}=1$ if the j th person gets their own hat,
By linearity of expectation...
Fact: $\mathbb{E}(I)=\operatorname{Pr}(I=1)$. otherwise $I_{j}=0$.

$$
\mathbb{E}\left(\sum_{j=1}^{n} I_{j}\right)=\sum_{j=1}^{n} \mathbb{E}\left(I_{j}\right)=\sum_{j=1}^{n} \operatorname{Pr}\left(I_{j}=1\right)=n \cdot \frac{1}{n}=1 .
$$

Markov's inequality

n people go to a party, leaving their hats at the door.
Each person leaves with a random hat.

How many people leave with their own hat?

For $j \in\{1, \ldots, n\}$, let indicator r.v. $I_{j}=1$ if the j th person gets their own hat, otherwise $I_{j}=0$.
By linearity of expectation...

$$
\mathbb{E}\left(\sum_{j=1}^{n} I_{j}\right)=\sum_{j=1}^{n} \mathbb{E}\left(I_{j}\right)=\sum_{j=1}^{n} \operatorname{Pr}\left(I_{j}=1\right)=n \cdot \frac{1}{n}=1 .
$$

Markov's inequality

n people go to a party, leaving their hats at the door.
Each person leaves with a random hat.

How many people leave with their own hat?

For $j \in\{1, \ldots, n\}$, let indicator r.v. $I_{j}=1$ if the j th person gets their own hat, otherwise $I_{j}=0$.
By linearity of expectation...

$$
\mathbb{E}\left(\sum_{j=1}^{n} I_{j}\right)=\sum_{j=1}^{n} \mathbb{E}\left(I_{j}\right)=\sum_{j=1}^{n} \operatorname{Pr}\left(I_{j}=1\right)=n \cdot \frac{1}{n}=1
$$

By Markov's inequality (recall: $\operatorname{Pr}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}$),

Markov's inequality

EXAMPLE

n people go to a party, leaving their hats at the door.
Each person leaves with a random hat.

How many people leave with their own hat?

For $j \in\{1, \ldots, n\}$, let indicator r.v. $I_{j}=1$ if the j th person gets their own hat, otherwise $I_{j}=0$.
By linearity of expectation...

$$
\mathbb{E}\left(\sum_{j=1}^{n} I_{j}\right)=\sum_{j=1}^{n} \mathbb{E}\left(I_{j}\right)=\sum_{j=1}^{n} \operatorname{Pr}\left(I_{j}=1\right)=n \cdot \frac{1}{n}=1
$$

By Markov's inequality (recall: $\operatorname{Pr}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}$),
$\operatorname{Pr}(5$ or more people leaving with their own hats $) \leq \frac{1}{5}$,

Markov's inequality

Example

n people go to a party, leaving their hats at the door.
Each person leaves with a random hat.

How many people leave with their own hat?

For $j \in\{1, \ldots, n\}$, let indicator r.v. $I_{j}=1$ if the j th person gets their own hat, otherwise $I_{j}=0$.
By linearity of expectation...

$$
\mathbb{E}\left(\sum_{j=1}^{n} I_{j}\right)=\sum_{j=1}^{n} \mathbb{E}\left(I_{j}\right)=\sum_{j=1}^{n} \operatorname{Pr}\left(I_{j}=1\right)=n \cdot \frac{1}{n}=1
$$

By Markov's inequality (recall: $\operatorname{Pr}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}$),
$\operatorname{Pr}(5$ or more people leaving with their own hats $) \leq \frac{1}{5}$,
$\operatorname{Pr}($ at least 1 person leaving with their own hat $) \leq \frac{1}{1}=1$.

Markov's inequality

Example

n people go to a party, leaving their hats at the door.
Each person leaves with a random hat.

How many people leave with their own hat?

For $j \in\{1, \ldots, n\}$, let indicator r.v. $I_{j}=1$ if the j th person gets their own hat, otherwise $I_{j}=0$.
By linearity of expectation...

$$
\mathbb{E}\left(\sum_{j=1}^{n} I_{j}\right)=\sum_{j=1}^{n} \mathbb{E}\left(I_{j}\right)=\sum_{j=1}^{n} \operatorname{Pr}\left(I_{j}=1\right)=n \cdot \frac{1}{n}=1
$$

By Markov's inequality (recall: $\operatorname{Pr}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}$),
$\operatorname{Pr}(5$ or more people leaving with their own hats $) \leq \frac{1}{5}$,

$$
\operatorname{Pr}(\text { at least } 1 \text { person leaving with their own hat }) \leq \frac{1}{1}=1
$$

Markov's inequality

EXAMpLE

n people go to a party, leaving their hats at the door.
Each person leaves with a random hat.

How many people leave with their own hat?

For $j \in\{1, \ldots, n\}$, let indicator r.v. $I_{j}=1$ if the j th person gets their own hat, otherwise $I_{j}=0$.
By linearity of expectation...

$$
\mathbb{E}\left(\sum_{j=1}^{n} I_{j}\right)=\sum_{j=1}^{n} \mathbb{E}\left(I_{j}\right)=\sum_{j=1}^{n} \operatorname{Pr}\left(I_{j}=1\right)=n \cdot \frac{1}{n}=1
$$

By Markov's inequality (recall: $\operatorname{Pr}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}$),
$\operatorname{Pr}(5$ or more people leaving with their own hats $) \leq \frac{1}{5}$,
$\operatorname{Pr}($ at least 1 person leaving with their own hat $) \leq \frac{1}{1}=1$.
(sometimes Markov's inequality is not particularly informative)
In fact, here it can be shown that as $n \rightarrow \infty$, the probability that at least one person leaves with their own hat is $1-\frac{1}{e} \approx 0.632$.

Markov's inequality

If X is a non-negative r.v. that only takes integer values, then

$$
\operatorname{Pr}(X>0)=\operatorname{Pr}(X \geq 1) \leq \mathbb{E}(X)
$$

For an indicator r.v. I, the bound is tight $(=)$, as $\operatorname{Pr}(I>0)=\mathbb{E}(I)$.

Union bound

$$
\begin{aligned}
& \text { Theorem (union bound) } V_{1}, \ldots, V_{k} \text { be } k \text { events. Then } \\
& \qquad \operatorname{Pr}\left(\bigcup_{i=1}^{k} V_{i}\right) \leq \sum_{i=1}^{k} \operatorname{Pr}\left(V_{i}\right) .
\end{aligned}
$$

Union bound

Let V_{1}, \ldots, V_{k} be k events. Then

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{k} V_{i}\right) \leq \sum_{i=1}^{k} \operatorname{Pr}\left(V_{i}\right)
$$

This is the probability at least one of the events happens

Union bound

$$
\begin{aligned}
& \text { Theorem (union bound) } V_{1}, \ldots, V_{k} \text { be } k \text { events. Then } \\
& \qquad \operatorname{Pr}\left(\bigcup_{i=1}^{k} V_{i}\right) \leq \sum_{i=1}^{k} \operatorname{Pr}\left(V_{i}\right) .
\end{aligned}
$$

Union bound

$$
\begin{aligned}
& \text { Let } V_{1}, \ldots, V_{k} \text { be } k \text { events. Then } \\
& \qquad \operatorname{Pr}\left(\bigcup_{i=1}^{k} V_{i}\right) \leq \sum_{i=1}^{k} \operatorname{Pr}\left(V_{i}\right) .
\end{aligned}
$$

This bound is tight $(=)$ when the events are all disjoint.

$$
\text { (} V_{i} \text { and } V_{j} \text { are disjoint iff } V_{i} \cap V_{j} \text { is empty) }
$$

Union bound

Union bound

Union bound

THEOREM (union bound)
Let V_{1}, \ldots, V_{k} be k events. Then

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{k} V_{i}\right) \leq \sum_{i=1}^{k} \operatorname{Pr}\left(V_{i}\right)
$$

This bound is tight $(=)$ when the events are all disjoint.

$$
\text { (} V_{i} \text { and } V_{j} \text { are disjoint iff } V_{i} \cap V_{j} \text { is empty) }
$$

Define indicator r.v. I_{j} to be 1 if event V_{j} happens, otherwise $I_{j}=0$.
Let the r.v. $X=\sum_{j=1}^{k} I_{j}$ be the number of events that happen.

Union bound

THEOREM (union bound)
Let V_{1}, \ldots, V_{k} be k events. Then

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{k} V_{i}\right) \leq \sum_{i=1}^{k} \operatorname{Pr}\left(V_{i}\right)
$$

This bound is tight $(=)$ when the events are all disjoint.

$$
\text { (} V_{i} \text { and } V_{j} \text { are disjoint iff } V_{i} \cap V_{j} \text { is empty) }
$$

Proof
Define indicator r.v. I_{j} to be 1 if event V_{j} happens, otherwise $I_{j}=0$. Let the r.v. $X=\sum_{j=1}^{k} I_{j}$ be the number of events that happen.

$$
\operatorname{Pr}\left(\bigcup_{j=1}^{k} V_{j}\right)=\operatorname{Pr}(X>0) \leq \mathbb{E}(X)=\mathbb{E}\left(\sum_{j=1}^{k} I_{j}\right)=\sum_{j=1}^{k} \mathbb{E}\left(I_{j}\right)
$$

$$
=\sum_{j=1}^{k} \operatorname{Pr}\left(V_{j}\right)
$$

Union bound

THEOREM (union bound)
Let V_{1}, \ldots, V_{k} be k events. Then

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{k} V_{i}\right) \leq \sum_{i=1}^{k} \operatorname{Pr}\left(V_{i}\right)
$$

This bound is tight $(=)$ when the events are all disjoint.

$$
\text { (} V_{i} \text { and } V_{j} \text { are disjoint iff } V_{i} \cap V_{j} \text { is empty) }
$$

Proof
Define indicator r.v. I_{j} to be 1 if event V_{j} happens, otherwise $I_{j}=0$. Let the r.v. $X=\sum_{j=1}^{k} I_{j}$ be the number of events that happen.

$$
\begin{aligned}
& \operatorname{Pr}\left(\bigcup_{j=1}^{k} V_{j}\right)=\operatorname{Pr}(X>0) \leq \mathbb{E}(X)=\mathbb{E}\left(\sum_{j=1}^{k} I_{j}\right)= \sum_{j=1}^{k} \mathbb{E}\left(I_{j}\right) \\
&=\sum_{j=1}^{k} \operatorname{Pr}\left(V_{j}\right) \\
& \text { Markov corevillary }
\end{aligned}
$$

Union bound

THEOREM (union bound)
Let V_{1}, \ldots, V_{k} be k events. Then

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{k} V_{i}\right) \leq \sum_{i=1}^{k} \operatorname{Pr}\left(V_{i}\right)
$$

This bound is tight $(=)$ when the events are all disjoint.

$$
\text { (} V_{i} \text { and } V_{j} \text { are disjoint iff } V_{i} \cap V_{j} \text { is empty) }
$$

Proof
Define indicator r.v. I_{j} to be 1 if event V_{j} happens, otherwise $I_{j}=0$. Let the r.v. $X=\sum_{j=1}^{k} I_{j}$ be the number of events that happen.

$$
\operatorname{Pr}\left(\bigcup_{j=1}^{k} V_{j}\right)=\operatorname{Pr}(X>0) \leq \mathbb{E}(X)=\mathbb{E}\left(\sum_{j=1}^{k} I_{j}\right)=\sum_{j=1}^{k} \mathbb{E}\left(I_{j}\right)
$$

Union bound

THEOREM (union bound)
Let V_{1}, \ldots, V_{k} be k events. Then

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{k} V_{i}\right) \leq \sum_{i=1}^{k} \operatorname{Pr}\left(V_{i}\right)
$$

This bound is tight $(=)$ when the events are all disjoint.

$$
\text { (} V_{i} \text { and } V_{j} \text { are disjoint iff } V_{i} \cap V_{j} \text { is empty) }
$$

Proof

Define indicator r.v. I_{j} to be 1 if event V_{j} happens, otherwise $I_{j}=0$. Let the r.v. $X=\sum_{j=1}^{k} I_{j}$ be the number of events that happen.
$\operatorname{Pr}\left(\bigcup_{j=1}^{k} V_{j}\right)=\operatorname{Pr}(X>0) \leq \mathbb{E}(X)=\mathbb{E}\left(\sum_{j=1}^{k} I_{j}\right)=\sum_{j=1}^{k} \mathbb{E}\left(I_{j}\right)$

Markov corollary

$$
=\sum_{j=1}^{k} \operatorname{Pr}\left(V_{j}\right)
$$

Union bound

$$
\begin{aligned}
& \text { Let } V_{1}, \ldots, V_{k} \text { be } k \text { events. Then } \\
& \qquad \operatorname{Pr}\left(\bigcup_{i=1}^{k} V_{i}\right) \leq \sum_{i=1}^{k} \operatorname{Pr}\left(V_{i}\right) .
\end{aligned}
$$

This bound is tight $(=)$ when the events are all disjoint.

$$
\text { (} V_{i} \text { and } V_{j} \text { are disjoint iff } V_{i} \cap V_{j} \text { is empty) }
$$

Union bound

Union bound

THEOREM (union bound)
Let V_{1}, \ldots, V_{k} be k events. Then

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{k} V_{i}\right) \leq \sum_{i=1}^{k} \operatorname{Pr}\left(V_{i}\right)
$$

This bound is tight $(=)$ when the events are all disjoint.

$$
\text { (} V_{i} \text { and } V_{j} \text { are disjoint iff } V_{i} \cap V_{j} \text { is empty) }
$$

ExAMPLE
$S=\{1, \ldots, 6\}$ is the set of outcomes of a die roll.
We define two events: $V_{1}=\{3,4\}$

$$
V_{2}=\{1,2,3\}
$$

Union bound

THEOREM (union bound)
Let V_{1}, \ldots, V_{k} be k events. Then

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{k} V_{i}\right) \leq \sum_{i=1}^{k} \operatorname{Pr}\left(V_{i}\right)
$$

This bound is tight $(=)$ when the events are all disjoint.

$$
\text { (} V_{i} \text { and } V_{j} \text { are disjoint iff } V_{i} \cap V_{j} \text { is empty) }
$$

ExAMPLE
$S=\{1, \ldots, 6\}$ is the set of outcomes of a die roll.
We define two events: $V_{1}=\{3,4\}$

$$
V_{2}=\{1,2,3\}
$$

$$
\operatorname{Pr}\left(V_{1} \cup V_{2}\right) \leq \operatorname{Pr}\left(V_{1}\right)+\operatorname{Pr}\left(V_{2}\right)=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}
$$

Union bound

THEOREM (union bound)
Let V_{1}, \ldots, V_{k} be k events. Then

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{k} V_{i}\right) \leq \sum_{i=1}^{k} \operatorname{Pr}\left(V_{i}\right)
$$

This bound is tight $(=)$ when the events are all disjoint.

$$
\text { (} V_{i} \text { and } V_{j} \text { are disjoint iff } V_{i} \cap V_{j} \text { is empty) }
$$

Example

$S=\{1, \ldots, 6\}$ is the set of outcomes of a die roll.
We define two events: $V_{1}=\{3,4\}$

$$
V_{2}=\{1,2,3\}
$$

$$
\operatorname{Pr}\left(V_{1} \cup V_{2}\right) \leq \operatorname{Pr}\left(V_{1}\right)+\operatorname{Pr}\left(V_{2}\right)=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}
$$

Union bound

THEOREM (union bound)
Let V_{1}, \ldots, V_{k} be k events. Then

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{k} V_{i}\right) \leq \sum_{i=1}^{k} \operatorname{Pr}\left(V_{i}\right)
$$

This bound is tight $(=)$ when the events are all disjoint.

$$
\text { (} V_{i} \text { and } V_{j} \text { are disjoint iff } V_{i} \cap V_{j} \text { is empty) }
$$

Example

$S=\{1, \ldots, 6\}$ is the set of outcomes of a die roll.
We define two events: $V_{1}=\{3,4\}$

$$
V_{2}=\{1,2,3\}
$$

$$
\operatorname{Pr}\left(V_{1} \cup V_{2}\right) \leq \operatorname{Pr}\left(V_{1}\right)+\operatorname{Pr}\left(V_{2}\right)=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}
$$

$$
\text { in fact, } \operatorname{Pr}\left(V_{1} \cup V_{2}\right)=\frac{2}{3}
$$

Union bound

THEOREM (union bound)
Let V_{1}, \ldots, V_{k} be k events. Then

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{k} V_{i}\right) \leq \sum_{i=1}^{k} \operatorname{Pr}\left(V_{i}\right)
$$

This bound is tight $(=)$ when the events are all disjoint.

$$
\text { (} V_{i} \text { and } V_{j} \text { are disjoint iff } V_{i} \cap V_{j} \text { is empty) }
$$

Example
$S=\{1, \ldots, 6\}$ is the set of outcomes of a die roll.
We define two events: $V_{1}=\{3,4\}$

$$
V_{2}=\{1,2,3\}
$$

$$
\operatorname{Pr}\left(V_{1} \cup V_{2}\right) \leq \operatorname{Pr}\left(V_{1}\right)+\operatorname{Pr}\left(V_{2}\right)=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}
$$

$$
\text { in fact, } \operatorname{Pr}\left(V_{1} \cup V_{2}\right)=\frac{2}{3}
$$

(3 was 'double counted')

Union bound

THEOREM (union bound)
Let V_{1}, \ldots, V_{k} be k events. Then

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{k} V_{i}\right) \leq \sum_{i=1}^{k} \operatorname{Pr}\left(V_{i}\right)
$$

This bound is tight $(=)$ when the events are all disjoint.

$$
\text { (} V_{i} \text { and } V_{j} \text { are disjoint iff } V_{i} \cap V_{j} \text { is empty) }
$$

Example
$S=\{1, \ldots, 6\}$ is the set of outcomes of a die roll.
We define two events: $V_{1}=\{3,4\}$

$$
V_{2}=\{1,2,3\}
$$

$$
\operatorname{Pr}\left(V_{1} \cup V_{2}\right) \leq \operatorname{Pr}\left(V_{1}\right)+\operatorname{Pr}\left(V_{2}\right)=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}
$$

$$
\text { in fact, } \operatorname{Pr}\left(V_{1} \cup V_{2}\right)=\frac{2}{3}
$$

(3 was 'double counted')

Typically the union bound is used when each $\operatorname{Pr}\left(V_{i}\right)$ is much smaller than k.

Summary

The sample space S is the set of outcomes of an experiment.
For $x \in S$, the probability of x, written $\operatorname{Pr}(x)$, is a real number between 0 and 1 ,

$$
\text { such that } \sum_{x \in S} \operatorname{Pr}(x)=1
$$

An event is a subset V of the sample space $S, \operatorname{Pr}(V)=\sum_{x \in V} \operatorname{Pr}(x)$
A random variable (r.v.) Y is a function which maps $x \in S$ to $S(x) \in \mathbb{R}$ The probability of Y taking value y is $\operatorname{Pr}(Y=y)=\sum \operatorname{Pr}(x)$.
The expected value (the mean) of Y is $\mathbb{E}(Y)=\sum_{x \in S} Y(x) \cdot \operatorname{Pr}(x)$.

An indicator random variable is a r.v. that can only be 0 or 1 .
Fact: $\mathbb{E}(I)=\operatorname{Pr}(I=1)$.
$\left[\begin{array}{l}\text { THEOREM (Linearity of expectation) } \\ \mathbb{L e t} Y_{1}, Y_{2}, \ldots, Y_{k} \text { be } k \text { random variables then, } \\ \mathbb{E}\left(\sum_{i=1}^{k} Y_{i}\right)=\sum_{i=1}^{k} \mathbb{E}\left(Y_{i}\right)\end{array}\right]\left[\begin{array}{l}\text { THEOREM (union bound) } \\ \text { Let } V_{1}, \ldots, V_{k} \text { be } k \text { events then, } \\ \operatorname{Pr}\left(\bigcup_{i=1}^{k} V_{i}\right) \leq \sum_{i=1}^{k} \operatorname{Pr}\left(V_{i}\right) .\end{array}\right]\left[\begin{array}{l}\text { THEOREM (Markov's inequality) } \\ \text { If } X \text { is a non-negative r.v., then for all } a>0, \\ \operatorname{Pr}(X \geq a) \leq \frac{\mathbb{E}(X)}{a} .\end{array}\right.$

