
Exercise Sheet 1: Hashing and Bloom filters
Solutions

Please feel free to discuss these problems on the unit discussion board. If you would like to
have your answers marked, please either hand them in in person at the lecture or email them
to me with the email subject ”Problem sheet 1” by the deadline stated.

1 Weakly-universal Hashing

A hash function family H = {h1, h2, . . . } is weakly-universal iff for randomly and uniformly
chosen h ∈ H, we have Pr(h[x] = h[y]) ≤ 1/m for any distinct x, y ∈ U . Consider the following
hash function families. For each one, prove that it is weakly universal or give a counter-example.

1. Let p be a prime number and m be an integer, p ≥ m. Consider the hash function
family where you pick at random a ∈ {1, . . . , p− 1} and then define ha : {0, . . . , p− 1} →
{0, . . . ,m− 1} as ha(x) = (ax mod p) mod m.

Solution. Let us consider what we have to do to show a counterexample. The claim is
that for any prime p ≥ m and for all x ̸= y, Pr(h(x) = h(y)) ≤ 1

m . So to prove the claim
is not true we only need to show one prime p ≥ m, one value for m, and one x ̸= y where
the probability of a collision is greater than 1/m.

Consider the case m = 3 and p = 5. Then we obtain the following table:

ha(x) a = 1 a = 2 a = 3 a = 4

x = 0 0 0 0 0
x = 1 1 2 0 1
x = 2 2 1 1 0
x = 3 0 1 1 2
x = 4 1 0 2 1

We see, for example, that when a ∈ {2, 3} then ha(2) = ha(3) = 1. Observe that a ∈ {2, 3}
happens with probability 1

2 . Hence, Pr[ha(2) = ha(3)] =
1
2 > 1

3 . This family of hash
functions is therefore not weakly universal. A similar argument can be made with values
x = 1 and x = 4.

✓

2. Let p be a prime and m be an integer such that p ≥ m. Consider the hash function
family where you pick at random b ∈ {0, . . . , p− 1} and then define hb : {0, . . . , p− 1} →
{0, . . . ,m− 1} as hb(x) = ((x+ b) mod p) mod m.

1

Solution. Again, we construct a counterexample using the values p = 5 and m = 3. We
obtain the following table:

hb(x) b = 0 b = 1 b = 2 b = 3 b = 4

x = 0 0 1 2 0 1
x = 1 1 2 0 1 0
x = 2 2 0 1 0 1
x = 3 0 1 0 1 2
x = 4 1 0 1 2 0

We see that Pr[hb(0) = hb(3)] =
2
5 > 1

3 . This family of hash functions is therefore not
weakly universal. ✓

3. Let p be a multiple of m. Consider the hash function family where you pick at random
a ∈ {1, . . . ,m − 1} and b ∈ {0, . . . ,m − 1}. Define ha,b : {0, . . . , p − 1} → {0, . . . ,m − 1}
as ha,b(x) = ((ax+ b) mod p) mod m).

Solution. First, observe that when p is a multiple of m then

ha,b(x) = ((ax+ b) mod p) mod m) = (ax+ b) mod m) .

Suppose that p ̸= m (for example p = 2m). Then, consider the values x = 1 and x = m+1.
We have:

ha,b(1) = (a+ b) mod m , and

ha,b(m+ 1) = (a(m+ 1) + b) mod m = (a+ b+ am) mod m = (a+ b) mod m ,

since am is a multiple of m. We thus have ha,b(1) = ha,b(m + 1) and thus Pr[ha,b(1) =
ha,b(m+ 1)] = 1 ≥ 1

m . ✓

2 Cuckoo Hashing

1. This question is about cuckoo hashing. Consider a small variant of cuckoo hashing where
we use two tables T1 and T2 of the same size and hash function h1 and h2. When inserting
a new key x, we first try to put x at position h1(x) in T1. If this leads to a collision,
then the previously stored key y is moved to position h2(y) in T2. If this leads to another
collision, then the next key is again inserted at the appropriate position in T1, and so on.
In some cases, this procedure continues forever, i.e. the same configuration appears after
some steps of moving the keys around to resolve collisions.

(a) Consider two tables of size 5 each and two hash functions h1(k) = k mod 5 and
h2(k) = ⌊k5⌋ mod 5. Insert the keys 27, 2, 32 in this order into initially empty hash
tables, and show the result.

Solution.

• Insertion of 27:

Table 1 0 1 2 3 4

27

Table 2 0 1 2 3 4

• Insertion of 7:

2

Table 1 0 1 2 3 4

2

Table 2 0 1 2 3 4

27

2 replaces 27.

• Insertion of 32:

Table 1 0 1 2 3 4

27

Table 2 0 1 2 3 4

2 32

32 replaces 2. Then 2 replaces 27. Then 27 replaces 32.

✓

(b) Find another key such that its insertion leads to an infinite sequence of key displace-
ments.

Solution. Observe that h1(2) = h1(27) = 2 and h2(2) = h2(27) = 0. Any number
x different to 2 and 27 with h1(x) = 2 and h2(x) = 0 therefore works. The numbers
{2 + c · 25 | c ≥ 2} fulfill these conditions (e.g. 52). ✓

2. In order to use cuckoo hashing under an unbounded number of key insertions, we cannot
have a hash table of fixed size. The size of the hash table has to scale with the number
of keys inserted. Suppose that we never delete a key that has been inserted. Consider
the following approach with Cuckoo hashing. When the current hash table fills up to its
capacity, a new hash table of doubled size is created. All keys are then rehashed to the
new table. Argue that the average time it takes to resize and rebuild the hash table, if
spread out over all insertions, is constant in expectation. That is, the expected amortised
cost of rebuilding is constant.

Solution. Suppose that the algorithm uses k tables. Let m1,m2, . . . ,mk with mi+1 = 2 ·mi

be the sizes of the tables used. As discussed in the lecture, we can insert up to ni =
mi
c elements

into table i with amortized runtime O(1) per insertion, for some large enough constant c (in
the lecture we discussed that any value c ≥ 3 works). The total runtime for filling table i to
capacity is therefore mi

c ·O(1) = O(mi
c) = O(ni) (assuming that c is a constant). Observe that

ni+1 = 2ni holds, for every i.
Next, throughout this process every table (except possibly the last) will be entirely filled to

capacity. Given n insertions, we thus have 2n > nk ≥ n. The total runtime is therefore:

k∑
i=1

O(ni) = O

(
k∑

i=1

nk

2i−1

)
= O

(
nk ·

k∑
i=1

1

2i−1

)
= O

(
nk ·

∞∑
i=0

1

2i

)
= O (nk · 2)

= O(nk) = O(n) ,

which yields an amortized runtime of O(1) per insertion, since there are overall n insertions. ✓

3 Bloom Filters

1. Answer the following three questions about Bloom filters:

(a) What operations do we perform on Bloom filters?

3

Solution. Bloom filters support Insert() and Member(). ✓

(b) What is the difference between hash tables and Bloom filters in terms of which data
we can access?

Solution. Hash tables allow the recovery of the inserted elements. Bloom filters
do not allow this. ✓

(c) Why is there is a problem when deleting elements from a Bloom filter?

Solution. When deleting an element x we cannot simply set the bits h1(x), . . . , hr(x)
to zero since there may be other elements y inserted into the Bloom filter so that
{h1(x), . . . , hr(x)} and {h1(y), . . . , hr(y)} intersect. If this is the case then setting
h1(x), . . . , hr(x) to zero will make Member(y) return 0 instead of 1. ✓

2. Suppose you have two Bloom filters A and B (each having the same number of cells and
the same hash functions) representing the two sets A and B. Let C = A&B be the Bloom
filter formed by computing the bitwise Boolean and of A and B.

(a) C may not always be the same as the Bloom filter that would be constructed by
adding the elements of the set (A intersect B) one at a time. Explain why not.

Solution. Suppose that an element x is inserted into A and an element y ̸= x is in-
serted into B. Suppose further that 0 < |{h1(x), . . . , hr(x)}∩{h1(y), . . . , hr(y)}| < r.
The Bloom filter constructed by adding the elements of the set A intersect B is empty,
i.e., all bits are zero. The bits at positions {h1(x), . . . , hr(x)} ∩ {h1(y), . . . , hr(y)} in
Bloom Fliter C however are all 1. ✓

(b) Does C correctly represent the set (A intersect B), in the sense that it gives a positive
answer for membership queries of all elements in this set? Explain why or why not.

Solution. Yes. If an element x is contained in both A and B then the bits at
positions {h1(x), . . . , hr(x)} in both A and B equal 1. The same thus holds for C
since C is obtained by computing the logical ’and’ between A and B. ✓

(c) Suppose that we want to store a set S of n = 20 elements, drawn from a universe
of U = 10000 possible keys, in a Bloom filter of exactly N = 100 cells, and that we
care only about the accuracy of the Bloom filter and not its speed. For this problem
size, what is the best choice of the number of hash functions (the parameter r in the
lecture)? (That is what value of r gives the smallest possible probability that a key
not in S is a false positive?) What is the probability of a false positive for this choice
of r?

Solution. According to the lecture slides, the probability that r randomly chosen
positions are all 1 is (

20r

100

)r

=
(r
5

)r
. (1)

Again, according to the lecture slides, this expression is minimized for r = 100/(20e) =
5
e ≈ 1.839. We test the two closest integers 1 and 2 in Inequality 1. This shows that
a false positive is obtained with probability 1

5 for r = 1 and with probability 4
25 for

r = 2. The optimal choice thus is r = 2. ✓

4

4 Perfect Hashing

This question is about perfect hashing:

1. Our perfect hashing scheme assumed the set of keys stored in the table is static. Suppose
instead that we want to add a few new items to our table after the initial construction.
Suggest a way to modify our intitial construction so that we can insert these new items
using no new space and without making significant changes to our existing table (in
particular, we don’t want to change our initial hash function). Your scheme should still
do lookups of all items in O(1) time, but you may use a bit more initial space.

2. Suppose now that we want to delete some of our initial items. Describe a simple way to
support deletions in our perfect hashing scheme.

5

