
Advanced Algorithms Trees and search Teaching Block 1

Problem sheet 2 (Solutions)

Please feel free to discuss these problems on the unit discussion board or
directly with your colleagues. If you would like to have your answers marked,
please either hand them in in person at a lecture or problems class. Submitted
work will be marked as quickly as possible, ideally within one week of being
handed in.

1. The dynamic predecessor problem can be defined to be the dynamic
dictionary problem with the addition of the PREDECESSOR operation.
Recall that given a set of integers Y , the PREDECESSOR of x (which
may not be in Y ) is the largest v ∈ Y such that v ≤ x. The dynamic
predecessor problem could solved by either a self-balancing search tree
(such as an AVL or Red-Black tree) or a van Emde Boas tree.
(a) Give one advantage of using a van Emde Boas tree over a self-balancing

search tree.

Solution. Each operation takes O(log log u) time which is signifi-
cantly faster than a self balancing tree unless only few elements from
the universe are stored ; i.e. when n ∈ o(log u) where u is the size of
the universe and n is the number of elements stored.

✓

(b) Give one advantage of using a self-balancing search tree over a van
Emde Boas tree.

Solution. It uses much less space. The space required for a self
balancing tree is linear in the number of elements n, instead of the
(much larger) size of the universe u.

✓

2. How can you perform DELETE in a van Emde Boas tree ? You should
write your solution in the same style as in the lecture slides. What is
the relevant recurrence relation for the time complexity of DELETE and
what is its solution in terms of big O complexity ?

Solution. See Figure 1 for the pseudocode. DELETE performs at most
one recursive call in any of the cases while the other operations take
at most O(log log u) time as in the lectures. Hence, T (u) = T (

√
u) +

O(log log u). Using substitution and the Master Theorem we get a time
complexity of O(log log u).

✓



To perform delete(x) :
Determine which B[i] the element x belongs in
Let xi be the element x after adjusting for offset
Let mini and maxi be the min and max of B[i]
Case 1 if xi is not stored in B[i]

do nothing
Case 2 else if xi = mini = maxi

remove mini and maxi

delete(i) in C
Case 3 else if xi = mini

set mini to successor(xi)
delete(mini) in B[i]

Case 4 else if xi = maxi

delete(xi) in B[i]
set maxi to predecessor(xi)

Case 5 else
delete(xi) in B[i]

Figure 1 – DELETE operation

3. Looking at slide 189 of the van Emde Boas tree lectures slides, consider
a version of van Emde Boas trees where the new minimum is always
recursively inserted into the tree instead of being stored at only one
level. Write down the recurrence relation for the time complexity of the
ADD operation and give its solution in big O notation.

Solution. In this case, the ADD operation will require up to two recur-
sive calls such that

T (u) = 2T (
√

u) + O(1).

Then, by substitution of u = 2m and T (2m) = S(m) we get

S(m) = 2S(m

2 ) + O(1)

which can be solved by the Master Theorem to get a time complexity of
O(m) = O(log u).

✓

4. In 2D orthogonal range search, justify why we the number of 1D lookups
performed is O(log n) (see slide 165).

Solution. The number of nodes on any path in a balanced binary tree
is O(log n). Hence the path found from x1 to x2 when performing loo-
kup(x1, x2, y1, y2) has O(log n) nodes, each of which requires a single 1D
lookup.



✓

5. In some applications one is interested only in the number of points that
lie in a range rather than in reporting all of them. Such queries are often
referred to as range counting queries. In this case one would like to avoid
having an additive term of O(k) in the query time.
(a) Describe how a 1-dimensional range tree can be adapted such that a

range counting query can be performed in O(log n) time. Prove the
query time bound.

Solution. Build a balanced binary tree as in the lectures, but addi-
tionally store the (sorted) index of the element at each node during
pre-processing. When performing count(x1, x2), find the successor of
x1 and the predecessor of x2 both in O(log n) time. Then use the
corresponding indices to find the number of elements in the range in
O(1) time. Hence, the time complexity is O(log n).

✓

(b) Using the solution to the 1-dimensional problem, describe how 2-
dimensional range counting queries can be answered in O

(
log2 n

)
time. Prove the query time.

Solution. Follow the (unimproved) 2D range search using a balanced
binary tree from the lectures, but replace the 1D lookup with the 1D
count described in 5a. This performs O(log n) 1D counts each taking
O(log n) time. Hence, the time complexity is O(log2 n).

✓

(c) (*)Describe how fractional cascading can be used to improve the run-
ning time by a factor of O(log n) for 2-dimensional range counting
queries.

Solution. The slow part of 1D count described in 5a is finding the
successor and the predecessor. We can follow a fractional cascading
approach and add a link to the successors of each element to reduce
this step to time O(1) as in the lectures. Additionally we can do the
same thing for predecessors using no significant extra prep time or
space, and reducing the time complexity of 1D count to O(1). Hence,
the overall time complexity of 2D count is O(log n).

✓


