Advanced Algorithms - COMS31900

Hashing part one

Chaining, true randomness and universal hashing

Raphaël Clifford

Slides by Benjamin Sach and Markus Jalsenius

Dictionaries

In a dictionary data structure we store (key, value)-pairs
such that for any key there is at most one pair (key, value) in the dictionary.
Often we want to perform the following three operations:
$\operatorname{add}(x, v) \quad$ Add the the pair (x, v).
lookup $(x) \quad$ Return v if (x, v) is in dictionary, or NULL otherwise.
delete $(x) \quad$ Remove pair (x, v) (assuming (x, v) is in dictionary).

There are many data structures that will do this job, e.g.:

- Linked lists
- Binary search trees
- (2,3,4)-trees
- Red-black trees
- Skip lists
- van Emde Boas trees (later in this course)
these data structures all support extra operations beyond the three above but none of them take $O(1)$ worst case time for all operations... so maybe there is room for improvement?

Hash tables

We want to store n elements from the universe, U in a dictionary.

$$
\text { Typically } u=|U| \text { is much, much larger than } n \text {. }
$$

A hash function $h: U \rightarrow[m]$ maps a key to a position in T. We write $[m]$ to denote the set $\{0, \ldots, m-1\}$.

We want to avoid collisions, i.e. $h(x)=h(y)$ for $x \neq y$.

Time complexity

We cannot avoid collisions entirely since $u \gg m$; some keys from the universe are bound to be mapped to the same position. (remember u is the size of the universe and m is the size of the table)

By building a hash table with chaining, we get the following time complexities:

Operation	Worst case time	Comment
add (x, v)	$O(1)$	Simply add item to the list link if necessary.
lookup (x)	O (length of chain containing $x)$	We might have to search through the whole list containing x.
delete (x)	O (length of chain containing $x)$	Only $O(1)$ to perform the actual delete. . . but you have to find x first

So how long are these chains?

True randomness

Theorem

Consider any n fixed inputs to the hash table (which has size m),
i.e. any sequence of n add/lookup/delete operations.

Pick h uniformly at random from the set of all functions $U \rightarrow[m]$.
The expected run-time per operation is $O\left(1+\frac{n}{m}\right)$, or simply $O(1)$ if $m \geqslant n$.

Proof
Let x, y be two distinct keys from U. iff means if and only if.

Let indicator r.v. $I_{x, y}$ be 1 iff $h(x)=h(y)$.
we have that, $\operatorname{Pr}(h(x)=h(y))=\frac{1}{m}$
this is because $h(x)$ and $h(y)$ are chosen uniformly and independently from $[m]$.
Therefore, $\mathbb{E}\left(I_{x, y}\right)=\operatorname{Pr}\left(I_{x, y}=1\right)=\operatorname{Pr}(h(x)=h(y))=\frac{1}{m}$.

We have that, $\mathbb{E}\left(I_{x, y}\right)=\frac{1}{m}$.

True randomness

Theorem

Consider any n fixed inputs to the hash table (which has size m),
i.e. any sequence of n add/lookup/delete operations.

Pick h uniformly at random from the set of all functions $U \rightarrow[m]$.
The expected run-time per operation is $O\left(1+\frac{n}{m}\right)$, or simply $O(1)$ if $m \geqslant n$.

Proof
Let x, y be two distinct keys from U.
iff means if and only if.
Let indicator r.v. $I_{x, y}$ be 1 iff $h(x)=h(y)$.
We have that, $\mathbb{E}\left(I_{x, y}\right)=\frac{1}{m}$.
Let N_{x} be the number of keys stored in T that are hashed to $h(x)$
so, in the worst case it takes N_{x} time to look up x in T.
Observe that $N_{x}=\sum_{y \in T} I_{x, y}$
Finally, we have that $\mathbb{E}\left(N_{x}\right)=\mathbb{E}\left(\sum_{y \in T} I_{x, y}\right)=\sum_{y \in T} \mathbb{E}\left(I_{x, y}\right)=n \cdot \frac{1}{m}=\frac{n}{m}$
linearity of expectation.

Specifying the hash function

Problem: how do we specify an arbitrary (e.g. a truly random) hash function?
For each key in U we need to specify an arbitrary position in T, this is a number in $[m]$, so requires $\approx \log _{2} m$ bits.

So in total we need $\approx u \log _{2} m$ bits, which is a ridiculous amount of space! (in particular, it's much bigger than the table :s)

Why not pick the hash function as we go?
Couldn't we generate $h(x)$ when we first see x ?

Wouldn't we only use $n \log _{2} m$ bits? (one per key we actually store)
The problem with this approach is recalling $h(x)$ the next time we see x
Essentially we'd need to build a dictionary to solve the dictionary problem!
This has become rather cyclic... let's try something else!

Specifying the hash function

Problem: how do we specify an arbitrary (e.g. a truly random) hash function?
For each key in U we need to specify an arbitrary position in T, this is a number in $[m]$, so requires $\approx \log _{2} m$ bits.

So in total we need $\approx u \log _{2} m$ bits, which is a ridiculous amount of space! (in particular, it's much bigger than the table :s)

Instead, we define a set, or family of hash functions: $H=\left\{h_{1}, h_{2}, \ldots\right\}$.

As part of initialising the hash table, we choose the hash function h from H randomly.

How should we specify the hash functions in H and how do we pick one at random?

Weakly universal hashing

- A set H of hash functions is weakly universal if for any two distinct keys $x, y \in U$,

$$
\operatorname{Pr}(h(x)=h(y)) \leqslant \frac{1}{m}
$$

where h is chosen uniformly at random from H.

Observe
The randomness here comes from the fact that h is picked randomly.

Theorem
Consider any n fixed inputs to the hash table (which has size m),
i.e. any sequence of n add/lookup/delete operations.

Pick h uniformly at random from a weakly universal set H of hash functions.
The expected run-time per operation is $O(1)$ if $m \geqslant n$.

Proof
The proof we used for true randomness works here too (which is nice)

Constructing a weakly universal family of hash functions

- Suppose $U=[u]$, i.e. the keys in the universe are integers 0 to $u-1$.
- Let p be any prime bigger than u.
- For $a, b \in[p]$, let

$$
\begin{gathered}
h_{a, b}(x)=((a x+b) \bmod p) \bmod m \\
H_{p, m}=\left\{h_{a, b} \mid a \in\{1, \ldots, p-1\}, b \in\{0, \ldots, p-1\}\right\}
\end{gathered}
$$

Theorem
$H_{p, m}$ is a weakly universal set of hash functions.

Proof
See CLRS, Theorem 11.5, (page 267 in 3rd edition).

Observe

- $a x+b$ is a linear transformation which "spreads the keys" over p values when taken modulo p. This does not cause any collisions.
- Only when taken modulo m do we get collisions.

True randomness vs. weakly universal hashing

For both,

true randomness

(h is picked uniformly from the set of all possible hash functions) and weakly universal hashing
(h is picked uniformly from a weakly universal set of hash functions)
we have seen that when $m \geqslant n$, the expected lookup time in the hash table is $O(1)$.

Since constructing a weakly universal set of hash functions seems much easier than obtaining true randomness, this is all good news!

isn't it?

What about the length of the longest chain? (the longest linked list)
If it is very long, some lookups could take a very long time...

Longest chain - true randomness

LEmMA

If h is selected uniformly at random from all functions $U \rightarrow[m]$ then, over m fixed inputs,

$$
\operatorname{Pr}(\text { any chain has length } \geqslant 3 \log m) \leqslant \frac{1}{m}
$$

In this lemma we insert m keys, i.e. $n=m$.

Proof

The problem is equivalent to showing that if we randomly throw m balls into m bins, the probability of having a bin with at least $3 \log m$ balls is at most $\frac{1}{m}$.

Longest chain - true randomness

Longest chain - true randomness

PROOF

 continued. . .Let X_{1} be the number of balls in the first bin.
Choose any k of the m balls (we'll pick k in a bit) the probability that all of these k balls go into the first bin is $\frac{1}{m^{k}}$.

So, the union bound gives us

$$
\operatorname{Pr}\left(X_{1} \geqslant k\right) \leqslant\binom{ m}{k} \cdot \frac{1}{m^{k}} \leqslant \frac{1}{k!}
$$

$$
\begin{aligned}
\binom{m}{k}=\frac{m!}{k!(m-k)!} & =\frac{m \cdot(m-1) \cdot(m-2) \cdot \ldots(m-k+1) \cdot(m-k)!}{k!(m)!} \\
& \longmapsto \frac{m \cdot(m) \cdot(m) \cdot \ldots(m)}{k!} \leqslant \frac{m^{k}}{k!}
\end{aligned}
$$

Longest chain - true randomness

Longest chain - true randomness

Proof
continued. . .
Let X_{1} be the number of balls in the first bin.
Choose any k of the m balls (we'll pick k in a bit)

So, th
Why is $\frac{m}{k!} \leqslant \frac{1}{m} ?$ (when $k=3 \log m$)
$k!=\overbrace{k \times(k-1) \times(k-2) \ldots \times 2 \times 1}^{k \text { terms }}$

$$
k!>2 \times \quad 2 \quad \times \quad 2 \quad \ldots \times 2 \times 1=2^{k-1}
$$

By us
Let $k=3 \log m \ldots$

$$
\begin{aligned}
& k!>2^{(3 \log m-1)} \geqslant 2^{2 \log m}=\left(2^{\log m}\right)^{2}=m^{2} \\
& \text { so } \frac{m}{k!} \leqslant \frac{m}{m^{2}}=\frac{1}{m}
\end{aligned}
$$

- Now we set $\kappa=0 \log m$ ando ooservetmal $\overline{k!} \leqslant \bar{m}$ 101 $m \leqslant 2$, and we are done.

Longest chain - true randomness

LEmMA

If h is selected uniformly at random from all functions $U \rightarrow[m]$ then, over m fixed inputs,

$$
\operatorname{Pr}(\text { any chain has length } \geqslant 3 \log m) \leqslant \frac{1}{m}
$$

In this lemma we insert m keys, i.e. $n=m$.

Proof

The problem is equivalent to showing that if we randomly throw m balls into m bins, the probability of having a bin with at least $3 \log m$ balls is at most $\frac{1}{m}$.

Longest chain - weakly universal hashing

The conclusion from previous slides is that with true randomness, the longest chain is very short (at most $3 \log m$) with high probability.

Lemma
If h is picked uniformly at random from a weakly universal set of hash functions then, over m fixed inputs,

$$
\operatorname{Pr}(\text { any chain has length } \geqslant 1+\sqrt{2 m}) \leqslant \frac{1}{2}
$$

Observe
 This rubbish upper bound of $\frac{1}{2}$ does not necessarily rule out the possibility that the tightest upper bound is indeed very small. However, the upper bound of $\frac{1}{2}$ is in fact tight!

- For any two keys x, y, let indicator r.v. $I_{x, y}$ be 1 iff $h(x)=h(y)$.
- Let r.v. C be the total number of collisions: $C=\sum_{x, y \in T, x<y} I_{x, y}$.
- Using linearity of expectation and $\mathbb{E}\left(I_{x, y}\right)=\frac{1}{m}$ (h is weakly universal),

$$
\mathbb{E}(C)=\underset{x, y \in T, x<y}{\mathbb{E}\left(\sum_{x, y \in T, x<y} I_{x, y}\right)=\sum_{x, y} \mathbb{E}\left(I_{x, y}\right)=\binom{m}{2} \cdot \frac{1}{m} \leqslant \frac{m}{2} . . ~ . ~}
$$

- by Markov's inequality, $\operatorname{Pr}(C \geqslant m) \leqslant \frac{\mathbb{E}(C)}{m} \leqslant \frac{1}{2}$.
- Let r.v. L be the length of the longest chain. Then $C \geqslant\binom{ L}{2}$. This is because a chain of length L causes $\binom{L}{2}$ collisions!

Longest chain - weakly universal hashing

- For any two keys x, y, let indicator r.v. $I_{x, y}$ be $1 \mathrm{iff} h(x)=h(y)$.
- Let r.v. C be the total number of collisions: $C=\sum_{x, y \in T, x<y} I_{x, y}$.
- Using linearity of expectation and $\mathbb{E}\left(I_{x}, y\right)=\frac{1}{m}$ (h is weakly universal),

$$
\mathbb{E}(C)=\mathbb{E}\left(\sum_{x, y \in T, x<y} I_{x, y}\right)=\sum_{x, y \in T, x<y} \mathbb{E}\left(I_{x, y}\right)=\binom{m}{2} \cdot \frac{1}{m} \leqslant \frac{m}{2}
$$

- by Markov's inequality, $\operatorname{Pr}(C \geqslant m) \leqslant \frac{\mathbb{E}(C)}{m} \leqslant \frac{1}{2}$.
- Let r.v. L be the length of the longest chain. Then $C \geqslant\binom{ L}{2}$.
$\begin{array}{r}\text { Now, } \operatorname{Pr}\left(\frac{(L-1)^{2}}{2} \geqslant m\right) \leqslant \operatorname{Pr}\left(\binom{L}{2} \geqslant m\right) \leqslant \operatorname{Pr}(C \geqslant m) \leqslant \frac{1}{2} . \\ \text { this is because }\binom{L}{2}\end{array}=\frac{L!}{2!(L-2)!}=\frac{L \cdot(L-1)}{2} \geqslant \frac{(L-1)^{2}}{2}$.
- For any two keys x, y, let indicator r.v. $I_{x, y}$ be 1 iff $h(x)=h(y)$.
- Let r.v. C be the total number of collisions: $C=\sum_{x, y \in T, x<y} I_{x, y}$.
- Using linearity of expectation and $\mathbb{E}\left(I_{x}, y\right)=\frac{1}{m}$ (h is weakly universal),

$$
\mathbb{E}(C)=\mathbb{E}\left(\sum_{x, y \in T, x<y} I_{x, y}\right)=\sum_{x, y \in T, x<y} \mathbb{E}\left(I_{x, y}\right)=\binom{m}{2} \cdot \frac{1}{m} \leqslant \frac{m}{2}
$$

- by Markov's inequality, $\operatorname{Pr}(C \geqslant m) \leqslant \frac{\mathbb{E}(C)}{m} \leqslant \frac{1}{2}$.
- Let r.v. L be the length of the longest chain. Then $C \geqslant\binom{ L}{2}$.
- Now, $\operatorname{Pr}\left(\frac{(L-1)^{2}}{2} \geqslant m\right) \leqslant \operatorname{Pr}\left(\binom{L}{2} \geqslant m\right) \leqslant \operatorname{Pr}(C \geqslant m) \leqslant \frac{1}{2}$. By rearranging, we have that $\operatorname{Pr}(L \geqslant 1+\sqrt{2 m}) \leqslant \frac{1}{2}$, and we are done.

Conclusions

For both,
true randomness (h is picked uniformly from the set of all possible hash functions) and weakly universal hashing
(h is picked uniformly from a weakly universal set of hash functions)
we have seen that when $m \geqslant n$, the expected lookup time in a hash table with chaining is $O(1)$.

Lemma
If h is selected uniformly at random from all functions $U \rightarrow[m]$ then,

$$
\operatorname{Pr}(\text { any chain has length } \geqslant 3 \log m) \leqslant \frac{1}{m} .
$$

Lemma
If h is picked uniformly at random from a weakly universal set of hash functions,

$$
\operatorname{Pr}(\text { any chain has length } \geqslant 1+\sqrt{2 m}) \leqslant \frac{1}{2}
$$

